Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 276
Filtrar
1.
Biomed Pharmacother ; 165: 115091, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37421784

RESUMEN

Metastasis accounts for the majority of cancer-associated mortalities, representing a huge health and economic burden. One of the mechanisms that enables metastasis is hypersialylation, characterized by an overabundance of sialylated glycans on the tumor surface, which leads to repulsion and detachment of cells from the original tumor. Once the tumor cells are mobilized, sialylated glycans hijack the natural killer T-cells through self-molecular mimicry and activatea downstream cascade of molecular events that result in inhibition of cytotoxicity and inflammatory responses against cancer cells, ultimately leading to immune evasion. Sialylation is mediated by a family of enzymes known as sialyltransferases (STs), which catalyse the transfer of sialic acid residue from the donor, CMP-sialic acid, onto the terminal end of an acceptor such as N-acetylgalactosamine on the cell-surface. Upregulation of STs increases tumor hypersialylation by up to 60% which is considered a distinctive hallmark of several types of cancers such as pancreatic, breast, and ovarian cancer. Therefore, inhibiting STs has emerged as a potential strategy to prevent metastasis. In this comprehensive review, we discuss the recent advances in designing novel sialyltransferase inhibitors using ligand-based drug design and high-throughput screening of natural and synthetic entities, emphasizing the most successful approaches. We analyse the limitations and challenges of designing selective, potent, and cell-permeable ST inhibitors that hindered further development of ST inhibitors into clinical trials. We conclude by analysing emerging opportunities, including advanced delivery methods which further increase the potential of these inhibitors to enrich the clinics with novel therapeutics to combat metastasis.


Asunto(s)
Ácido N-Acetilneuramínico , Neoplasias , Humanos , Ácido N-Acetilneuramínico/uso terapéutico , Neoplasias/tratamiento farmacológico , Ácido N-Acetilneuramínico Citidina Monofosfato , Polisacáridos/uso terapéutico , Sialiltransferasas
2.
Biochem Biophys Res Commun ; 635: 46-51, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36257191

RESUMEN

The sialylation of glycoconjugates is performed by a variety of sialyltransferases using CMP-sialic acid (CMP-Sia) as a substrate. Sialylation requires the translocation of CMP-Sia across the Golgi membranes. This function has been assigned to SLC35A1, the only CMP-Sia transporter identified to date. Mutations in the SLC35A1 gene cause a subtype of congenital disorder of glycosylation (CDG). Over the past several years, heterologous complexes formed in the Golgi membrane by some SLC35A subfamily members and functionally related glycosyltransferases have been reported. However, to date no interaction between SLC35A1 and a sialyltransferase has been identified. In this study we attempted to clarify the role of SLC35A1 in α2,3 sialylation of N-glycans. We showed that SLC35A1 associates with ST3Gal4, the main α2,3-sialyltransferase acting on N-glycans. This phenomenon is compromised by the E196K (but not T156R) mutation in the SLC35A1 gene. We also demonstrated that the E196K mutant is less efficient in restoring N-glycan sialylation upon expression in the SLC35A1 knockout cells. On the basis of our findings, we propose that the interaction between SLC35A1 and ST3Gal4 may be important for proper sialylation.


Asunto(s)
Ácido N-Acetilneuramínico Citidina Monofosfato , Sialiltransferasas , Sialiltransferasas/genética , Sialiltransferasas/metabolismo , Ácido N-Acetilneuramínico Citidina Monofosfato/metabolismo , Glicosilación , Mutación , Polisacáridos
3.
Chembiochem ; 23(19): e202200340, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-35877976

RESUMEN

The interactions between bacteria and their host often rely on recognition processes that involve host or bacterial glycans. Glycoengineering techniques make it possible to modify and study the glycans on the host's eukaryotic cells, but only a few are available for the study of bacterial glycans. Here, we have adapted selective exoenzymatic labeling (SEEL), a chemical reporter strategy, to label the lipooligosaccharides of the bacterial pathogen Neisseria gonorrhoeae, using the recombinant glycosyltransferase ST6Gal1, and three synthetic CMP-sialic acid derivatives. We show that SEEL treatment does not affect cell viability and can introduce an α2,6-linked sialic acid with a reporter group on the lipooligosaccharides by Western blot, flow cytometry and fluorescent microscopy. This new bacterial glycoengineering technique allows for the precise modification, here with α2,6-sialoside derivatives, and direct detection of specific surface glycans on live bacteria, which will aid in further unravelling the precise biological functions of bacterial glycans.


