Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Biotechnol J ; 19(4): e2300614, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38581093

RESUMEN

Poly-γ-glutamic acid (γ-PGA) is a microbial-derived polymer with molecular weight (Mw) from 104 to 107 Da, and the high-Mw (> 7.0 × 105 Da) or ultra-high-Mw (> 5.0 × 106 Da) γ-PGA has important application value as a tissue engineering material, as a flocculant, and as a heavy metal remover. Therefore, how to produce these high-Mw γ-PGAs with low cost and high efficiency has attracted wide attention. In this study, a γ-PGA producer was isolated from the natural environment, and identified and named Bacillus subtilis GXD-20. Then, the ultra-high-Mw (> 6.0 × 106 Da) γ-PGA produced by GXD-20 was characterized. Interestingly, GXD-20 could produce γ-PGA at 42°C, and exhibited a γ-PGA titer of up to 22.29 ± 0.59 g L-1 in a 5-L fermenter after optimization of the fermentation process. Comparative genomic analysis indicated that the specific protein sequence and subcellular localization of PgdS (a γ-PGA-degrading enzyme) were closely related to the ultra-high-Mw of γ-PGA. Transcriptomic analysis revealed that the high γ-PGA titer at 42°C was mainly related to the high expression of genes encoding enzymes for sucrose transportation and utilization, nitrogen transportation, endogenous glutamate synthesis, and γ-PGA synthesis. These results provide new insights into the production of ultra-high-Mw γ-PGA by Bacillus at high temperatures.


Asunto(s)
Bacillus subtilis , Ácido Glutámico , Ácido Poliglutámico/análogos & derivados , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Ácido Glutámico/metabolismo , Peso Molecular , Ácido Poliglutámico/genética , Ácido Poliglutámico/metabolismo , Genómica , Fermentación
2.
BMC Microbiol ; 24(1): 125, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622505

RESUMEN

γ- poly glutamic acid (γ-PGA), a high molecular weight polymer, is synthesized by microorganisms and secreted into the extracellular space. Due to its excellent performance, γ-PGA has been widely used in various fields, including food, biomedical and environmental fields. In this study, we screened natto samples for two strains of Bacillus subtilis N3378-2at and N3378-3At that produce γ-PGA. We then identified the γ-PGA synthetase gene cluster (PgsB, PgsC, PgsA, YwtC and PgdS), glutamate racemase RacE, phage-derived γ-PGA hydrolase (PghB and PghC) and exo-γ-glutamyl peptidase (GGT) from the genome of these strains. Based on these γ-PGA-related protein sequences from isolated Bacillus subtilis and 181 B. subtilis obtained from GenBank, we carried out genotyping analysis and classified them into types 1-5. Since we found B. amyloliquefaciens LL3 can produce γ-PGA, we obtained the B. velezensis and B. amyloliquefaciens strains from GenBank and classified them into types 6 and 7 based on LL3. Finally, we constructed evolutionary trees for these protein sequences. This study analyzed the distribution of γ-PGA-related protein sequences in the genomes of B. subtilis, B. velezensis and B. amyloliquefaciens strains, then the evolutionary diversity of these protein sequences was analyzed, which provided novel information for the development and utilization of γ-PGA-producing strains.


Asunto(s)
Bacillus subtilis , Ácido Glutámico , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Ácido Glutámico/metabolismo , Secuencia de Aminoácidos , Hidrolasas/metabolismo , Ácido Poliglutámico/genética , Genómica
3.
Metab Eng ; 81: 238-248, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38160746

