Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros












Intervalo de año de publicación
1.
Bull Exp Biol Med ; 177(2): 197-202, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39090470

RESUMEN

Type 2 diabetes mellitus (T2DM) is accompanied by halogenative stress resulting from the excessive activation of neutrophils and neutrophilic myeloperoxidase (MPO) generating highly reactive hypochlorous acid (HOCl). HOCl in blood plasma modifies serum albumin (Cl-HSA). We studied the formation of neutrophil extracellular traps (NETs) in the whole blood and by isolated neutrophils under the action of Cl-HSA. It was found that Cl-HSA induces neutrophil priming and NETosis. MPO-containing as well as MPO-free NETs were found. These NETs with different composition can be a product of NETosis of one and the same neutrophil. NET formation in neutrophils with vacuolated cytoplasm was detected. In the presence of Cl-HSA, acceleration of NET degradation was observed. Accelerated NET degradation and neutrophil priming can be the factors contributing to the development of complications in T2DM.


Asunto(s)
Trampas Extracelulares , Ácido Hipocloroso , Neutrófilos , Peroxidasa , Ácido Hipocloroso/metabolismo , Ácido Hipocloroso/farmacología , Neutrófilos/metabolismo , Neutrófilos/efectos de los fármacos , Trampas Extracelulares/metabolismo , Trampas Extracelulares/efectos de los fármacos , Humanos , Peroxidasa/metabolismo , Diabetes Mellitus Tipo 2/sangre , Albúmina Sérica/metabolismo , Masculino
2.
Int J Mol Sci ; 25(13)2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-39000304

RESUMEN

This publication presents the effect of hypochlorous acid dry mist as a disinfectant on selected bacteria, viruses, spores, and fungi as well as on portable Microlife OXY 300 finger pulse oximeters and electronic systems of Raspberry Pi Zero microcomputers. The impact of hypochlorous acid on microbiological agents was assessed at concentrations of 300, 500, and 2000 ppm of HClO according to PN-EN 17272 (Variant I). Studies of the impact of hypochlorous acid fog on electronic components were carried out in an aerosol chamber at concentrations of 500 ppm and 2000 ppm according to two models consisting of 30 (Variant II) and 90 fogging cycles (Variant III). Each cycle included the process of generating a dry mist of hypochlorous acid (25 mL/m3), decontamination of the test elements, as well as cleaning the chamber of the disinfectant agent. The exposure of the materials examined on hypochlorous acid dry mist in all variants resulted in a decrease in the number of viruses, bacteria, spores, and fungi tested. In addition, the research showed that in the variants of hypochlorous acid fogging cycles analyzed, no changes in performance parameters and no penetration of dry fog of hypochlorous acid into the interior of the tested medical devices and electronic systems were observed.


Asunto(s)
Descontaminación , Desinfectantes , Hongos , Ácido Hipocloroso , Ácido Hipocloroso/farmacología , Hongos/efectos de los fármacos , Desinfectantes/farmacología , Descontaminación/métodos , Bacterias/efectos de los fármacos , Virus/efectos de los fármacos , Esporas Fúngicas/efectos de los fármacos , Esporas Bacterianas/efectos de los fármacos , Electrónica
3.
Wounds ; 36(5): 148-153, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38861209

RESUMEN

BACKGROUND: The use of negative pressure wound therapy with instillation and dwell time (NPWTi-d) has been shown to be effective in removing nonviable tissue, reducing bioburden, and promoting granulation tissue formation in acute and chronic infected wounds. OBJECTIVE: To illustrate the clinical efficacy of the use of pure hypochlorous acid (pHA) antimicrobially preserved wound cleansing solution as the instillation fluid for NPWTi-d (NPWTi-d/pHA) in wound bed preparation in patients with complex wounds. CASE REPORT: The treatment protocol for use of NPWTi-d/pHA in preparing wound beds for final closure is demonstrated in 3 illustrative cases of patients with complex wounds resulting from necrotizing infection and trauma with heavy contamination. All 3 patients developed a healthy-appearing wound bed deemed suitable for primary closure an average of approximately 1 month following initial surgical debridement. CONCLUSION: The cases presented demonstrate the ability of a pHA antimicrobially preserved wound cleansing solution used as the instillation fluid with NPWTi-d to aid in bacterial reduction, mechanical debridement, and promotion of wound healing. Use of NPWTi-d/pHA in these cases of extensive necrotizing infection and posttraumatic injury with heavy contamination allowed for final closure an average of 1 month after initial surgical debridement.