Asunto(s)
Ácido N-Acetilneuramínico Citidina Monofosfato , Neisseria gonorrhoeae , Ácido N-Acetilneuramínico Citidina Monofosfato/metabolismo , Glicosiltransferasas/metabolismo , Lipopolisacáridos , Ácido N-Acetilneuramínico , Polisacáridos Bacterianos/metabolismo , Ácidos Siálicos/metabolismo
4.
Glycobiology ; 32(3): 239-250, 2022 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-34939087

RESUMEN

Synthetic sugar analogs are widely applied in metabolic oligosaccharide engineering (MOE) and as novel drugs to interfere with glycoconjugate biosynthesis. However, mechanistic insights on their exact cellular metabolism over time are mostly lacking. We combined ion-pair ultrahigh performance liquid chromatography-triple quadrupole mass spectrometry mass spectrometry using tributyl- and triethylamine buffers for sensitive analysis of sugar metabolites in cells and organisms and identified low abundant nucleotide sugars, such as UDP-arabinose in human cell lines and CMP-sialic acid (CMP-NeuNAc) in Drosophila. Furthermore, MOE revealed that propargyloxycarbonyl (Poc)-labeled ManNPoc was metabolized to both CMP-NeuNPoc and UDP-GlcNPoc. Finally, time-course analysis of the effect of antitumor compound 3Fax-NeuNAc by incubation of B16-F10 melanoma cells with N-acetyl-D-[UL-13C6]glucosamine revealed full depletion of endogenous ManNAc 6-phosphate and CMP-NeuNAc within 24 h. Thus, dynamic tracing of sugar metabolic pathways provides a general approach to reveal time-dependent insights into the metabolism of synthetic sugars, which is important for the rational design of analogs with optimized effects.


Asunto(s)
Metabolismo de los Hidratos de Carbono , Ácido N-Acetilneuramínico Citidina Monofosfato , Cromatografía Liquida , Ácido N-Acetilneuramínico Citidina Monofosfato/metabolismo , Glucosamina/metabolismo , Azúcares
5.
Transgenic Res ; 30(5): 619-634, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34232440

RESUMEN

In this study, we investigated the effect of a triple knockout of the genes alpha-1,3-galactosyltransferase (GGTA1), cytidine monophosphate-N-acetylneuraminic acid hydroxylase (CMAH), and alpha 1,3-galactosyltransferase 2 (A3GALT2) in Yucatan miniature pigs on human immune reactivity. We used the CRISPR/Cas9 system to create pigs lacking GGTA1 (GTKO) and GGTA1/CMAH/A3GALT2 triple gene knockout (TKO). The expression of all three xenoantigens was absent in TKO pigs, but there was no additional reduction in the level of Galα1,3Gal (αGal) epitopes expression in the A3GALT2 gene KO. Peripheral blood mononuclear cells (PBMCs), aorta endothelial cells (AECs), and cornea endothelial cells (CECs) were isolated from these pigs, and their ability to bind human IgM/IgG and their cytotoxicity in human sera were evaluated. Compared to wild type (WT) pigs, the level of human antibody binding of the PBMCs, AECs, and CECs of the transgenic pigs (GTKO and TKO) was significantly reduced. However, there were significant differences in human antibody binding between GTKO and TKO depending on the cell type. Human antibody binding of TKO pigs was less than that of GTKO on PBMCs but was similar between GTKO and TKO pigs for AECs and CECs. Cytotoxicity of transgenic pig (GTKO and TKO) PBMCs and AECs was significantly reduced compared to that of WT pigs. However, TKO pigs showed a reduction in cytotoxicity compared to GTKO pigs on PBMCs, whereas in AECs from both TKO and GTKO pigs, there was no difference. The cytotoxicity of transgenic pig CECs was significantly decreased from that of WT at 300 min, but there was no significant reduction in TKO pigs from GTKO. Our results indicate that genetic modification of donor pigs for xenotransplantation should be tailored to the target organ and silencing of additional genes such as CMAH or A3GALT2 based on GTKO might not be essential in Yucatan miniature pigs.


Asunto(s)
Ácido N-Acetilneuramínico Citidina Monofosfato , Oxigenasas de Función Mixta , Animales , Animales Modificados Genéticamente , Células Endoteliales , Galactosiltransferasas/genética , Técnicas de Inactivación de Genes , Humanos , Leucocitos Mononucleares , Oxigenasas de Función Mixta/genética , Porcinos , Porcinos Enanos/genética , Trasplante Heterólogo
6.
PLoS One ; 16(6): e0249905, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34081697

RESUMEN

Nucleotide-sugar transporters (NSTs) transport nucleotide-sugar conjugates into the Golgi lumen where they are then used in the synthesis of glycans. We previously reported crystal structures of a mammalian NST, the CMP-sialic acid transporter (CST) (Ahuja and Whorton 2019). These structures elucidated many aspects of substrate recognition, selectivity, and transport; however, one fundamental unaddressed question is how the transport activity of NSTs might be physiologically regulated as a means to produce the vast diversity of observed glycan structures. Here, we describe the discovery that an endogenous methylated form of cytidine monophosphate (m5CMP) binds and inhibits CST. The presence of m5CMP in cells results from the degradation of RNA that has had its cytosine bases post-transcriptionally methylated through epigenetic processes. Therefore, this work not only demonstrates that m5CMP represents a novel physiological regulator of CST, but it also establishes a link between epigenetic control of gene expression and regulation of glycosylation.


