Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 928
Filtrar
1.
J Oleo Sci ; 73(6): 847-855, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38825538

RESUMEN

Unsaturated fatty acids, such as oleic and linoleic acids, are easily oxidized by exposure to temperature and light in the presence of air to form unsaturated fatty acid hydroperoxides as primary oxidation products. However, the catabolic rates of unsaturated fatty acid hydroperoxides in the human body remain unknown. In this study, ethyl esters of 13C-labeled linoleic acid (*C18:2-EE) and oleic acid (*C18:1-EE) and their hydroperoxides (*C18:2-EE-OOH and *C18:1-EE-OOH, respectively) prepared by the photo-oxidation of *C18:2-EE and *C18:1-EE, respectively, were administered to mice and their catabolic rates were determined by measuring the expired 13CO2 levels. *C18:2-EE-OOH and *C18:1-EE-OOH were ß-oxidized faster than *C18:2-EE and *C18:1-EE, respectively. Notably, rapid ß-oxidation of *C18:2-EE-OOH and *C18:1-EE-OOH was similar to that of medium-chain fatty acids, such as octanoic acid. Then, degradation products of C18:2-EE-OOH and C18:1-EE-OOH were analyzed under gastric conditions by gas chromatography/mass spectrometry. Major decomposition products of C18:2-EE-OOH and C18:1-EE-OOH were medium-chain compounds, such as octanoic acid ethyl ester, 9-oxo-nonanoic acid ethyl ester, and 10-oxo-8-decenoic acid ethyl esters, indicating that C18:2-EE-OOH and C18:1-EE-OOH isomers formed during photo-oxidation were decomposed under acidic conditions. These findings support previous reports that dietary lipid hydroperoxides are not absorbed into the intestine as lipid hydroperoxides but as degradation products. This is the first study to suggest that dietary lipid hydroperoxides decompose during gastric digestion to form medium-chain compounds that are directly absorbed into the liver via the portal vein and rapidly catabolized via ß-oxidation.


Asunto(s)
Dióxido de Carbono , Isótopos de Carbono , Ácido Linoleico , Ácido Oléico , Oxidación-Reducción , Animales , Ácido Oléico/metabolismo , Ácido Oléico/química , Ácido Linoleico/metabolismo , Ácido Linoleico/química , Dióxido de Carbono/metabolismo , Dióxido de Carbono/química , Ratones , Masculino , Peróxido de Hidrógeno/metabolismo
2.
J Control Release ; 371: 371-385, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38849089

RESUMEN

The efficacy of DNA-damaging agents, such as the topoisomerase I inhibitor SN38, is often compromised by the robust DNA repair mechanisms in tumor cells, notably homologous recombination (HR) repair. Addressing this challenge, we introduce a novel nano-strategy utilizing binary tumor-killing mechanisms to enhance the therapeutic impact of DNA damage and mitochondrial dysfunction in cancer treatment. Our approach employs a synergistic drug pair comprising SN38 and the BET inhibitor JQ-1. We synthesized two prodrugs by conjugating linoleic acid (LA) to SN38 and JQ-1 via a cinnamaldehyde thioacetal (CT) bond, facilitating co-delivery. These prodrugs co-assemble into a nanostructure, referred to as SJNP, in an optimal synergistic ratio. SJNP was validated for its efficacy at both the cellular and tissue levels, where it primarily disrupts the transcription factor protein BRD4. This disruption leads to downregulation of BRCA1 and RAD51, impairing the HR process and exacerbating DNA damage. Additionally, SJNP releases cinnamaldehyde (CA) upon CT linkage cleavage, elevating intracellular ROS levels in a self-amplifying manner and inducing ROS-mediated mitochondrial dysfunction. Our results indicate that SJNP effectively targets murine triple-negative breast cancer (TNBC) with minimal adverse toxicity, showcasing its potential as a formidable opponent in the fight against cancer.


Asunto(s)
Acroleína , Camptotecina , Sistemas de Liberación de Medicamentos , Nanopartículas , Neoplasias de la Mama Triple Negativas , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Nanopartículas/administración & dosificación , Nanopartículas/química , Animales , Humanos , Femenino , Línea Celular Tumoral , Acroleína/análogos & derivados , Acroleína/administración & dosificación , Acroleína/química , Camptotecina/análogos & derivados , Camptotecina/administración & dosificación , Camptotecina/uso terapéutico , Camptotecina/farmacología , Profármacos/administración & dosificación , Profármacos/uso terapéutico , Ácido Linoleico/química , Ácido Linoleico/administración & dosificación , Triazoles/administración & dosificación , Triazoles/farmacología , Triazoles/química , Daño del ADN/efectos de los fármacos , Antineoplásicos/administración & dosificación , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Ratones Desnudos , Ratones , Proteínas de Ciclo Celular/metabolismo , Factores de Transcripción/metabolismo , Inhibidores de Topoisomerasa I/administración & dosificación , Proteínas que Contienen Bromodominio , Azepinas
3.
Biomed Pharmacother ; 176: 116798, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38795642