Asunto(s)
Desbridamiento , Ácido Hipocloroso , Terapia de Presión Negativa para Heridas , Cicatrización de Heridas , Infección de Heridas , Humanos , Terapia de Presión Negativa para Heridas/métodos , Ácido Hipocloroso/farmacología , Ácido Hipocloroso/uso terapéutico , Cicatrización de Heridas/efectos de los fármacos , Masculino , Persona de Mediana Edad , Infección de Heridas/terapia , Infección de Heridas/microbiología , Resultado del Tratamiento , Desbridamiento/métodos , Femenino , Adulto , Irrigación Terapéutica/métodos
4.
J Microorg Control ; 29(2): 75-80, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38880619

RESUMEN

When a hypochlorite solution is ultrasonically fogged in a room, free chlorine, i.e., HOCl and OCl-, reaches various positions in two forms: fine fog droplets and gaseous hypochlorous acid(HOCl(g)). In this study, the cumulative amount of free chlorine reaching various positions on the floor away from the fogger was measured in a 90-m3 room, using a sulfamate-carrying glass-fiber filter indicator. The fine droplets were blown out from the fogger into the spaces at different discharge port angles of 30 - 90°. Free chlorine was successfully trapped by sulfamate, forming monochlorosulfamate, which was stably retained on the indicator. The cumulative amount of free chlorine( ng/indicator) increased with fogging time at each position and depended on the blow angle and distance from the fogger. Minor differences in the HOCl(g) concentration near the floor at all positions were observed. The disinfection efficacy of the fogging treatment against Staphylococcus aureus on wet surfaces was relatively higher at positions near the fogger and lower at positions far from the fogger. At each discharge port angle, a strong correlation between the logarithmic reduction in relative viable cells and the cumulative amount of free chlorine reaching S. aureus plates was observed. The slopes of the regression lines of correlation diagrams as a function of the cumulative amount of free chlorine were between -0.0362 and -0.0413 ng-1. This study demonstrated that the cumulative amount of free chlorine measured using the filter indicator could reflect the sum of the free chlorine of both fine droplets and HOCl(g), and that the disinfection efficiency depended on the cumulative amount of free chlorine reaching different areas.


Asunto(s)
Cloro , Desinfectantes , Desinfección , Ácido Hipocloroso , Staphylococcus aureus , Cloro/farmacología , Cloro/química , Desinfección/métodos , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/crecimiento & desarrollo , Ácido Hipocloroso/farmacología , Ácido Hipocloroso/química , Desinfectantes/farmacología , Desinfectantes/química , Ultrasonido
5.
J Hosp Infect ; 149: 22-25, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38705474

RESUMEN

BACKGROUND: The role of the healthcare environment in the transmission of clinical pathogens is well established. EN 17126:2018 was developed to address the need for regulated sporicidal product testing and includes a realistic medical soil to enable validation of products that claim combined cleaning and disinfection efficacy. AIM: To investigate the chemical stability and sporicidal efficacy of oxidizing disinfectant products in the presence of simulated clean and medical dirty conditions. METHODS: Disinfectant stability and sporicidal efficacy were evaluated in like-for-like ratios of soil:product. Disinfectants were exposed to simulated test soils and free chlorine, chlorine dioxide or peracetic acid concentrations were measured using standard colorimetric methods. Efficacy of disinfectants against C. difficile R027 endospores was assessed as per EN 17126:2018. Comparisons of performance between clean and medical dirty conditions were performed using one-way analysis of variance. Correlation analysis was performed using Pearson product-moment correlation. FINDINGS: Performance of chlorine-releasing agents (sodium dichloroisocyanurate, chlorine dioxide and hypochlorous acid) was concentration dependent, with 1000 ppm chlorine showing reduced stability and efficacy in dirty conditions. By contrast, peracetic acid product demonstrated stability and consistently achieved efficacy in dirty conditions. CONCLUSION: These results have implications for clinical practice, as ineffective environmental decontamination may increase the risk of transmission of pathogens that can cause healthcare-associated infections.