Asunto(s)
Transporte Biológico/fisiología , Ácido N-Acetilneuramínico Citidina Monofosfato/metabolismo , Citidina Monofosfato/análogos & derivados , Regulación de la Expresión Génica/fisiología , Animales , Línea Celular , Citidina Monofosfato/metabolismo , Epigénesis Genética/genética , Glicosilación , Metilación , Proteínas de Transporte de Nucleótidos/metabolismo , Procesamiento Postranscripcional del ARN/genética , Células Sf9 , Spodoptera
7.
J Immunol ; 204(12): 3283-3295, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32434942

RESUMEN

Neisseria gonorrhoeae deploys a unique immune evasion strategy wherein the lacto-N-neotetraose termini of lipooligosaccharide (LOS) are "capped" by a surface LOS sialyltransferase (Lst), using extracellular host-derived CMP-sialic acid (CMP-Neu5Ac in humans). LOS sialylation enhances complement resistance by recruiting factor H (FH; alternative complement pathway inhibitor) and also by limiting classical pathway activation. Sialylated LOS also engages inhibitory Siglecs on host leukocytes, dampening innate immunity. Previously, we showed that analogues of CMP-sialic acids (CMP-nonulosonates [CMP-NulOs]), such as CMP-Leg5,7Ac2 and CMP-Neu5Ac9N3, are also substrates for Lst. Incorporation of Leg5,7Ac2 and Neu5Ac9N3 into LOS results in N. gonorrhoeae being fully serum sensitive. Importantly, intravaginal administration of CMP-Leg5,7Ac2 attenuated N. gonorrhoeae colonization of mouse vaginas. In this study, we characterize and develop additional candidate therapeutic CMP-NulOs. CMP-ketodeoxynonulosonate (CMP-Kdn) and CMP-Kdn7N3, but not CMP-Neu4,5Ac2, were substrates for Lst, further elucidating gonococcal Lst specificity. Lacto-N-neotetraose LOS capped with Kdn and Kdn7N3 bound FH to levels ∼60% of that seen with Neu5Ac and enabled gonococci to resist low (3.3%) but not higher (10%) concentrations of human complement. CMP-Kdn, CMP-Neu5Ac9N3, and CMP-Leg5,7Ac2 administered intravaginally (10 µg/d) to N. gonorrhoeae-colonized mice were equally efficacious. Of the three CMP-NulOs above, CMP-Leg5,7Ac2 was the most pH and temperature stable. In addition, Leg5,7Ac2-fed human cells did not display this NulO on their surface. Moreover, CMP-Leg5,7Ac2 was efficacious against several multidrug-resistant gonococci in mice with a humanized sialome (Cmah-/- mice) or humanized complement system (FH/C4b-binding protein transgenic mice). CMP-Leg5,7Ac2 and CMP-Kdn remain viable leads as topical preventive/therapeutic agents against the global threat of multidrug-resistant N. gonorrhoeae.


Asunto(s)
Ácido N-Acetilneuramínico Citidina Monofosfato/farmacología , Citidina Monofosfato/análogos & derivados , Citidina Monofosfato/fisiología , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Gonorrea/tratamiento farmacológico , Neisseria gonorrhoeae/efectos de los fármacos , Ácidos Neuramínicos/farmacología , Ácidos Siálicos/farmacología , Animales , Línea Celular Tumoral , Factor H de Complemento/metabolismo , Proteínas del Sistema Complemento/farmacología , Citidina Monofosfato/farmacología , Femenino , Gonorrea/metabolismo , Gonorrea/microbiología , Humanos , Lipopolisacáridos/farmacología , Ratones , Ratones Endogámicos BALB C , Ratones Transgénicos , Oligosacáridos/fisiología , Sialiltransferasas/farmacología
8.
Int J Mol Sci ; 21(5)2020 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-32111064

RESUMEN

Polysialic acid (polySia) is an unusual glycan that posttranslational modifies neural cell adhesion molecule (NCAM) proteins in mammalian cells. The up-regulated expression of polySia-NCAM is associated with tumor progression in many metastatic human cancers and in neurocognitive processes. Two members of the ST8Sia family of α2,8-polysialyltransferases (polySTs), ST8Sia II (STX) and ST8Sia IV (PST) both catalyze synthesis of polySia when activated cytidine monophosphate(CMP)-Sialic acid (CMP-Sia) is translocate into the lumen of the Golgi apparatus. Two key polybasic domains in the polySTs, the polybasic region (PBR) and the polysialyltransferase domain (PSTD) areessential forpolysialylation of the NCAM proteins. However, the precise molecular details to describe the interactions required for polysialylation remain unknown. In this study, we hypothesize that PSTD interacts with both CMP-Sia and polySia to catalyze polysialylation of the NCAM proteins. To test this hypothesis, we synthesized a 35-amino acid-PSTD peptide derived from the ST8Sia IV gene sequence and used it to study its interaction with CMP-Sia, and polySia. Our results showed for the PSTD-CMP-Sia interaction,the largest chemical-shift perturbations (CSP) were in amino acid residues V251 to A254 in the short H1 helix, located near the N-terminus of PSTD. However, larger CSP values for the PSTD-polySia interaction were observed in amino acid residues R259 to T270 in the long H2 helix. These differences suggest that CMP-Sia preferentially binds to the domain between the short H1 helix and the longer H2 helix. In contrast, polySia was principally bound to the long H2 helix of PSTD. For the PSTD-polySia interaction, a significant decrease in peak intensity was observed in the 20 amino acid residues located between the N-and C-termini of the long H2 helix in PSTD, suggesting a slower motion in these residues when polySia bound to PSTD. Specific features of the interactions between PSTD-CMP-Sia, and PSTD-polySia were further confirmed by comparing their 800 MHz-derived HSQC spectra with that of PSTD-Sia, PSTD-TriSia (DP 3) and PSTD-polySia. Based on the interactions between PSTD-CMP-Sia, PSTD-polySia, PBR-NCAM and PSTD-PBR, these findingsprovide a greater understanding of the molecular mechanisms underlying polySia-NCAM polysialylation, and thus provides a new perspective for translational pharmacological applications and development by targeting the two polysialyltransferases.