RESUMEN

Cancer is one of the most lethal diseases all over the world. Despite that many drugs have been developed for cancer therapy, they still suffer from various limitations including poor treating efficacy, toxicity to normal human cells, and the emergence of multidrug resistance. In this study, the amphiphilic LHES polymers were prepared using hydroxyethyl starch (HES) and linoleic acid as starting materials. The content and substitution degree of linoleic acid groups in LHES polymers were analyzed. The LHES polymers were used for fabricating LHES-B nanoparticles carrying a linoleic acid modified berberine derivative (L-BBR). The LHES-B nanoparticles showed high drug loading efficiency (29%) and could quickly release L-BBR under acidic pH condition (pH = 4.5). Biological investigations revealed that LHES-B nanoparticles significantly inhibited the proliferation of HepG2 cells and exhibited higher cytotoxicity than L-BBR. In a transgenic Tg(fabp10:rtTA2s-M2; TRE2:EGFP-krasv12) zebrafish model, LHES-B nanoparticles obviously inhibited the expression of krasv12 oncogene. These results indicated that LHES carriers could improve the anticancer activity of L-BBR, and the synthesized LHES-B nanoparticles showed great potential as anticancer drug.


Asunto(s)
Berberina , Derivados de Hidroxietil Almidón , Ácido Linoleico , Nanopartículas , Proteínas Proto-Oncogénicas p21(ras) , Animales , Humanos , Animales Modificados Genéticamente , Antineoplásicos/farmacología , Antineoplásicos/química , Berberina/farmacología , Berberina/química , Proliferación Celular/efectos de los fármacos , Portadores de Fármacos/química , Liberación de Fármacos , Células Hep G2 , Derivados de Hidroxietil Almidón/farmacología , Derivados de Hidroxietil Almidón/química , Ácido Linoleico/química , Nanopartículas/química , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Pez Cebra , Modelos Animales de Enfermedad
4.
J Agric Food Chem ; 72(20): 11759-11772, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38738668

RESUMEN

This study aimed to investigate alterations in gut microbiota and metabolites mediated by wheat-resistant starch and its repair of gut barrier dysfunction induced by a high-fat diet (HFD). Structural data revealed that chlorogenic acid (CA)/linoleic acid (LA) functioned through noncovalent interactions to form a more ordered structure and fortify antidigestibility in wheat starch (WS)-CA/LA complexes; the resistant starch (RS) contents of WS-CA, WS-LA, and WS-CA-LA complexes were 23.40 ± 1.56%, 21.25 ± 1.87%, and 35.47 ± 2.16%, respectively. Dietary intervention with WS-CA/LA complexes effectively suppressed detrimental alterations in colon tissue morphology induced by HFD and repaired the gut barrier in ZO-1 and MUC-2 levels. WS-CA/LA complexes could augment gut barrier-promoting microbes including Parabacteroides, Bacteroides, and Muribaculum, accompanied by an increase in short-chain fatty acids (SCFAs) and elevated expression of SCFA receptors. Moreover, WS-CA/LA complexes modulated secondary bile acid metabolism by decreasing taurochenodeoxycholic, cholic, and deoxycholic acids, leading to the activation of bile acid receptors. Collectively, this study offered guiding significance in the manufacture of functional diets for a weak gut barrier.


Asunto(s)
Ácido Clorogénico , Dieta Alta en Grasa , Microbioma Gastrointestinal , Ácido Linoleico , Ratones Endogámicos C57BL , Almidón , Triticum , Ácido Clorogénico/metabolismo , Ácido Clorogénico/farmacología , Ácido Clorogénico/administración & dosificación , Ácido Clorogénico/química , Dieta Alta en Grasa/efectos adversos , Triticum/química , Triticum/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Animales , Masculino , Ratones , Almidón/metabolismo , Almidón/química , Ácido Linoleico/metabolismo , Ácido Linoleico/química , Bacterias/clasificación , Bacterias/metabolismo , Bacterias/genética , Bacterias/efectos de los fármacos , Bacterias/aislamiento & purificación , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Humanos , Ácidos Grasos Volátiles/metabolismo , Almidón Resistente/metabolismo
5.
Food Res Int ; 187: 114357, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763641

RESUMEN

The oxidation of fish lipids and proteins is interconnected. The LOX (lipoxygenase)-catalyzed LA (linoleic acid) oxidation system on MPs (myofibrillar proteins) was established in vitro, to investigate the impact of lipoxidation on the physicochemical properties of fish MPs. By detecting HNE (4-hydroxy-2-nonenal) concentration during LA oxidation, the HNE treatment system was established to investigate the role of HNE in this process. In addition, the site specificity of modification on MPs was detected utilizing LC-MS/MS. Both treatments could induce sidechain modification, increase particle size, and cause loss of nutritional value through the reduction in amino acid content of MPs. The HNE group is more likely to alter the MPs' surface hydrophobicity compared to the LA group. By increasing the exposure of modification sites in MPs, the HNE group has more types and number of modifications compared to the LA group. LA group mainly induced the modification of single oxygen addition on MPs instead, which accounted for over 50 % of all modifications. The LA group induced a more pronounced reduction in the solubility of MPs as compared to the HNE group. In conclusion, HNE binding had a high susceptibility to Lys on MPs. Protein aggregation, peptide chain fragmentation, and decreased solubility occurred in the LA group mainly induced by peroxide generated during lipid oxidation or the unreacted LA instead of HNE. This study fills in the mechanism of lipoxidation on protein oxidation in fish and sheds light on the HNE modification sites of MPs, paving the way for the development of oxidation control technology.