Asunto(s)
Compuestos de Cloro , Desinfectantes , Óxidos , Ácido Peracético , Esporas Bacterianas , Desinfectantes/farmacología , Compuestos de Cloro/farmacología , Óxidos/farmacología , Ácido Peracético/farmacología , Esporas Bacterianas/efectos de los fármacos , Clostridioides difficile/efectos de los fármacos , Humanos , Desinfección/métodos , Triazinas/farmacología , Ácido Hipocloroso/farmacología
6.
Antimicrob Agents Chemother ; 68(7): e0172223, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38771032

RESUMEN

Chronic wound infections can be difficult to treat and may lead to impaired healing and worsened patient outcomes. Novel treatment strategies are needed. This study evaluated the effects of intermittently produced hydrogen peroxide (H2O2) and hypochlorous acid (HOCl), generated via an electrochemical bandage (e-bandage), against methicillin-resistant Staphylococcus aureus biofilms in an agar membrane biofilm model. By changing the working electrode potential, the e-bandage generated either HOCl (1.5 VAg/AgCl) or H2O2 (-0.6 VAg/AgCl). The degree of biocidal activity of intermittent treatment with HOCl and H2O2 correlated with HOCl treatment time; HOCl treatment durations of 0, 1.5, 3, 4.5, and 6 hours (with the rest of the 6-hour total treatment time devoted to H2O2 generation) resulted in mean biofilm reductions of 1.36 ± 0.2, 2.22 ± 0.16, 3.46 ± 0.38, 4.63 ± 0.74, and 7.66 ± 0.5 log CFU/cm2, respectively, vs. non-polarized controls, respectively. However, application of H2O2 immediately after HOCl treatment was detrimental to biofilm removal. For example, 3 hours HOCl treatment followed by 3 hours H2O2 resulted in a 1.90 ± 0.84 log CFU/cm2 lower mean biofilm reduction than 3 hours HOCl treatment followed by 3 hours non-polarization. HOCl generated over 3 hours exhibited biocidal activity for at least 7.5 hours after e-bandage operation ceased; 3 hours of HOCl generation followed by 7.5 hours of non-polarization resulted in a biofilm cell reduction of 7.92 ± 0.12 log CFU/cm2 vs. non-polarized controls. Finally, intermittent treatment with HOCl (i.e., interspersed with periods of e-bandage non-polarization) for various intervals showed similar effects (approximately 6 log CFU/cm2 reduction vs. non-polarized control) to continuous treatment with HOCl for 3 hours, followed by 3 hours of non-polarization. These findings suggest that timing and sequencing of HOCl and H2O2 treatments are crucial for maximizing biofilm control when using an e-bandage strategy.


Asunto(s)
Biopelículas , Peróxido de Hidrógeno , Ácido Hipocloroso , Staphylococcus aureus Resistente a Meticilina , Biopelículas/efectos de los fármacos , Peróxido de Hidrógeno/farmacología , Ácido Hipocloroso/farmacología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana
7.
J Water Health ; 22(3): 601-611, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38557574

RESUMEN

Coronavirus disease 2019 (COVID-19) is an infectious viral disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that emerged at the end of 2019. SARS-CoV-2 can be transmitted through droplets, aerosols, and fomites. Disinfectants such as alcohol, quaternary ammonium salts, and chlorine-releasing agents, including hypochlorous acid, are used to prevent the spread of SARS-CoV-2 infection. In the present study, we investigated the efficacy of ionless hypochlorous acid water (HOCl) in suspension and by spraying to inactivate SARS-CoV-2. The virucidal efficacy of HOCl solution in tests against SARS-CoV-2 was evaluated as 50% tissue culture infectious dose. Although the presence of organic compounds influenced the virucidal efficacy, HOCl treatment for 20 s was significantly effective to inactivate Wuhan and Delta strains in the suspension test. HOCl atomization for several hours significantly reduced the SARS-CoV-2 attached to plastic plates. These results indicate that HOCl solution with elimination containing NaCl and other ions may have high virucidal efficacy against SARS-CoV-2. This study provides important information about the virucidal efficacy and use of HOCl solution.