Asunto(s)
Ácido N-Acetilneuramínico Citidina Monofosfato/metabolismo , Imagen por Resonancia Magnética/métodos , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Ácidos Siálicos/metabolismo , Sialiltransferasas/química , Sialiltransferasas/metabolismo , Aparato de Golgi/metabolismo , Humanos , Modelos Moleculares , Polimerizacion , Conformación Proteica , Dominios Proteicos
9.
Acta Crystallogr D Struct Biol ; 75(Pt 6): 564-577, 2019 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-31205019

RESUMEN

Several pathogenic bacteria utilize sialic acid, including host-derived N-acetylneuraminic acid (Neu5Ac), in at least two ways: they use it as a nutrient source and as a host-evasion strategy by coating themselves with Neu5Ac. Given the significant role of sialic acid in pathogenesis and host-gut colonization by various pathogenic bacteria, including Neisseria meningitidis, Haemophilus influenzae, Pasteurella multocida and Vibrio cholerae, several enzymes of the sialic acid catabolic, biosynthetic and incorporation pathways are considered to be potential drug targets. In this work, findings on the structural and functional characterization of CMP-N-acetylneuraminate synthetase (CMAS), a key enzyme in the incorporation pathway, from Vibrio cholerae are reported. CMAS catalyzes the synthesis of CMP-sialic acid by utilizing CTP and sialic acid. Crystal structures of the apo and the CDP-bound forms of the enzyme were determined, which allowed the identification of the metal cofactor Mg2+ in the active site interacting with CDP and the invariant Asp215 residue. While open and closed structural forms of the enzyme from eukaryotic and other bacterial species have already been characterized, a partially closed structure of V. cholerae CMAS (VcCMAS) observed upon CDP binding, representing an intermediate state, is reported here. The kinetic data suggest that VcCMAS is capable of activating the two most common sialic acid derivatives, Neu5Ac and Neu5Gc. Amino-acid sequence and structural comparison of the active site of VcCMAS with those of eukaryotic and other bacterial counterparts reveal a diverse hydrophobic pocket that interacts with the C5 substituents of sialic acid. Analyses of the thermodynamic signatures obtained from the binding of the nucleotide (CTP) and the product (CMP-sialic acid) to VcCMAS provide fundamental information on the energetics of the binding process.


Asunto(s)
Proteínas Bacterianas/química , N-Acilneuraminato Citidililtransferasa/química , Vibrio cholerae/enzimología , Secuencia de Aminoácidos , Proteínas Bacterianas/farmacología , Proteínas Bacterianas/fisiología , Sitios de Unión , Dominio Catalítico , Cristalización , Cristalografía por Rayos X/métodos , Citidina Difosfato/química , Citidina Difosfato/metabolismo , Ácido N-Acetilneuramínico Citidina Monofosfato/química , Ácido N-Acetilneuramínico Citidina Monofosfato/metabolismo , Citidina Trifosfato/química , Citidina Trifosfato/metabolismo , N-Acilneuraminato Citidililtransferasa/farmacología , N-Acilneuraminato Citidililtransferasa/fisiología , Dominios y Motivos de Interacción de Proteínas , Estructura Cuaternaria de Proteína , Ácidos Siálicos/metabolismo
10.
Nat Struct Mol Biol ; 26(6): 415-423, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31133698

RESUMEN

The decoration of secretory glycoproteins and glycolipids with sialic acid is critical to many physiological and pathological processes. Sialyation is dependent on a continuous supply of sialic acid into Golgi organelles in the form of CMP-sialic acid. Translocation of CMP-sialic acid into Golgi is carried out by the CMP-sialic acid transporter (CST). Mutations in human CST are linked to glycosylation disorders, and CST is important for glycopathway engineering, as it is critical for sialyation efficiency of therapeutic glycoproteins. The mechanism of how CMP-sialic acid is recognized and translocated across Golgi membranes in exchange for CMP is poorly understood. Here we have determined the crystal structure of a Zea mays CST in complex with CMP. We conclude that the specificity of CST for CMP-sialic acid is established by the recognition of the nucleotide CMP to such an extent that they are mechanistically capable of both passive and coupled antiporter activity.