RESUMEN

Previously, a novel Corynebacterium glutamicum strain for the de novo biosynthesis of tailored poly-γ-glutamic acid (γ-PGA) has been constructed by our group. The strain was based on the γ-PGA synthetase complex, PgsBCA, which is the only polyprotein complex responsible for γ-PGA synthesis in Bacillus spp. In the present study, PgsBCA was reconstituted and overexpressed in C. glutamicum to further enhance γ-PGA synthesis. First, we confirmed that all the components (PgsB, PgsC, and PgsA) of γ-PGA synthetase derived from B. licheniformis are necessary for γ-PGA synthesis, and γ-PGA was detected only when PgsB, PgsC, and PgsA were expressed in combination in C. glutamicum. Next, the expression level of each pgsB, pgsC, and pgsA was tuned in order to explore the effect of expression of each of the γ-PGA synthetase subunits on γ-PGA production. Results showed that increasing the transcription levels of pgsB or pgsC and maintaining a medium-level transcription level of pgsA led to 35.44% and 76.53% increase in γ-PGA yield (γ-PGA yield-to-biomass), respectively. Notably, the expression level of pgsC had the greatest influence (accounting for 68.24%) on γ-PGA synthesis, followed by pgsB. Next, genes encoding for PgsC from four different sources (Bacillus subtilis, Bacillus anthracis, Bacillus methylotrophicus, and Bacillus amyloliquefaciens) were tested in order to identify the influence of PgsC-encoding orthologues on γ-PGA production, but results showed that in all cases the synthesis of γ-PGA was significantly inhibited. Similarly, we also explored the influence of gene orthologues encoding for PgsB on γ-PGA production, and found that the titer increased to 17.14 ± 0.62 g/L from 8.24 ± 0.10 g/L when PgsB derived from B. methylotrophicus replaced PgsB alone in PgsBCA from B. licheniformis. The resulting strain was chosen for further optimization, and we achieved a γ-PGA titer of 38.26 g/L in a 5 L fermentor by optimizing dissolved oxygen level. Subsequently, by supplementing glucose, γ-PGA titer increased to 50.2 g/L at 48 h. To the best of our knowledge, this study achieved the highest titer for de novo production of γ-PGA from glucose, without addition of L-glutamic acid, resulting in a novel strategy for enhancing γ-PGA production.


Asunto(s)
Corynebacterium glutamicum , Fermentación , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Ácido Glutámico , Ácido Poliglutámico/genética , Ligasas/metabolismo , Glucosa/metabolismo
4.
Biotechnol Adv ; 67: 108199, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37330153

RESUMEN

Extracellular polymeric substances are mainly synthesized via a variety of biosynthetic pathways in bacteria. Bacilli-sourced extracellular polymeric substances, such as exopolysaccharides (EPS) and poly-γ-glutamic acid (γ-PGA), can serve as active ingredients and hydrogels, and have other important industrial applications. However, the functional diversity and widespread applications of these extracellular polymeric substances, are hampered by their low yields and high costs. Biosynthesis of extracellular polymeric substances is very complex in Bacillus, and there is no detailed elucidation of the reactions and regulations among various metabolic pathways. Therefore, a better understanding of the metabolic mechanisms is required to broaden the functions and increase the yield of extracellular polymeric substances. This review systematically summarizes the biosynthesis and metabolic mechanisms of extracellular polymeric substances in Bacillus, providing an in-depth understanding of the relationships between EPS and γ-PGA synthesis. This review provides a better clarification of Bacillus metabolic mechanisms during extracellular polymeric substance secretion and thus benefits their application and commercialization.


Asunto(s)
Bacillus , Bacillus/genética , Bacillus/metabolismo , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Ingeniería Metabólica , Redes y Vías Metabólicas , Bacterias/metabolismo , Ácido Poliglutámico/genética , Ácido Poliglutámico/metabolismo
5.
Dokl Biol Sci ; 513(Suppl 1): S28-S32, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38190037

RESUMEN

Gene editing using the CRISPR/Cas9 system provides new opportunities to treat human diseases. Approaches aimed at increasing the efficiency of genome editing are therefore important to develop. To increase the level of editing of the CXCR4 locus, which is a target for gene therapy of HIV infection, the Cas9 protein was modified by introducing additional NLS signals and ribonucleoprotein complexes of Cas9 and guide RNA were stabilized with poly-L-glutamic acid. The approach allowed a 1.8-fold increase in the level of CXCR4 knockout in the CEM/R5 T cell line and a 2-fold increase in the level of knock-in of the HIV-1 fusion peptide inhibitor MT-C34 in primary CD4+ T lymphocytes.


Asunto(s)
Sistemas CRISPR-Cas , Infecciones por VIH , Humanos , Sistemas CRISPR-Cas/genética , Ácido Poliglutámico/genética , Ácido Poliglutámico/metabolismo , ARN Guía de Sistemas CRISPR-Cas , Ribonucleoproteínas/genética , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo , Receptores CXCR4/genética , Receptores CXCR4/metabolismo
6.
Biotechnol Adv ; 61: 108049, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36243207