Asunto(s)
Aldehídos , Ácido Linoleico , Oxidación-Reducción , Espectrometría de Masas en Tándem , Aldehídos/metabolismo , Animales , Ácido Linoleico/química , Ácido Linoleico/metabolismo , Cromatografía Liquida/métodos , Proteínas de Peces/metabolismo , Proteínas Musculares/metabolismo , Peces , Interacciones Hidrofóbicas e Hidrofílicas , Lipooxigenasa/metabolismo , Cromatografía Líquida con Espectrometría de Masas
6.
Food Res Int ; 186: 114355, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729701

RESUMEN

In this study, five C18 fatty acids (FA) with different numbers of double bonds and configurations including stearic acid (SA), oleic acid (OA), elaidic acid (EA), linoleic acid (LA), and α-linolenic acid (ALA), were selected to prepare highland barely starch (HBS)-FA complexes to modulate digestibility and elaborate the underlying mechanism. The results showed that HBS-SA had the highest complex index (34.18 %), relative crystallinity (17.62 %) and single helix content (25.78 %). Furthermore, the HBS-C18 FA complexes were formed by EA (C18 FA with monounsaturated bonds) that had the highest R1047/1022 (1.0509) and lowest full width at half-maximum (FWHM, 20.85), suggesting good short-range ordered structure. Moreover, all C18 FAs could form two kinds of V-type complexes with HBS, which can be confirmed by the results of CLSM and DSC measurements, and all of them showed significantly lower digestibility. HBS-EA possessed the highest resistant starch content (20.17 %), while HBS-SA had the highest slowly digestible starch content (26.61 %). In addition, the inhibition of HBS retrogradation by fatty acid addition was further proven, where HBS-SA gel firmness (37.80 g) and aging enthalpy value were the lowest, indicating the most effective. Overall, compounding with fatty acids, especially SA, could be used as a novel way to make functional foods based on HBS.


Asunto(s)
Digestión , Ácidos Grasos , Hordeum , Ácido Oléico , Almidón , Almidón/química , Ácidos Grasos/análisis , Ácidos Grasos/química , Hordeum/química , Ácido Oléico/química , Ácidos Esteáricos/química , Ácido Linoleico/química , Ácido alfa-Linolénico/química , Ácidos Oléicos
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124242, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38581725

RESUMEN

The regular overconsumption of high-energy food (rich in lipids and sugars) results in elevated nutrient absorption in intestine and consequently excessive accumulation of lipids in many organs e.g.: liver, adipose tissue, muscles. In the long term this can lead to obesity and obesity-associated diseases e.g. type 2 diabetes, non-alcoholic fatty liver disease, cardiovascular disease, inflammatory bowel disease (IBD). In the presented paper based on RI data we have proved that Raman maps can be used successfully for subcellular structures visualization and analysis of fatty acids impact on morphology and chemical composition of human colon single cells - normal and cancer. Based on Raman data we have investigated the changes related to endoplasmic reticulum, mitochondria, lipid droplets and nucleus. Analysis of ratios calculated based on Raman bands typical for proteins (1256, 1656 cm-1), lipids (1304, 1444 cm-1) and nucleic acids (750 cm-1) has confirmed for endoplasmic reticulum the increased activity of this organelle in lipoproteins synthesis upon FAs supplementation; for LDs the changes of desaturation of accumulated lipids with the highest unsaturation level for CaCo-2 cells upon EPA supplementation; for mitochondria the stronger effect of FAs supplementation was observed for CaCo-2 cells confirming the increased activity of this organelle responsible for energy production necessary for tumor development; the weakest impact of FAs supplementation was observed for nucleus for both types of cells and both types of acids. Fluorescence imaging was used for the investigations of changes in LDs/ER morphology. Our measurements have shown the increased area of LDs/ER for CaCo-2 cancer cells, and the strongest effect was noticed for CaCo-2 cells upon EPA supplementation. The increased participation of lipid structures for all types of cells upon FAs supplementation has been confirmed also by AFM studies. The lowest YM values have been observed for CaCo-2 cells including samples treated with FAs.