Asunto(s)
Ácido N-Acetilneuramínico Citidina Monofosfato/metabolismo , Aparato de Golgi/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Proteínas de Transporte de Nucleótidos/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Proteínas de Transporte de Nucleótidos/química , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Conformación Proteica , Multimerización de Proteína , Zea mays/química , Zea mays/metabolismo
11.
Elife ; 82019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30985278

RESUMEN

Nucleotide-sugar transporters (NSTs) are critical components of the cellular glycosylation machinery. They transport nucleotide-sugar conjugates into the Golgi lumen, where they are used for the glycosylation of proteins and lipids, and they then subsequently transport the nucleotide monophosphate byproduct back to the cytoplasm. Dysregulation of human NSTs causes several debilitating diseases, and NSTs are virulence factors for many pathogens. Here we present the first crystal structures of a mammalian NST, the mouse CMP-sialic acid transporter (mCST), in complex with its physiological substrates CMP and CMP-sialic acid. Detailed visualization of extensive protein-substrate interactions explains the mechanisms governing substrate selectivity. Further structural analysis of mCST's unique lumen-facing partially-occluded conformation, coupled with the characterization of substrate-induced quenching of mCST's intrinsic tryptophan fluorescence, reveals the concerted conformational transitions that occur during substrate transport. These results provide a framework for understanding the effects of disease-causing mutations and the mechanisms of this diverse family of transporters.


Asunto(s)
Ácido N-Acetilneuramínico Citidina Monofosfato/química , Ácido N-Acetilneuramínico Citidina Monofosfato/metabolismo , Citidina Monofosfato/química , Citidina Monofosfato/metabolismo , Animales , Transporte Biológico , Cristalografía por Rayos X , Ratones , Unión Proteica , Conformación Proteica
12.
Microbiome ; 7(1): 18, 2019 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-30744677

RESUMEN

BACKGROUND: The gut microbiome plays a fundamental role in the human host's overall health by contributing key biological functions such as expanded metabolism and pathogen defense/immune control. In a healthy individual, the gut microbiome co-exists within the human host in a symbiotic, non-inflammatory relationship that enables mutual benefits, such as microbial degradation of indigestible food products into small molecules that the host can utilize, and enhanced pathogen defense. In abnormal conditions, such as Crohn's disease, this favorable metabolic relationship breaks down and a variety of undesirable activities result, including chronic inflammation and other health-related issues. It has been difficult, however, to elucidate the overall functional characteristics of this relationship because the microbiota can vary substantially in composition for healthy humans and possibly even more in individuals with gut disease conditions such as Crohn's disease. Overall, this suggests that microbial membership composition may not be the best way to characterize a phenotype. Alternatively, it seems to be more informative to examine and characterize the functional composition of a gut microbiome. Towards that end, this study examines 25 metaproteomes measured in several Crohn's disease patients' post-resection surgery across the course of 1 year, in order to examine persistence of microbial taxa, genes, proteins, and metabolic functional distributions across time in individuals whose microbiome might be more variable due to the gut disease condition. RESULTS: The measured metaproteomes were highly personalized, with all the temporally-related metaproteomes clustering most closely by individual. In general, the metaproteomes were remarkably distinct between individuals and to a lesser extent within individuals. This prompted a need to characterize the metaproteome at a higher functional level, which was achieved by annotating identified protein groups with KEGG orthologous groups to infer metabolic modules. At this level, similar and redundant metabolic functions across multiple phyla were observed across time and between individuals. Tracking through these various metabolic modules revealed a clear path from carbohydrate, lipid, and amino acid degradation to central metabolism and finally the production of fermentation products. CONCLUSIONS: The human gut metaproteome can vary quite substantially across time and individuals. However, despite substantial intra-individual variation in the metaproteomes, there is a clear persistence of conserved metabolic functions across time and individuals. Additionally, the persistence of these core functions is redundant across multiple phyla but is not always observable in the same sample. Finally, the gut microbiome's metabolism is not driven by a set of discrete linear pathways but a web of interconnected reactions facilitated by a network of enzymes that connect multiple molecules across multiple pathways.


Asunto(s)
Bacterias/metabolismo , Enfermedad de Crohn/microbiología , Microbioma Gastrointestinal/fisiología , Proteoma/metabolismo , Acetilglucosamina/análisis , Adulto , Bacterias/genética , Enfermedad de Crohn/cirugía , Ácido N-Acetilneuramínico Citidina Monofosfato/análisis , Ácidos Grasos Volátiles/análisis , Heces/microbiología , Femenino , Microbioma Gastrointestinal/genética , Humanos , Masculino , Persona de Mediana Edad , Proteómica , ARN Ribosómico 16S/genética
13.
Biochemistry ; 58(6): 679-686, 2019 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-30602109

RESUMEN

Polysialic acids (PSA) are important extracellular virulence factors of the human pathogens Neisseria meningitidis and Escherichia coli. The importance of these polysaccharides in virulence make the polysialyltransferases (PST) targets for therapeutic drugs and protein engineering to facilitate efficient vaccine production. Here, we have generated recombinant bovine nucleotide monophosphate kinase to facilitate steady state kinetic assays of the PST. We have characterized the N. meningitidis group C (NmC) PST kinetically, using substrate analogues to describe the polymerization reaction. We observed a decrease in Km as the length of the oligo-sialic acid acceptor was increased, indicating a tighter binding of longer oligomers. In addition, we observed a biphasic relationship between kcat and chain length, which can be attributed to a switch in the mechanism of transfer of sialic acid from distributive to processive as the chain length increased above six sialic acid units. Substitution of donor substrate with the analogue CMP-9-F-sialic acid had minimal effect on acceptor Km, but it decreased kcat 6-fold. We propose that this decrease in kcat is caused by a destabilization of the transition state and/or an increase affinity of the product due to presence of the fluoro substituent. The acceptor's hydrophobicity also plays a role in catalysis. The kinetic analysis of the NmC PST with hydrophobic aglycon acceptor substrates indicated that they bind tighter and are turned over at a faster rate than the α-2,9 polysialic acid substrates lacking the hydrophobic end. This finding suggests the presence of a secondary ligand binding site that tethers the acceptor substrate to the enzyme active site.