Asunto(s)
COVID-19 , Desinfectantes , Humanos , SARS-CoV-2 , COVID-19/prevención & control , Ácido Hipocloroso/farmacología , Agua , Desinfectantes/farmacología
8.
Clin Oral Investig ; 28(5): 282, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38683234

RESUMEN

OBJECTIVES: This study aimed to compare the antimicrobial action, cytotoxicity, cleaning ability, and erosion of dentine of hypochlorous acid (HClO) obtained from an electrolytic device at two different concentrations (Dentaqua) and three concentrations of sodium hypochlorite (NaOCl). METHODS: Microbiological test-The root canals of sixty single-rooted extracted human teeth were inoculated with Enterococcus faecalis and divided into 6 groups (n = 10), according to decontamination protocol: DW (control); 1% NaOCl; 2.5% NaOCl; 5.25% NaOCl; 250 ppm HClO and 500 ppm HClO. The colony-forming units were counted to evaluate the decontamination potential of each group, calculating the reduction in bacterial percentage. Cytotoxicity test-Cytotoxicity was evaluated after inoculation of the same tested protocols in fibroblastic cells for 3 min, calculating the cell viability percentages. Specifical statistical analysis was performed (α = 5%). Cleaning ability and erosion-Fifty-six single-rooted bovine lower incisors were divided into seven groups of 8 roots each, being the test groups 1% NaOCl; 2.5% NaOCl; 5,25% NaOCl; 250 ppm HClO and 500 ppm HClO, and a negative and positive control. Negative control was not contaminated, and the other groups were inoculated with Enterococcus faecalis. SEM images were ranked as from the cleanest to the least clean. Erosion was also assessed, being ranked from the least to the most eroded dentine. RESULTS: The highest bacterial reduction was observed in experimental groups, with no statistical differences between them (p > 0.05). The highest number of viable cells was observed in control group, followed by 250 ppm HClO and 500 ppm HClO groups, with statistical differences between them (p < 0.05). 1% NaOCl; 2.5% NaOCl; 5.25% NaOCl and 500 ppm HClO displayed the cleanest areas. All sodium hypochlorite groups displayed erosion with higher ranks with greater concentration, while hypochlorous acid did not display any erosion regardless the concentration. CONCLUSIONS: It is possible to conclude that HClO obtained from an electrolytic device presented high antimicrobial activity and low cytotoxicity in both tested concentrations. 500 ppm HClO did not display erosion and showed great cleaning ability. CLINICAL RELEVANCE: The use of 500 ppm hypochlorous acid may reduce unfavorable behavior of sodium hypochlorite whilst maintaining its antimicrobial action.


Asunto(s)
Cavidad Pulpar , Enterococcus faecalis , Ácido Hipocloroso , Irrigantes del Conducto Radicular , Hipoclorito de Sodio , Hipoclorito de Sodio/farmacología , Ácido Hipocloroso/farmacología , Enterococcus faecalis/efectos de los fármacos , Humanos , Irrigantes del Conducto Radicular/farmacología , Cavidad Pulpar/microbiología , Animales , Bovinos , Técnicas In Vitro , Dentina/efectos de los fármacos , Dentina/microbiología , Supervivencia Celular/efectos de los fármacos , Antiinfecciosos/farmacología , Electrólisis
9.
Arch Oral Biol ; 163: 105966, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38657440

RESUMEN

OBJECTIVE: This study evaluated the antimicrobial effect and cytotoxicity of hypochlorous acid(HClO) obtained from an innovative electrolytic device. DESIGN: The root canals of fifty extracted human teeth were inoculated with Enterococcus faecalis and divided into 5 groups (n = 10): DW (control); 2% chlorhexidine gel(CHX); 2.5% sodium hypochlorite(NaOCl); 250 ppm HClO and 500 ppm HClO. The counting of colony forming units evaluated the decontamination potential of each group. Cytotoxicity was evaluated after inoculation of tested protocols in fibroblastic cells for 3 min, calculating the cell viability. Specific statistical analysis was performed (α = 5%). RESULTS: The highest bacterial reduction was observed in experimental groups, with no statistical differences from each other (p > 0.05). The highest number of viable cells was observed in control group, followed by 250 ppm HClO and 500 ppm HClO groups, with statistical differences from each other (p < 0.05). CONCLUSIONS: It could be concluded that HClO presented high antimicrobial activity and low cytotoxicity at both tested concentrations.


Asunto(s)
Supervivencia Celular , Enterococcus faecalis , Ácido Hipocloroso , Irrigantes del Conducto Radicular , Hipoclorito de Sodio , Ácido Hipocloroso/farmacología , Enterococcus faecalis/efectos de los fármacos , Humanos , Hipoclorito de Sodio/farmacología , Supervivencia Celular/efectos de los fármacos , Irrigantes del Conducto Radicular/farmacología , Técnicas In Vitro , Clorhexidina/farmacología , Cavidad Pulpar/microbiología , Cavidad Pulpar/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Antiinfecciosos/farmacología , Electrólisis
10.
Microsc Res Tech ; 87(9): 2094-2102, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38683025