Asunto(s)
Neoplasias del Colon , Ácido Eicosapentaenoico , Espectrometría Raman , Humanos , Ácido Eicosapentaenoico/farmacología , Ácido Eicosapentaenoico/química , Células CACO-2 , Neoplasias del Colon/patología , Neoplasias del Colon/metabolismo , Neoplasias del Colon/tratamiento farmacológico , Ácido Linoleico/farmacología , Ácido Linoleico/química , Colon/efectos de los fármacos , Colon/metabolismo , Colon/patología , Microscopía Fluorescente
8.
Food Chem ; 449: 139190, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38579653

RESUMEN

Linoleic acid (LA) detection and edible oils discrimination are essential for food safety. Recently, CsPbBr3@SiO2 heterostructures have been widely applied in edible oil assays, while deep insights into solvent effects on their structure and performance are often overlooked. Based on the suitable polarity and viscosity of cyclohexane, we prepared CsPbBr3@SiO2 Janus nanoparticles (JNPs) with high stability in edible oil and fast halogen-exchange (FHE) efficiency with oleylammonium iodide (OLAI). LA is selectively oxidized by lipoxidase to yield hydroxylated derivative (oxLA) capable of reacting with OLAI, thereby bridging LA content to naked-eye fluorescence color changes through the anti-FHE reaction. The established method for LA in edible oils exhibited consistent results with GC-MS analysis (p > 0.05). Since the LA content difference between edible oils, we further utilized chemometrics to accurately distinguish (100%) the species of edible oils. Overall, such elaborated CsPbBr3@SiO2 JNPs enable a refreshing strategy for edible oil discrimination.


Asunto(s)
Ácido Linoleico , Óxidos , Aceites de Plantas , Titanio , Óxidos/química , Aceites de Plantas/química , Ácido Linoleico/química , Compuestos de Calcio/química , Solventes/química , Nanopartículas/química , Dióxido de Silicio/química
9.
J Sci Food Agric ; 104(11): 6787-6798, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-38567870

RESUMEN

BACKGROUND: Gel property is among the crucial functional properties of egg yolk (EY), which determines the texture and flavor of EY products. In the present study, the effects of two unsaturated fatty acids [monounsaturated fatty acid oleic acid (OA) and diunsaturated fatty acid linoleic acid (LA)] on the gel properties of EY protein were investigated. RESULTS: Compared with the blank group, the addition of LA and OA (10-50 g kg-1) improved the gel hardness (from 270.54 g to 385.85 g and 414.38 g, respectively) and viscosity coefficient (from 0.015 Pa.sn to 11.892 Pa.sn and 1.812 Pa.sn, respectively). The surface hydrophobicity of EY protein increased to a maximum value of 40 g kg-1 with the addition of both fatty acids (39.06 µg and 41.58 µg, respectively). However, excess unsaturated fatty acids (≥ 50 g kg-1) disrupted the completeness of the gel matrix and weakened the structural properties of the EY gel. CONCLUSION: Both fatty acids improved the gel properties of EY protein. At the same addition level, OA was superior to LA in improving gel properties. The present study provides a theoretical underpinning for the sensible application of unsaturated fatty acids in improving EY gel properties. © 2024 Society of Chemical Industry.


Asunto(s)
Pollos , Proteínas del Huevo , Yema de Huevo , Geles , Interacciones Hidrofóbicas e Hidrofílicas , Ácido Linoleico , Ácido Oléico , Ácido Linoleico/química , Ácido Oléico/química , Viscosidad , Geles/química , Proteínas del Huevo/química , Yema de Huevo/química , Animales , Dureza
10.
Biopolymers ; 115(4): e23582, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38680100

RESUMEN

This study focused on synthesizing and characterizing PEGylated amphiphilic block copolymers with pendant linoleic acid (Lin) moieties as an alternative to enhance their potential in drug delivery applications. The synthesis involved a two-step process, starting with ring-opening polymerization of ε-caprolactone (CL) and propargylated cyclic carbonate (MCP) to obtain PEG-b-P(CL-co-MCP) copolymers, which were subsequently modified via click chemistry. Various reaction conditions were explored to improve the yield and efficiency of the click chemistry step. The use of anisole as a solvent, N-(3-azidopropyl)linoleamide as a substrate, and a reaction temperature of 60°C proved to be highly efficient, achieving nearly 100% conversion at a low catalyst concentration. The resulting copolymers exhibited controlled molecular weights and low polydispersity, confirming the successful synthesis. Furthermore, click chemistry allows for the attachment of Lin moieties to the copolymer, enhancing its hydrophobic character, as deduced from their significantly lower critical micelle concentration than that of traditional PEG-b-PCL systems, which is indicative of enhanced stability against dilution. The modified copolymers exhibited improved thermal stability, making them suitable for applications that require high processing temperatures. Dynamic light scattering and transmission electron microscopy confirmed the formation of micellar structures with sizes below 100 nm and minimal aggregate formation. Additionally, 1H NMR spectroscopy in deuterated water revealed the presence of core-shell micelles, which provided higher kinetic stability against dilution.