Asunto(s)
Proteínas Bacterianas/química , Ácido N-Acetilneuramínico Citidina Monofosfato/análogos & derivados , Neisseria meningitidis/enzimología , Sialiltransferasas/química , Animales , Proteínas Bacterianas/aislamiento & purificación , Bovinos , Escherichia coli/genética , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Estructura Molecular , Fosfotransferasas (Aceptor del Grupo Fosfato)/química , Polimerizacion , Sialiltransferasas/aislamiento & purificación , Especificidad por Sustrato
14.
Glycobiology ; 27(6): 513-517, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28922867

RESUMEN

Sialic acids have a special place in vertebrate glycobiology, where they constitute the dominant terminal saccharides on many cell surface glycans. From early studies that identified sialoglycans as receptors for important pathogens and toxins to more recent discoveries of sialic acid-binding proteins essential for immune system (and other) functions in humans, sialic acids and sialoglycans have become cornerstones in understanding vertebrate glycobiology and pathology. During a remarkable 3-year period in the late 1950s, a newly minted postdoctoral fellow (Donald G. Comb) and his young mentor (Saul Roseman) made a surprising series of discoveries that put sialic acid research on sound chemical and biochemical footing. A detailed personal letter written by Dr. Roseman that describes this period of intense sialic acid discovery, complete with inserted figures, was given to one of us (Y.C.L.) several years later. The text and figures of this letter provide a look back at the enthusiasm, rigor and serendipity that led to their important findings through the eyes of one of the key figures in sialic acid research.


Asunto(s)
Bioquímica de los Carbohidratos/historia , Ácido N-Acetilneuramínico Citidina Monofosfato/química , Ácido N-Acetilneuramínico Citidina Monofosfato/metabolismo , Historia del Siglo XX
15.
Chembiochem ; 18(13): 1251-1259, 2017 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-28395125

RESUMEN

Sialylation of glycoproteins and glycolipids is catalyzed by sialyltransferases in the Golgi of mammalian cells, whereby sialic acid residues are added at the nonreducing ends of oligosaccharides. Because sialylated glycans play critical roles in a number of human physio-pathological processes, the past two decades have witnessed the development of modified sialic acid derivatives for a better understanding of sialic acid biology and for the development of new therapeutic targets. However, nothing is known about how individual mammalian sialyltransferases tolerate and behave towards these unnatural CMP-sialic acid donors. In this study, we devised several approaches to investigate the donor specificity of the human ß-d-galactoside sialyltransferases ST6Gal I and ST3Gal I by using two CMP-sialic acids: CMP-Neu5Ac, and CMP-Neu5N-(4pentynoyl)neuraminic acid (CMP-SiaNAl), an unnatural CMP-sialic acid donor with an extended and functionalized N-acyl moiety.


Asunto(s)
Antígenos CD/metabolismo , Ácido N-Acetilneuramínico Citidina Monofosfato/metabolismo , Citidina Monofosfato/análogos & derivados , Glucolípidos/metabolismo , Glicoproteínas/metabolismo , Polisacáridos/metabolismo , Ácidos Siálicos/metabolismo , Sialiltransferasas/metabolismo , Antígenos CD/química , Antígenos CD/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Clonación Molecular , Citidina Monofosfato/química , Citidina Monofosfato/metabolismo , Ácido N-Acetilneuramínico Citidina Monofosfato/química , Expresión Génica , Glucolípidos/química , Glicoproteínas/química , Glicoproteínas/genética , Glicosilación , Células HEK293 , Humanos , Cinética , N-Acilneuraminato Citidililtransferasa/genética , N-Acilneuraminato Citidililtransferasa/metabolismo , Neisseria meningitidis/química , Neisseria meningitidis/enzimología , Polisacáridos/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ácidos Siálicos/química , Sialiltransferasas/química , Sialiltransferasas/genética , Especificidad por Sustrato , beta-Galactosida alfa-2,3-Sialiltransferasa
16.
Glycobiology ; 26(4): 353-9, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26582604

RESUMEN

Many important biological functions are mediated by complex glycan structures containing the nine-carbon sugar sialic acid (Sia) at terminal, non-reducing positions. Sia are introduced onto glycan structures by enzymes known as sialyltransferases (STs). Bacterial STs from the glycosyltransferase family GT80 are a group of well-studied enzymes used for the synthesis of sialylated glycan structures. While highly efficient at sialyl transfer, these enzymes also demonstrate sialidase and trans-sialidase activities for which there is some debate surrounding the corresponding enzymatic mechanisms. Here we propose a mechanism for STs from the glycosyltransferase family GT80 in which sialidase and trans-sialidase activities occur through reverse sialylation of CMP. The resulting CMP-Sia is then enzymatically hydrolyzed or used as a donor in subsequent ST reactions resulting in sialidase and trans-sialidase activities, respectively. We provide evidence for this mechanism by demonstrating that CMP is required for sialidase and trans-sialidase activities and that its removal with phosphatase ablates activity. We also confirm the formation of CMP-Sia using a coupled enzyme assay. A clear understanding of the sialidase and trans-sialidase mechanisms for this class of enzymes allows for more effective use of these enzymes in the synthesis of glycoconjugates.