RESUMEN

The purpose of this study was to evaluate the antibacterial effect of silver nanoparticles (AgNPs) against Enterococcus faecalis and compare it with different irrigation solutions. This study was performed using 64 dentin blocks. E. faecalis suspension was dispensed to each sample and incubated under anaerobic conditions at 37°C throughout 21 days. After the inoculation period, the following solutions were added to each group and kept for 5 min: Group 1, 5.25% sodium hypochlorite (NaOCl); Group 2, 2.5% NaOCl; Group 3, 1% NaOCl; Group 4, 2% chlorhexidine (CHX); Group 5, 200 ppm hypochlorous acid (HOCl); and Group 6, AgNPs. The samples of positive control were treated with sterile saline. Biofilm viability assay was performed using the LIVE/DEAD BacLight Bacterial Viability Kit. Samples were examined using confocal laser scanning microscopy, respectively. There was no significant difference between the 5.25% NaOCl, 2.5% NaOCl, and 1%NaOCl groups (p > .05). However, these groups showed statistically higher antibacterial activity than the 2% CHX, 200 ppm HOCl, and AgNP groups. Also, 2% CHX showed greater percentage of dead cells compared with the AgNP and HOCl groups. While AgNPs group showed lower dead cell rate than all NaOCl groups and 2% CHX, it caused higher dead cells than 200 ppm HOCl group. The 200 ppm HOCl group showed the lowest percentage of dead cells (p < .05) Although the antibacterial effect of AgNPs is not as high as NaOCl and CHX, it has considerable bactericidal activity against E. faecalis and can be improved by further studies. RESEARCH HIGHLIGHTS: New antimicrobial approaches for root canal irrigation. Antimicrobial effect of silver nanoparticles against E. faecalis. Elimination of the biofilm layer for the success of endodontic treatment.


Asunto(s)
Antibacterianos , Biopelículas , Clorhexidina , Dentina , Enterococcus faecalis , Ácido Hipocloroso , Nanopartículas del Metal , Plata , Hipoclorito de Sodio , Enterococcus faecalis/efectos de los fármacos , Plata/farmacología , Plata/química , Nanopartículas del Metal/química , Hipoclorito de Sodio/farmacología , Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Clorhexidina/farmacología , Dentina/microbiología , Dentina/efectos de los fármacos , Ácido Hipocloroso/farmacología , Humanos , Viabilidad Microbiana/efectos de los fármacos , Microscopía Confocal , Irrigantes del Conducto Radicular/farmacología
11.
J Appl Oral Sci ; 32: e20230381, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38537031

RESUMEN

BACKGROUND: Denture biofilm acts as a potential reservoir for respiratory pathogens, considerably increasing the risk of lung infections, specifically aspiration pneumonia, mainly 48h after hospital admission. The establishment of a straightforward, affordable, and applicable hygiene protocol in a hospital environment for the effective control of denture biofilm can be particularly useful to prevent respiratory infections or reduce the course of established lung disease. OBJECTIVES: To evaluate the anti-biofilm effectiveness of denture cleaning protocols in hospitalized patients. METHODOLOGY: The maxillary complete dentures (MCDs) of 340 hospitalized participants were randomly cleaned once using one of the following 17 protocols (n=20): brushing with distilled water, toothpaste, or neutral liquid soap (controls); immersion in chemical solutions (1% sodium hypochlorite, alkaline peroxide, 0.12% or 2% chlorhexidine digluconate), or microwave irradiation (650 W for 3 min) combined or not with brushing. Before and after the application of the protocols, the biofilm of the intaglio surface of the MCDs was evaluated using two methods: denture biofilm coverage area (%) and microbiological quantitative cultures on blood agar and Sabouraud Dextrose Agar (CFU/mL). Data were subjected to the Wilcoxon and Kruskal-Wallis tests (α=0.05). RESULTS: All 17 protocols significantly reduced the percentage area of denture biofilm and microbial and fungal load (P<0.05). The highest percentage reductions in the area of denture biofilm were observed for 1% hypochlorite solution with or without brushing and for 2% chlorhexidine solution and microwave irradiation only in association with brushing (P<0.05). The greatest reductions in microbial and fungal load were found for the groups that used solutions of 2% chlorhexidine and 1% hypochlorite and microwave irradiation, regardless of the association with brushing (P<0.05). CONCLUSIONS: A single immersion for 10 min in 1% sodium hypochlorite, even in the absence of brushing, proved to be a straightforward, rapid, low-cost, and effective protocol for cleaning the dentures of hospitalized patients.