Asunto(s)
Química Clic , Polietilenglicoles , Polimerizacion , Química Clic/métodos , Polietilenglicoles/química , Ácido Linoleico/química , Micelas , Interacciones Hidrofóbicas e Hidrofílicas , Tensoactivos/química , Tensoactivos/síntesis química , Peso Molecular
11.
J Agric Food Chem ; 72(8): 4384-4392, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38354408

RESUMEN

The linoleic acid reaction models were set at 150 °C for 120 min, and its oxidation process was monitored by nuclear magnetic resonance (NMR) and gas chromatography-mass spectrometry (GC-MS). Results showed that no furan was formed from linoleic acid without heating, while furan accumulated throughout the heating process. Linoleic acid ran out within 30 min, which indicated that furan was formed mainly from the intermediate oxidation products of linoleic acid after 30 min. It should be noticed that the content of (E,E)-2,4-decadienal reached maximum once the linoleic acid ran out and then decreased with the formation of furan. Multivariate statistical analysis suggested that (E,E)-2,4-decadienal was the most important aldehyde related to furan formation during linoleic acid oxidation. To prove this assumption, the variation of furan from (E,E)-2,4-decadienal reaction models heating at 150 °C for 60 min was also studied. Results showed that the content of furan increased with the oxidation of (E,E)-2,4-decadienal. Furthermore, NMR and GC-MS data proved that (E,E)-2,4-decadienal could be oxidized to 4,5-epoxy-(E)-2-decenal. In conclusion, our results supported (E,E)-2,4-decadienal and trans-4,5-epoxy-(E)-2-decenal as critical intermediate products of furan formation from linoleic acid oxidation.


Asunto(s)
Aldehídos , Alquenos , Calor , Ácido Linoleico , Ácido Linoleico/química , Oxidación-Reducción , Furanos/química
12.
Free Radic Res ; 57(4): 271-281, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37401820

RESUMEN

Soaking aged fat pork is a special aging process in the production of Chi-aroma Baijiu considered to involve the formation of free radicals. This study aimed to investigate the free radicals' formation pathway in Chi-aroma Baijiu during aged fat pork soaking by using electron paramagnetic resonance (EPR) and spin trapping with 5,5-dimethyl-1-pyrrolin-n-oxide (DMPO). The alkyl radical adducts (DMPO-R) and hydroxyl radical adducts (DMPO-OH) were detected in Baijiu after soaking the fat pork for aging. During the preparation process of aged fat pork, alkoxy radicals adduct (DMPO-RO) were mainly detected since lipid oxidation. Oleic acid and linoleic acid, the two main unsaturated fatty acids in fat pork, produced alkoxy radicals in the oxidation process. The total amounts of spins in linoleic acid and oleic acid after 4-month oxidation treatment increased by 248.07 ± 26.65% and 34.17 ± 0.72% than 0-month. It indicated that the free radicals in aged Chi-aroma Baijiu were mainly derived from the two main unsaturated fatty acids in aged fat pork and linoleic acid had a stronger ability to produce free radicals than oleic acid. Alkoxy radicals (RO·) from fat pork reacted with ethanol in Baijiu to form alkyl radicals (R·). The peroxide bond of hydroperoxides from the oxidation of unsaturated fatty acid was cleaved to form hydroxyl radicals (·OH) that were transferred to Baijiu. The results provide theoretical guidance for the subsequent work of free radicals scavenging.


Asunto(s)
Carne de Cerdo , Carne Roja , Animales , Porcinos , Odorantes , Radicales Libres/química , Espectroscopía de Resonancia por Spin del Electrón/métodos , Ácido Linoleico/química , Ácido Linoleico/metabolismo , Ácidos Grasos Insaturados/química , Ácidos Grasos Insaturados/metabolismo , Radical Hidroxilo , Ácidos Oléicos , Óxidos N-Cíclicos/química , Marcadores de Spin
13.
Artículo en Inglés | MEDLINE | ID: mdl-37336389

RESUMEN

ω-Alkynyl-fatty acids can be used as probes for covalent binding to intracellular macromolecules. To inform future in vivo studies, we determined the rates of reaction of ω-alkynyl-labeled linoleate with recombinant enzymes of the skin 12R-lipoxygenase (12R-LOX) pathway involved in epidermal barrier formation (12R-LOX, epidermal lipoxygenase-3 (eLOX3), and SDR9C7). We also examined the reactivity of ω-alkynyl-arachidonic acid with representative lipoxygenase enzymes employing either "carboxyl end-first" substrate binding (5S-LOX) or "tail-first" (platelet-type 12S-LOX). ω-Alkynyl-linoleic acid was oxygenated by 12R-LOX at 62 ± 9 % of the rate compared to linoleic acid, the alkynyl-9R-HPODE product was isomerized by eLOX3 at only 43 ± 1 % of the natural substrate, whereas its epoxy alcohol product was converted to epoxy ketone linoleic by an NADH-dependent dehydrogenase (SDR9C7) with 91 ± 1 % efficiency. The results suggest the optimal approach will be application of the 12R-LOX/eLOX3-derived epoxyalcohol, which should be most efficiently incorporated into the pathway and allow subsequent analysis of covalent binding to epidermal proteins. Regarding the orientation of substrate binding in LOX catalysis, our results and previous reports suggest the ω-alkynyl group has a stronger inhibitory effect on tail-first binding, as might be expected. Beyond slowing the reaction, however, we found that the tail-first binding and transformation of ω-alkynyl-arachidonic acid by platelet-type 12S-LOX results in almost complete enzyme inactivation, possibly due to reactive intermediates blocking the enzyme active site. Overall, the results reinforce the conclusion that ω-alkynyl-fatty acids are suitable for selected applications after appropriate reactivity is established.