Asunto(s)
Ácido N-Acetilneuramínico Citidina Monofosfato/metabolismo , Glicosiltransferasas/química , Sialiltransferasas/química , Bacterias/enzimología , Ácido N-Acetilneuramínico Citidina Monofosfato/química , Glicoproteínas/química , Glicoproteínas/genética , Glicosiltransferasas/genética , Neuraminidasa/química , Neuraminidasa/genética , Polisacáridos/química , Polisacáridos/metabolismo , Sialiltransferasas/genética
17.
PLoS Pathog ; 11(12): e1005290, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26630657

RESUMEN

Neisseria gonorrhoeae deploys a novel immune evasion strategy wherein the lacto-N-neotetraose (LNnT) structure of lipooligosaccharide (LOS) is capped by the bacterial sialyltransferase, using host cytidine-5'-monophosphate (CMP)-activated forms of the nine-carbon nonulosonate (NulO) sugar N-acetyl-neuraminic acid (Neu5Ac), a sialic acid (Sia) abundant in humans. This allows evasion of complement-mediated killing by recruiting factor H (FH), an inhibitor of the alternative complement pathway, and by limiting classical pathway activation ("serum-resistance"). We utilized CMP salts of six additional natural or synthetic NulOs, Neu5Gc, Neu5Gc8Me, Neu5Ac9Ac, Neu5Ac9Az, legionaminic acid (Leg5Ac7Ac) and pseudaminic acid (Pse5Ac7Ac), to define structural requirements of Sia-mediated serum-resistance. While all NulOs except Pse5Ac7Ac were incorporated into the LNnT-LOS, only Neu5Gc incorporation yielded high-level serum-resistance and FH binding that was comparable to Neu5Ac, whereas Neu5Ac9Az and Leg5Ac7Ac incorporation left bacteria fully serum-sensitive and did not enhance FH binding. Neu5Ac9Ac and Neu5Gc8Me rendered bacteria resistant only to low serum concentrations. While serum-resistance mediated by Neu5Ac was associated with classical pathway inhibition (decreased IgG binding and C4 deposition), Leg5Ac7Ac and Neu5Ac9Az incorporation did not inhibit the classical pathway. Remarkably, CMP-Neu5Ac9Az and CMP-Leg5Ac7Ac each prevented serum-resistance despite a 100-fold molar excess of CMP-Neu5Ac in growth media. The concomitant presence of Leg5Ac7Ac and Neu5Ac on LOS resulted in uninhibited classical pathway activation. Surprisingly, despite near-maximal FH binding in this instance, the alternative pathway was not regulated and factor Bb remained associated with bacteria. Intravaginal administration of CMP-Leg5Ac7Ac to BALB/c mice infected with gonorrhea (including a multidrug-resistant isolate) reduced clearance times and infection burden. Bacteria recovered from CMP-Leg5Ac7Ac-treated mice were sensitive to human complement ex vivo, simulating in vitro findings. These data reveal critical roles for the Sia exocyclic side-chain in gonococcal serum-resistance. Such CMP-NulO analogs may provide a novel therapeutic strategy against the global threat of multidrug-resistant gonorrhea.


Asunto(s)
Citidina Monofosfato/análogos & derivados , Farmacorresistencia Microbiana/inmunología , Resistencia a Múltiples Medicamentos/inmunología , Gonorrea/inmunología , Ácidos Siálicos/farmacología , Animales , Western Blotting , Proteínas del Sistema Complemento/inmunología , Citidina Monofosfato/farmacología , Ácido N-Acetilneuramínico Citidina Monofosfato/análogos & derivados , Ensayo de Inmunoadsorción Enzimática , Femenino , Citometría de Flujo , Gonorrea/metabolismo , Humanos , Lipopolisacáridos/inmunología , Lipopolisacáridos/metabolismo , Espectrometría de Masas , Ratones , Ratones Endogámicos BALB C , Neisseria gonorrhoeae/inmunología , Neisseria gonorrhoeae/metabolismo
18.
Chemistry ; 21(41): 14614-29, 2015 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-26397189

RESUMEN

Previous studies demonstrated that reducing the GM3 content in myoblasts increased the cell resistance to hypoxic stress, suggesting that a pharmacological inhibition of the GM3 synthesis could be instrumental for the development of new treatments for ischemic diseases. Herein, the synthesis of several dephosphonated CMP-Neu5Ac congeners and their anti-GM3-synthase activity is reported. Biological activity testes revealed that some inhibitors almost completely blocked the GM3-synthase activity in vitro and reduced the GM3 content in living embryonic kidney 293A cells, eventually activating the epidermal growth factor receptor (EGFR) signaling cascade.