Asunto(s)
Clorhexidina , Hipoclorito de Sodio , Humanos , Agar/farmacología , Biopelículas , Clorhexidina/farmacología , Limpiadores de Dentadura/farmacología , Dentadura Completa/microbiología , Dentaduras/microbiología , Ácido Hipocloroso/farmacología , Hipoclorito de Sodio/farmacología
12.
J Microorg Control ; 29(1): 39-44, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38508761

RESUMEN

During the disinfection of indoor spaces using gaseous hypochlorous acid (HOCl(g)), inhalation is the most common route of exposure for humans. In this study, an artificial human respiratory tract model was exposed to 12-140 ppb HOCl(g) at an aspiration flow rate of 800 mL/s for 15 h in a 1 m3 chamber. The respiratory tract model was equipped with 5th order bronchi and all gas-contact parts were made of silicone rubber with no other chlorine-consuming substances. The concentration of HOCl(g) reaching the lung pseudo-space was approximately 47.4% of the HOCl(g) concentrations in the chamber and was calculated to be very close to zero when the chamber concentration was less than 20.5 ppb. The disappearance of HOCl(g) during inhalation is likely due to the adsorption of HOCl(g) on the gas-contact silicone rubber surfaces. The cytotoxicity of HOCl(g) on respiratory epithelial cells was also examined using human air-liquid-interface airway tissue models. Human nasal epithelium and bronchiolar epithelium were exposed to 100 ppb and 500 ppb HOCl(g) for 8 h and 5 d, respectively. No significant effects of HOCl(g) on cell viability and ciliary activity were observed in any cell type, indicating that low concentrations of HOCl(g), less than 500 ppb, had no cytotoxic effect.


Asunto(s)
Gases , Ácido Hipocloroso , Humanos , Ácido Hipocloroso/farmacología , Elastómeros de Silicona , Células Epiteliales , Pulmón
13.
J Clin Pediatr Dent ; 48(1): 144-151, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38239167

RESUMEN

This study evaluates the effect of the deproteinization agents hypochlorous acid and sodium hypochlorite upon the bonding of the two different pit and fissure sealant, self-adhesive flowable composites with the enamel. Thirty-six third molars were randomly divided into six different groups. The groups were formed as follows: Group 1: 37% phosphoric acid + VertiseTM Flow; Group 2: 200 ppm hypochlorous acid + 37% phosphoric acid VertiseTM Flow; Group 3: 5.25% sodium hypochlorite + 37% phosphoric acid + VertiseTM Flow; Group 4: 37% phosphoric acid + Constic; Group 5: 200 ppm hypochlorous acid + 37% phosphoric acid + Constic; Group 6: 5.25% sodium hypochlorite + 37% phosphoric acid + Constic. In each group, samples were obtained that were rectangular prisms in shape (n = 12). Groups to which a deproteinization agent was applied (Groups 2, 3 and 5, 6) showed statistically higher microtensile bonding strength than Group 1, Group 4. There was no statistically significant difference in terms of microtensile bonding strength values between the Groups 3 and the Group 6. The study found that the groups to which deproteinization agents were applied had statistically higher microtensile bonding strength values compared with those groups to which acid and fissure sealants were applied. In this study, it was concluded that the use of fissure-sealing self-adhesive flowable composites after acid application to permanent tooth enamel provides an acceptable bond strength given the limitations of in vitro studies. In line with the results obtained, it was observed that in addition to the removal of the inorganic structure with the application of acid, the removal of the organic structure with the use of deproteinization agent increased the bond strength to the enamel.


Asunto(s)
Recubrimiento Dental Adhesivo , Selladores de Fosas y Fisuras , Humanos , Selladores de Fosas y Fisuras/farmacología , Ácido Hipocloroso/farmacología , Cementos de Resina/química , Cementos de Resina/farmacología , Hipoclorito de Sodio/farmacología , Cementos Dentales/farmacología , Recubrimiento Dental Adhesivo/métodos , Ácidos Fosfóricos/farmacología , Esmalte Dental , Ensayo de Materiales , Propiedades de Superficie
14.
J Microorg Control ; 28(4): 165-175, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38233168