Asunto(s)
Ácidos Araquidónicos , Piel , Piel/metabolismo , Lipooxigenasa/metabolismo , Ácido Linoleico/química , Ácidos Linoleicos/metabolismo , Ácidos Grasos , Ácido Araquidónico
14.
Food Chem ; 422: 136151, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37126956

RESUMEN

To improve the stability and broaden the application of resveratrol (Res), the Res conjugated linoleate (RCL) were synthesized successfully using Res and 9c,11t-conjugated linoleic acid (CLA) with N, N'-carbonyldiimidazole (CDI) as catalyst for the first time. The Res conversion and the yield of RCL were achieved at 96.85% and 65.30%, respectively. In comparison with Res, RCL has lower acid value (1.80 mg/g) and peroxide value (3.25 meq/kg) and higher thermal stability (improved by 115.3 ℃). RCL was identified as a novel triester compound with a physical appearance as a light-yellow viscous oil. The 9c,11t-CLA was activated by CDI first, reacted with Res to form 4'-Res-ester preferentially, followed by 5,4'-Res-ester and 3,5,4'-Res-ester. The transition-state quaternary ring structures of monoesters were the key structures determining the formation of RCL. This study provided an efficient and eco-friendly approach for the synthesis of RCL, promoting the development of the synthesis of Res long-chain fatty acid ester.


Asunto(s)
Ácido Linoleico , Ácidos Linoleicos Conjugados , Ácido Linoleico/química , Resveratrol , Ácidos Linoleicos , Ácidos Linoleicos Conjugados/química , Ácidos Grasos , Ésteres
15.
Biochemistry ; 62(10): 1531-1543, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37115010

RESUMEN

Lipoxygenase (LOX) enzymes produce important cell-signaling mediators, yet attempts to capture and characterize LOX-substrate complexes by X-ray co-crystallography are commonly unsuccessful, requiring development of alternative structural methods. We previously reported the structure of the complex of soybean lipoxygenase, SLO, with substrate linoleic acid (LA), as visualized through the integration of 13C/1H electron nuclear double resonance (ENDOR) spectroscopy and molecular dynamics (MD) computations. However, this required substitution of the catalytic mononuclear, nonheme iron by the structurally faithful, yet inactive Mn2+ ion as a spin probe. Unlike canonical Fe-LOXs from plants and animals, LOXs from pathogenic fungi contain active mononuclear Mn2+ metallocenters. Here, we report the ground-state active-site structure of the native, fully glycosylated fungal LOX from rice blast pathogen Magnaporthe oryzae, MoLOX complexed with LA, as obtained through the 13C/1H ENDOR-guided MD approach. The catalytically important distance between the hydrogen donor, carbon-11 (C11), and the acceptor, Mn-bound oxygen, (donor-acceptor distance, DAD) for the MoLOX-LA complex derived in this fashion is 3.4 ± 0.1 Å. The difference of the MoLOX-LA DAD from that of the SLO-LA complex, 3.1 ± 0.1 Å, is functionally important, although is only 0.3 Å, despite the MoLOX complex having a Mn-C11 distance of 5.4 Å and a "carboxylate-out" substrate-binding orientation, whereas the SLO complex has a 4.9 Å Mn-C11 distance and a "carboxylate-in" substrate orientation. The results provide structural insights into reactivity differences across the LOX family, give a foundation for guiding development of MoLOX inhibitors, and highlight the robustness of the ENDOR-guided MD approach to describe LOX-substrate structures.


Asunto(s)
Lipooxigenasa , Simulación de Dinámica Molecular , Animales , Lipooxigenasa/química , Espectroscopía de Resonancia por Spin del Electrón , Hidrógeno/química , Ácido Linoleico/química
16.
Protein J ; 42(2): 96-103, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36538202

RESUMEN

Acetylcholinesterase (AChE, E.C. 3.1.1.7) termed as the true cholinesterase functions to end cholinergic transmission at synapses. Due to its diverse expression in non-neural tissues such as erythrocytes and bones along with its various molecular forms, researchers seek a non-classical role for this protein. Here, the inhibitory action of unsaturated 18 carbon fatty acids linoleic acid and alpha-linolenic acid and 20 carbon fatty acid arachidonic acid on AChE were investigated. Enzyme activity was measured in kinetic assay method according to Ellman assay utilizing acetylthiocholine. Analysis of the activity data revealed that among the fatty acids examined the IC50 values differed according to the length of the fatty acid and the number of the double bonds. Arachidonic acid, a 20-carbon fatty acid with 4 unsaturated bonds (20:4 n-6, cis 5,8,11,14) displayed an IC50 value of 2.78 µM and Ki value of 396.35 µM. Linoleic acid, an essential 18-carbon fatty acid (18:2 n-6, cis 9,12) had an IC50 value of 7.95 µM and Ki value of 8027.55 µM. The IC50 value of alpha-linolenic acid, 18-carbon fatty acid (18:3 n-3, cis-9,12,15) was found as 179.11 µM. Analysis of the data fit the inhibition mechanism for linoleic, alpha-linolenic and arachidonic acid as mixed-type; non-competitive. Molecular docking complied with these results yielding the best score for arachidonic acid. The alkenyl chain of the fatty acids predictably reached to the catalytic site while the carboxylate strongly interacted with the peripheric anionic site.