Asunto(s)
Ácido N-Acetilneuramínico Citidina Monofosfato/química , Citidina Monofosfato/análogos & derivados , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/síntesis química , Receptores ErbB/química , Riñón/enzimología , Ácidos Siálicos/química , Ácidos Siálicos/síntesis química , Sialiltransferasas/antagonistas & inhibidores , Sialiltransferasas/química , Citidina Monofosfato/síntesis química , Citidina Monofosfato/química , Ácido N-Acetilneuramínico Citidina Monofosfato/metabolismo , Humanos , Riñón/química , Sialiltransferasas/metabolismo , Transducción de Señal/efectos de los fármacos
19.
Biol Pharm Bull ; 38(8): 1220-6, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26235586

RESUMEN

Cytidine monophosphate (CMP) N-acetylneuraminic acid (Neu5Ac) hydroxylase (CMAH) is an essential enzyme for N-glycolylneuraminic acid (Neu5Gc) synthesis. In humans, Neu5Gc cannot be synthesized because of a deletion in the CMAH gene. Since Neu5Gc research has not been actively performed in comparison with Neu5Ac research, little is known about the function of Neu5Gc. Possible reasons are that CMAH for controlling Neu5Gc synthesis is not understood well at the molecular level, that commercial Neu5Gc is expensive, and that addition of exogenous Neu5Gc to glycoconjugates is not a general method because of the difficulty in obtaining CMAH. One solution to these problems is to achieve large-scale production of CMAH with enzymatic activity. To produce and purify CMAH as simply as possible, we generated simian CMAH as a secretory protein with a histidine tag using a baculovirus protein expression system. After culture of baculovirus-infected cells in serum-free medium, secretory simian CMAH (approximately 180 µg) was highly purified from the supernatant (150 mL) of cell culture. HPLC analysis showed conversion of CMP-Neu5Ac to CMP-Neu5Gc by the secretory CMAH. We succeeded in producing secretory CMAH with enzymatic activity that is easy to purify. In addition, peptide-N-glycosidase F treatment of CMAH indicated that secretory CMAH was a glycoprotein with N-glycan. It will also contribute to research on Neu5Gc function by easy-to-use methods for controlling Neu5Gc synthesis, for exogenous addition of Neu5Gc to glycoconjugates and by application to industrial Neu5Gc synthesis.


Asunto(s)
Baculoviridae/metabolismo , Ácido N-Acetilneuramínico Citidina Monofosfato/metabolismo , Oxigenasas de Función Mixta/biosíntesis , Ácido N-Acetilneuramínico/metabolismo , Ácidos Neuramínicos/metabolismo , Animales , Cromatografía Líquida de Alta Presión , Glucanos/metabolismo , Glicoconjugados/metabolismo , Glicoproteínas/biosíntesis , Glicoproteínas/aislamiento & purificación , Haplorrinos , Oxigenasas de Función Mixta/aislamiento & purificación
20.
PLoS One ; 10(7): e0133739, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26231036

RESUMEN

Bacterial α(2,6)-sialyltransferases (STs) from Photobacterium damsela, Photobacterium sp. JT-ISH-224, and P. leiognathi JT-SHIZ-145 were recombinantly expressed in Escherichia coli and their ST activities were compared directly using a galactosylated bi-antennary N-glycan as an acceptor substrate. In all ST reactions, there was an increase of sialylated glycans at shorter reaction times and later a decrease in prolonged reactions, which is related with the inherent sialidase activities of bacterial STs. These sialidase activities are greatly increased by free cytidine monophosphate (CMP) generated from a donor substrate CMP-N-acetylneuraminic acid (CMP-Neu5Ac) during the ST reactions. The decrease of sialylated glycans in prolonged ST reaction was prevented through an inhibition of sialidase activity by simple treatment of alkaline phosphatase (AP), which dephosphorylates CMP to cytidine. Through supplemental additions of AP and CMP-Neu5Ac to the reaction using the recombinant α(2,6)-ST from P. leiognathi JT-SHIZ-145 (P145-ST), the content of bi-sialylated N-glycan increased up to ~98% without any decrease in prolonged reactions. This optimized P145-ST reaction was applied successfully for α(2,6)-sialylation of asialofetuin, and this resulted in a large increase in the populations of multi-sialylated N-glycans compared with the reaction without addition of AP and CMP-Neu5Ac. These results suggest that the optimized reaction using the recombinant P145-ST readily expressed from E. coli has a promise for economic glycan synthesis and glyco-conjugate remodeling.


Asunto(s)
Citidina Monofosfato/metabolismo , Neuraminidasa/antagonistas & inhibidores , Photobacterium/enzimología , Sialiltransferasas/metabolismo , Fosfatasa Alcalina/farmacología , Ácido N-Acetilneuramínico Citidina Monofosfato/farmacología , Fosforilación , Sialiltransferasas/antagonistas & inhibidores , beta-D-Galactósido alfa 2-6-Sialiltransferasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...