RESUMEN

Hypochlorous acid (HOCl) is an active species in the chlorination process. Hypochlorite salts that release hypochlorite ion (OCl-) have been used for more than 200 years as disinfecting, cleaning, deodorizing, and decolorizing agents in various technological fields. In the food industry, sodium hypochlorite is the most widely used among chlorine compounds. The antimicrobial activity of a dilute hypochlorite solution is attributed largely to HOCl because of its cell membrane permeability. OCl- exhibits an excellent cleaning action for organic soils on solid surfaces. HOCl has been used as an aqueous solution, and its objects to be treated are things. In hypochlorite solution, HOCl is volatile and easily volatilized by stirring, bubbling, atomizing, or forced-air vaporization. On the other hand, OCl- is non-volatile and stays in the solution. Recently, the scope of objects to be treated with hypochlorite solution has been expanded to indoor spaces, and the use of gaseous hypochlorous acid (HOCl(g) ) has been studied intensively. This review describes the mechanisms of actions of hypochlorous acid as liquid-based and gaseous disinfectants and provides the evidence for the safety and effectiveness of HOCl(g) for controlling microorganisms in indoor spaces.


Asunto(s)
Desinfectantes , Ácido Hipocloroso , Ácido Hipocloroso/farmacología , Gases , Hipoclorito de Sodio/farmacología , Desinfectantes/farmacología , Agua
15.
Int. braz. j. urol ; 40(3): 408-413, may-jun/2014. tab, graf
Artículo en Inglés | LILACS | ID: lil-718257

RESUMEN

Involuntary detrusor contractions play an important role in the development of urge incontinence. Also in an in-vitro situation contractions which develop spontaneously can be seen; a parallel with the in vivo observations is likely. In order to study this muscle overactivity we investigated the possibility to induce this phenomenon with oxidative stress using hypochlorous acid (HOCl). Materials and Methods Urinary bladder muscle strips from pigs were mounted in a custom made organ bath and incubated for 20 minutes in Krebs solution. Next HOCl (10µM) was added to the organ bath and the onset of overactive contractions was closely followed. Overactivity was defined as a development of more than 5 phasic detrusor contractions per minute without any other provocation in the 30 minutes following addition of HOCl to the organ bath. Results Of the 50 strips which were used 36 (72%) became overactive after exposure to HOCl during 30 minutes recording. In 76% of the overactive strips overactivity occurred within 5 minutes, in 19% between 5 and 15 minutes, and in 5% it took longer than 15 minutes. The overactivity could be stopped by washing out HOCl for 10 minutes after which still a significant contraction after EFS and ACh stimulation was seen. Conclusions It can be concluded that an oxidative stressor, like HOCl, is capable of inducing smooth muscle overactivity. This model can be used for the development and testing of new treatment modalities for the overactive detrusor. Furthermore, this study provides evidence for a causal relationship between oxidative stress and detrusor overactivity. .


Asunto(s)
Animales , Modelos Animales de Enfermedad , Ácido Hipocloroso/farmacología , Estrés Oxidativo/efectos de los fármacos , Vejiga Urinaria Hiperactiva/inducido químicamente , Vejiga Urinaria Hiperactiva/metabolismo , Músculo Liso/efectos de los fármacos , Músculo Liso/metabolismo , Reproducibilidad de los Resultados , Porcinos , Factores de Tiempo , Vejiga Urinaria Hiperactiva/fisiopatología
16.
J. appl. oral sci ; 18(4): 403-408, July-Aug. 2010. ilus, graf
Artículo en Inglés | LILACS | ID: lil-557112

RESUMEN

OBJECTIVES: The purpose of this study was to measure and compare the root canal cleanliness and smear layer removal effectiveness of Aquatine Endodontic Cleanser (Aquatine EC) when used as an endodontic irrigating solution in comparison with 6 percent sodium hypochlorite (NaOCl). MATERIAL AND METHODS: Forty-five human teeth were randomly allocated to five treatment groups; the pulp chamber was accessed, cleaned, and shaped by using ProTaper and ProFile rotary instrumentation to an ISO size #40. The teeth were then processed for scanning electron microscopy, and the root canal cleanliness and removal of smear layer were examined. RESULTS: The most effective removal of smear layer occurred with Aquatine EC and NaOCl, both with a rinse of EDTA. CONCLUSIONS: Aquatine EC appears to be the first hypochlorous acid approved by the FDA to be a possible alternative to the use of NaOCl as an intracanal irrigant. Further research is needed to identify safer and more effective alternatives to the use of NaOCl irrigation in endodontics.