RESUMEN

Bio-derived materials have long been harnessed for their potential as backbones of biodegradable constructs. With increasing understanding of organismal biochemistry and molecular genetics, scientists are now able to obtain biomaterials with properties comparable to those achieved by the petroleum industry. Poly-γ-glutamic acid (γ-PGA) is an anionic pseudopolypeptide produced and secreted by several microorganisms, especially Bacillus species. γ-PGA is polymerised via the pgs intermembrane enzymatic complex expressed by many bacteria (including GRAS member - Bacillus subtilis). γ-PGA can exist as a homopolymer of L- glutamic acid or D- glutamic acid units or it can be a co-polymer comprised of D and L enantiomers. This non-toxic polymer is highly viscous, soluble, biodegradable and biocompatible. γ-PGA is also an example of versatile chiral-polymer, a characteristic that draws great attention from the industry. Increased understanding in the correlation between microbial genetics, substrate compositions, fermentation conditions and polymeric chemical characteristics have led to bioprocess optimisation to provide cost competitive, non-petroleum-based, biodegradable solutions. This review presents detailed insights into microbial synthesis of γ-PGA and summaries current understanding of the correlation between genetic makeup of γ-PGA-producing bacteria, range of culture cultivation conditions, and physicochemical properties of this incredibly versatile biopolymer. Additionally, we hope that review provides an updated overview of findings relevant to sustainable and cost-effective biosynthesis of γ-PGA, with application in medicine, pharmacy, cosmetics, food, agriculture and for bioremediation.


Asunto(s)
Bacillus , Ácido Glutámico , Ácido Poliglutámico/genética , Bacillus subtilis/metabolismo , Bacillus/genética , Fermentación , Biopolímeros
7.
Artículo en Inglés | MEDLINE | ID: mdl-35805288

RESUMEN

Bacillus subtilis A-5 has the capabilities of high-molecular-weight γ-PGA production, antagonism to plant pathogenic fungi, and salt/alkaline tolerance. This multifunctional bacterium has great potential for enhancing soil fertility and plant security in agricultural ecosystem. The genome size of B. subtilis A-5 was 4,190,775 bp, containing 1 Chr and 2 plasmids (pA and pB) with 43.37% guanine-cytosine content and 4605 coding sequences. The γ-PGA synthase gene cluster was predicted to consist of pgsBCA and factor (pgsE). The γ-PGA-degrading enzymes were mainly pgdS, GGT, and cwlO. Nine gene clusters producing secondary metabolite substances, namely, four unknown function gene clusters and five antibiotic synthesis gene clusters (surfactin, fengycin, bacillibactin, subtilosin_A, and bacilysin), were predicted in the genome of B. subtilis A-5 using antiSMASH. In addition, B. subtilis A-5 contained genes related to carbohydrate and protein decomposition, proline synthesis, pyruvate kinase, and stress-resistant proteins. This affords significant insights into the survival and application of B. subtilis A-5 in adverse agricultural environmental conditions.


Asunto(s)
Bacillus subtilis , Ácido Poliglutámico , Bacillus subtilis/genética , Ecosistema , Plásmidos , Ácido Poliglutámico/análogos & derivados , Ácido Poliglutámico/genética , Ácido Poliglutámico/metabolismo
8.
Appl Biochem Biotechnol ; 193(11): 3540-3552, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34312784

RESUMEN

Poly-γ-glutamic acid (γ-PGA) is an anionic polymer with wide-ranging applications in the areas of medicine, light chemical industry, wastewater treatment, and agriculture. However, the production cost of γ-PGA is high for the requirement of adding the expensive precursor L-glutamic acid during fermentation, which hinders its widespread application. In this study, in order to improve γ-PGA yield, central carbon metabolism was engineered to enhance the carbon flux of tricarboxylic acid (TCA) cycle and glutamic acid synthesis in a γ-PGA production strain Bacillus licheniformis WX-02. Firstly, pyruvate dehydrogenase (PdhABCD) and citrate synthase (CitA) were overexpressed to strengthen the flux of pyruvate into TCA cycle, resulting in 34.93% and 11.14% increase of γ-PGA yield in B. licheniformis WX-02, respectively. Secondly, the carbon flux to glyoxylate shunt was rewired via varying the expression of isocitrate lyase (AceA), and a 23.24% increase of γ-PGA yield was obtained in AceA down-regulated strain WXPbacAaceBA. Thirdly, deletion of pyruvate formate-lyase gene pflB led to a 30.70% increase of γ-PGA yield. Finally, combinatorial metabolic engineering was applied, and γ-PGA titer was enhanced to 12.02 g/L via overexpressing pdhABCD and citA, repressing aceA, and deleting pflB, with a 69.30% improvement compared to WX-02. Collectively, metabolic engineering of central carbon metabolism is an effective strategy for enhanced γ-PGA production in B. licheniformis, and this research provided a promising strain for industrial production of γ-PGA.