Asunto(s)
Acetilcolinesterasa , Ácido Linoleico , Humanos , Ácido Linoleico/farmacología , Ácido Linoleico/química , Ácido Linoleico/metabolismo , Ácido alfa-Linolénico/farmacología , Ácido alfa-Linolénico/metabolismo , Simulación del Acoplamiento Molecular , Ácidos Grasos Insaturados/metabolismo , Ácidos Grasos , Ácidos Araquidónicos , Carbono
17.
J Ethnopharmacol ; 284: 114814, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-34775034

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Hyperglycemia (HG) and lipopolysaccharide (LPS) often promote superoxide accumulation, which may increase oxidative stress. Reducing superoxide production in hyperglycemia and the inflammatory condition is an emerging way to reduce protein and lipid oxidation and diabetes complication. AIM OF STUDY: To examine the effect of Agastache foeniculum essential oil (AFEO) and oil fraction (AFoil) on HG- and LPS-stimulated oxidative stress, the pathogenicity of AFEO and AFoil on oxidative stress was assessed. METHODS: The stimulatory effects of AFEO and AFoil on the activity and expression of NADH oxide (NOX), catalase (CAT), superoxide dismutase (SOD), and the expression of nuclear respiratory factor 2 (NRF2) and nuclear factor-kappa B (NF-kB) in the stimulated macrophage cell line, J774.A1, was studied. The interaction patterns of AFEO and AFoil components with NOX, SOD, CAT, NRF2, and NF-kB proteins were also deduced using molecular docking. RESULTS: Estragole was the main ingredient in AFEO (97%). Linolenic acid (32.10%), estragole (16.22%), palmitic acid (12.62%), linoleic acid (12.04%), and oleic acid (8.73%) were the major chemical components of the AFoil. NOX activation was stimulated in macrophage cells by HG and LPS. At 20 µg/mL, AFEO and AFoil decreased NOX activity while increased SOD and CAT activities in stimulated macrophages. AFoil with estragole and omega-3 fatty acids was better than AFEO with estragole in anti-hyperglycemic and anti-oxidative activity. According to molecular docking research, estragole, linoleic acid, and linolenic acid bind to different hydrophobic pockets of NOX, SOD, CAT, NFR2, and NF-kB using hydrogen bonds, van der Waals bonds, pi-alkyl, and pi-anion interactions, with different binding energies. CONCLUSION: AFEO and AFoil showed antioxidant and anti-diabetic activity. The mechanisms in lowering oxidative stress markers depended on down-regulating superoxide-producing enzymes and up-regulating superoxide-removing enzymes at gene and protein levels. The AFoil emulsion can be used to reduce the detrimental impacts of hyperglycemia and oxidative stress.


Asunto(s)
Agastache/química , Antioxidantes/farmacología , Hipoglucemiantes/farmacología , Aceites Volátiles/farmacología , Aceites de Plantas/farmacología , Derivados de Alilbenceno/química , Derivados de Alilbenceno/farmacología , Animales , Anisoles/química , Anisoles/farmacología , Antioxidantes/química , Catalasa/genética , Catalasa/metabolismo , Línea Celular , Supervivencia Celular/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Glucosa , Hipoglucemiantes/química , Ácido Linoleico/química , Ácido Linoleico/farmacología , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Ratones , Modelos Moleculares , Complejos Multienzimáticos/química , Complejos Multienzimáticos/metabolismo , NADH NADPH Oxidorreductasas/química , NADH NADPH Oxidorreductasas/metabolismo , Aceites Volátiles/química , Estrés Oxidativo , Aceites de Plantas/química , Conformación Proteica , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Ácido alfa-Linolénico/química , Ácido alfa-Linolénico/farmacología
18.
Naunyn Schmiedebergs Arch Pharmacol ; 395(1): 65-76, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34727218

RESUMEN

Aconitine linoleate (1) is a lipo-diterpenoid alkaloid, isolated from Aconitum sinchiangense W. T. Wang. The study aimed at investigating the anti-proliferative efficacy and the underlying mechanisms of 1 against MCF-7 and MCF-7/ADR cells, as well as obvious the safety evaluation in vivo. The cytotoxic activities of 1 were measured in vitro. Also, we investigated the latent mechanism of 1 by cell cycle analysis in MCF-7/ADR cells and topo I and topo IIα inhibition assay. Molecular docking is done by Discovery Studio 3.5 and Autodock vina 1.1.2. Finally, the acute toxicity of 1 was detected on mice. 1 exhibited significant antitumor activity against both MCF-7 and MCF-7/ADR cells, with IC50 values of 7.58 and 7.02 µM, which is 2.38 times and 5.05 times more active, respectively than etoposide in both cell lines, and being 9.63 times more active than Adriamycin in MCF-7/ADR cell lines. The molecular docking and the topo inhibition test found that it is a selective inhibitor of topoisomerase IIα. Moreover, activation of the damage response pathway of the DNA leads to cell cycle arrest at the G0G1 phase. Furthermore, the in vivo acute toxicity of 1 in mice displayed lower toxicity than aconitine, with LD50 of 2.2 × 105 nmol/kg and only slight pathological changes in liver and lung tissue, 489 times safer than aconitine. In conclusion, compared with aconitine, 1 has more significant anti-proliferative activity against MCF-7 and MCF-7/ADR cells and greatly reduces in vivo toxicity, which suggests this kind of lipo-alkaloids is powerful and promising antitumor compounds for breast cancer.