Asunto(s)
Humanos , Cavidad Pulpar/efectos de los fármacos , Ácido Hipocloroso/farmacología , Irrigantes del Conducto Radicular/farmacología , Capa de Barro Dentinario , Quelantes/farmacología , Método Doble Ciego , Cavidad Pulpar/microbiología , Cavidad Pulpar/ultraestructura , Dentina/efectos de los fármacos , Dentina/microbiología , Dentina/ultraestructura , Ácido Edético/farmacología , Enterococcus faecalis/efectos de los fármacos , Ensayo de Materiales , Microscopía Electrónica de Rastreo , Preparación del Conducto Radicular/instrumentación , Preparación del Conducto Radicular/métodos , Hipoclorito de Sodio/farmacología
17.
Rev. Fac. Med. (Bogotá) ; 51(3): 136-142, jul.-sept. 2003. tab, graf
Artículo en Español | LILACS | ID: lil-424518

RESUMEN

El aumento de las infecciones nosocomiales ha llevado a las instituciones de salud a mejorar las medidas de asepsia y antisepsia; dentro de estas, la búsqueda de un desinfectante eficaz que contribuya a este problema. El ácido hipocloroso (HC10) es un ion no disociado del cloro, responsable de la acción bactericida de los compuestos derivados del cloro, no es corrosivo ni cáustico y es conocido como un potente desinfectante. Este estudio evalúo la efectividad bactericida del HC10 sobre cinco cepas bacterianas causantes de infección intrahospitalaria, utilizando la técnica de Kelsey Maurer en condiciones controladas de temperatura, concentración del HC10 y tiempo de acción; se realizo una modificación con adición de albúmina al 5 por ciento. Se determinó que el HC10 es efectivo a concentraciones iguales o mayores a 900 ppm, luego de 10 minutos de acción para todas las cepas estudiadas con o sin la adición de proteínas


Asunto(s)
Ácido Hipocloroso/farmacología , Ácido Hipocloroso/uso terapéutico , Control de Infecciones
18.
Rev. argent. microbiol ; 32(3): 136-143, jul.-sept. 2000.
Artículo en Inglés | LILACS | ID: lil-332524

RESUMEN

Dihydrolipoamide dehydrogenase (LADH) from Trypanosoma cruzi, the causative agent of Chagas' disease, was inactivated by treatment with myeloperoxidase (MPO)-dependent systems. LADH lipoamide reductase and diaphorase activities decreased as a function of incubation time and composition of the MPO/H2O2/halide system, a transient increase preceding the loss of diaphorase activity. Iodide, bromide, thiocyanide and chloride were effective components of MPO/H2O2 or MPO/NADH systems. Catalase prevented LADH inactivation by the MPO/NADH/halide systems in agreement with H2O2 production by NADH-supplemented LADH. Thiol compounds (L-cysteine, N-acetylcysteine, penicillamine, N-(2-mercaptopropionylglycine) and Captopril prevented LADH inactivation by the MPO/H2O2/NaCl system and by NaOCl, thus supporting HOCl as agent of the MPO/H2O2/NaCl system. MPO/H2O2/NaNO2 and MPO/NADH/NaNO2 inactivated LADH, the reaction being prevented by MPO inhibitors and thiol compounds. T. cruzi LADH was affected by MPO-dependent systems like myocardial LADH, allowance being made for the variation of the diaphorase activity and the greater sensitivity of the T. cruzi enzyme to MPO/H2O2/halide systems.


Asunto(s)
Animales , Humanos , Ácido Hipocloroso/farmacología , Dihidrolipoamida Deshidrogenasa , Neutrófilos/fisiología , Nitritos , Peroxidasa , Proteínas Protozoarias/antagonistas & inhibidores , Estallido Respiratorio , Trypanosoma cruzi , Acetilcisteína/farmacología , Ácido Tióctico/análogos & derivados , Ácido Tióctico/metabolismo , Bromuros , Captopril , Catalasa , Cisteína/farmacología , Cloruro de Sodio/farmacología , Compuestos de Sodio/farmacología , Citotoxicidad Inmunológica , Especies Reactivas de Oxígeno/metabolismo , Glutatión , Glicina , Cinética , Miocardio , NAD , Neutrófilos/enzimología , Oxidación-Reducción , Penicilamina , Peróxido de Hidrógeno/farmacología , Proteínas Recombinantes/antagonistas & inhibidores , Compuestos de Sulfhidrilo , Triptófano , Tirosina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...