Asunto(s)
Bacillus licheniformis , Carbono/metabolismo , Ingeniería Metabólica , Ácido Poliglutámico , Bacillus licheniformis/genética , Bacillus licheniformis/metabolismo , Ácido Poliglutámico/biosíntesis , Ácido Poliglutámico/genética
9.
Metab Eng ; 56: 39-49, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31449877

RESUMEN

γ-Polyglutamic acid (γ-PGA) is a biodegradable polymer naturally produced by Bacillus spp. that has wide applications. Fermentation of γ-PGA using Bacillus species often requires the supplementation of L-glutamic acid, which greatly increases the overall cost. Here, we report a metabolically engineered Corynebacterium glutamicum capable of producing γ-PGA from glucose. The genes encoding γ-PGA synthase complex from B. subtilis (pgsB, C, and A) or B. licheniformis (capB, C, and A) were expressed under inducible promoter Ptac in a L-glutamic acid producer C. glutamicum ATCC 13032, which led to low levels of γ-PGA production. Subsequently, C. glutamicum F343 with a strong L-glutamic acid production capability was tested. C. glutamicum F343 carrying capBCA produced γ-PGA up to 11.4 g/L, showing a higher titer compared with C. glutamicum F343 expressing pgsBCA. By introducing B. subtilis glutamate racemase gene racE under Ptac promoter mutants with different expression strength, the percentage of L-glutamic acid units in γ-PGA could be adjusted from 97.1% to 36.9%, and stayed constant during the fermentation process, while the γ-PGA titer reached 21.3 g/L under optimal initial glucose concentrations. The molecular weight (Mw) of γ-PGA in the engineered strains ranged from 2000 to 4000 kDa. This work provides a foundation for the development of sustainable and cost-effective de novo production of γ-PGA from glucose with customized ratios of L-glutamic acid in C. glutamicum.


Asunto(s)
Corynebacterium glutamicum , Ingeniería Metabólica , Ácido Poliglutámico , Bacillus licheniformis/genética , Bacillus licheniformis/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Ácido Poliglutámico/biosíntesis , Ácido Poliglutámico/genética
10.
Bioprocess Biosyst Eng ; 42(10): 1711-1720, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31286217

RESUMEN

To excavate the application of Jerusalem artichoke on poly(γ-glutamic acid) (γ-PGA) production, a γ-PGA producing strain Bacillus amyloliquefaciens NX-2S154 was obtained through atmospheric and room temperature plasma mutagenesis, which produced 14.83 ± 0.31 g/L of γ-PGA in batch fermentation with raw inulin extract. Simultaneous saccharification and fermentation (SSF) by adding commercial inulinase were further investigated for γ-PGA fermentation. Results showed SSF could eliminate the ineffective utilization of inulin while avoiding inhibition effect of high concentration substrate, which made γ-PGA concentration reach 18.54 ± 0.39 g/L with the process being shortened by 17%. Finally, an immobilized column for reducing inulinase cost was introduced to γ-PGA production. Repeated batch cultures showed the novel bioreactor exhibited higher stability and simplicity and gave average γ-PGA concentration and productivity of 19.40 ± 0.37 g/L and 0.27 ± 0.008 g/L/h, respectively. This work proposes a productive method for efficient γ-PGA production using Jerusalem artichoke feedstock.


Asunto(s)
Bacillus amyloliquefaciens/crecimiento & desarrollo , Inulina/metabolismo , Ácido Poliglutámico/biosíntesis , Bacillus amyloliquefaciens/genética , Mutagénesis , Gases em Plasma , Ácido Poliglutámico/genética
11.
Metab Eng ; 55: 239-248, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31344452

RESUMEN

Poly-γ-glutamic acid (γ-PGA), which is produced by several Bacillus species, is a chiral biopolymer composed of D- and L-glutamate monomers and has various industrial applications. However, synthesized γ-PGA exhibits great structural diversity, and the structure must be controlled to broaden its industrial use. The biochemical pathways for γ-PGA production suggest that the polymer properties molecular weight (MW) and stereochemical composition are influenced by (1) the affinity of γ-PGA synthetase for the two alternative glutamate enantiomers and (2) glutamate racemase activity; hence, the availability of the monomers. In this study, we report tailor-made γ-PGA synthesis with B. subtilis by combining PGA synthetase and glutamate racemase genes from several Bacillus strains. The production of structurally diverse γ-PGA was thereby achieved. Depending on the PGA synthetase and glutamate racemase origins, the synthesized γ-PGA contained 3-60% D-glutamate. The exchange of PGA synthetase changed the MW from 40 to 8500 kDa. The results demonstrate the production of low-, medium-, and high-MW γ-PGA with the same microbial chassis.