Asunto(s)
Aconitina/farmacología , Antibióticos Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Doxorrubicina/farmacología , Aconitina/administración & dosificación , Aconitina/toxicidad , Aconitum/química , Animales , Animales no Consanguíneos , Proliferación Celular/efectos de los fármacos , ADN-Topoisomerasas de Tipo II , Resistencia a Antineoplásicos/efectos de los fármacos , Femenino , Humanos , Concentración 50 Inhibidora , Ácido Linoleico/química , Células MCF-7 , Masculino , Ratones , Simulación del Acoplamiento Molecular , Células 3T3 NIH , Proteínas de Unión a Poli-ADP-Ribosa/antagonistas & inhibidores
19.
Biochem Biophys Res Commun ; 586: 74-80, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34837835

RESUMEN

Fatty acid desaturase (FADS) generates double bond at a certain position of the corresponding polyunsaturated fatty acids (PUFAs) with high selectivity, the enzyme activity and PUFAs products of which are essential to biological systems and are associated with a variety of physiological diseases. Little is known about the structure of FADSs and their amino acid residues related to catalytic activities. Identifying key residues of Micromonas pusilla delta 6 desaturase (MpFADS6) provides a point of departure for a better understanding of desaturation. In this study, conserved amino acids were anchored through gene consensus analysis, thereby generating corresponding variants by site-directed mutagenesis. To achieve stable and high-efficiency expression of MpFADS6 and its variants in Saccharomyces cerevisiae, the key points of induced expression were optimized. The contribution of conserved residues to the function of enzyme was determined by analyzing enzyme activity of the variants. Molecular modeling indicated that these residues are essential to catalytic activities, or substrate binding. Mutants MpFADS6[Q409R] and MpFADS6[M242P] abolished desaturation, while MpFADS6[F419V] and MpFADS6[A374Q] significantly reduced catalytic activities. Given that certain residues have been identified to have a significant impact on MpFADS6 activities, it is put forward that histidine-conserved region III of FADS6 is related to electronic transfer during desaturation, while histidine-conserved regions I and II are related to desaturation. These findings provide new insights and methods to determine the structure, mechanism and directed transformation of membrane-bound desaturases.


Asunto(s)
Proteínas Algáceas/química , Chlorophyta/enzimología , Ácido Graso Desaturasas/química , Ácido Linoleico/química , Simulación del Acoplamiento Molecular , Saccharomyces cerevisiae/genética , Proteínas Algáceas/genética , Proteínas Algáceas/metabolismo , Secuencia de Aminoácidos , Biocatálisis , Dominio Catalítico , Chlorophyta/química , Clonación Molecular , Ácido Graso Desaturasas/genética , Ácido Graso Desaturasas/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Ácido Linoleico/metabolismo , Mutagénesis Sitio-Dirigida , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/enzimología , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
20.
Sci Rep ; 11(1): 23327, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34857828

RESUMEN

Pollen selection affects honeybee colony development and productivity. Considering that pollen is consumed by young in-hive bees, and not by foragers, we hypothesized that young bees learn pollen cues and adjust their preferences to the most suitable pollens. To assess whether young bees show preferences based on learning for highly or poorly suitable pollens, we measured consumption preferences for two pure monofloral pollens after the bees had experienced one of them adulterated with a deterrent (amygdalin or quinine) or a phagostimulant (linoleic acid). Preferences were obtained from nurse-aged bees confined in cages and from nurse bees in open colonies. Furthermore, we tested the bees' orientation in a Y-maze using a neutral odour (Linalool or Nonanal) that had been previously associated with an amygdalin-adulterated pollen. Consumption preferences of bees, both in cages and in colonies, were reduced for pollens that had been adulterated with deterrents and increased for pollens that had been supplemented with linoleic acid. In the Y-maze, individuals consistently avoided the odours that they had previously experienced paired with the deterrent-adulterated pollen. Results show that nurse-aged bees associate pollen-based or pollen-related cues with either a distasteful/malaise experience or a tasty/nutritious event, leading to memories that bias their pollen-mediated response.


Asunto(s)
Amigdalina/química , Abejas/fisiología , Conducta Alimentaria/fisiología , Aprendizaje , Ácido Linoleico/química , Néctar de las Plantas/fisiología , Polen/química , Animales , Contaminación de Alimentos/análisis , Polen/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...