Asunto(s)
Bacillus subtilis , Proteínas Bacterianas , Ingeniería Metabólica , Microorganismos Modificados Genéticamente , Ácido Poliglutámico , Bacillus subtilis/enzimología , Bacillus subtilis/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Microorganismos Modificados Genéticamente/enzimología , Microorganismos Modificados Genéticamente/genética , Ácido Poliglutámico/biosíntesis , Ácido Poliglutámico/genética
12.
Appl Biochem Biotechnol ; 189(2): 411-423, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31037584

RESUMEN

Poly-γ-glutamic acid (γ-PGA) is a novel biodegradable polyamide material. Microbial fermentation is the only way to produce γ-PGA, but the molecular weight of γ-PGA varied depending on different strains and culture conditions used. The molecular weight of γ-PGA is a main factor affecting the utilization of γ-PGA. It is urgent to find an efficient way to prepare γ-PGA with specific molecular weight, especially low molecular weight. Bacillus subtilis ECUST is a glutamate-dependent strain that produces γ-PGA. In this study, a recombinant B. subtilis harboring the γ-PGA synthase gene cluster pgsBCAE of our preciously identified γ-PGA-producing B. subtilis ECUST was constructed. Assay of γ-PGA contents and properties showed that recombinant B. subtilis 1A751-pBNS2-pgsBCAE obtained the ability to synthesize γ-PGA with low molecular weight (about 10 kDa). The excessive addition of glutamate inhibited the γ-PGA synthesis, while the addition of Zn2+ could promote the synthesis of γ-PGA by increasing the transcription of pgsB but had no effect on the molecular weight of synthesized γ-PGA. Under optimized conditions, γ-PGA produced by recombinant B. subtilis 1A751-pBNS2-pgsBCAE increased from initial 0.54 g/L to 3.9 g/L, and the glutamate conversion rate reached 78%. Recombinant B. subtilis 1A751-pBNS2-pgsBCAE has the potential for efficient preparation of low molecular weight γ-PGA.


Asunto(s)
Bacillus subtilis/metabolismo , Familia de Multigenes , Ácido Poliglutámico/análogos & derivados , Zinc/metabolismo , Bacillus subtilis/genética , Peso Molecular , Ácido Poliglutámico/biosíntesis , Ácido Poliglutámico/genética , Zinc/farmacología
13.
Science ; 364(6442): 787-792, 2019 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-31123136

RESUMEN

Enzymes with a protein kinase fold transfer phosphate from adenosine 5'-triphosphate (ATP) to substrates in a process known as phosphorylation. Here, we show that the Legionella meta-effector SidJ adopts a protein kinase fold, yet unexpectedly catalyzes protein polyglutamylation. SidJ is activated by host-cell calmodulin to polyglutamylate the SidE family of ubiquitin (Ub) ligases. Crystal structures of the SidJ-calmodulin complex reveal a protein kinase fold that catalyzes ATP-dependent isopeptide bond formation between the amino group of free glutamate and the γ-carboxyl group of an active-site glutamate in SidE. We show that SidJ polyglutamylation of SidE, and the consequent inactivation of Ub ligase activity, is required for successful Legionella replication in a viable eukaryotic host cell.


Asunto(s)
Proteínas Bacterianas/metabolismo , Legionella pneumophila/enzimología , Ácido Poliglutámico/metabolismo , Proteínas Quinasas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Factores de Virulencia/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Biocatálisis , Calmodulina/química , Calmodulina/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Células HEK293 , Humanos , Legionella pneumophila/genética , Legionella pneumophila/patogenicidad , Fosforilación , Ácido Poliglutámico/química , Ácido Poliglutámico/genética , Dominios Proteicos/genética , Proteínas Quinasas/química , Proteínas Quinasas/genética , Ubiquitina-Proteína Ligasas/genética , Factores de Virulencia/química , Factores de Virulencia/genética
14.
FEMS Microbiol Lett ; 365(22)2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30295732

RESUMEN

Poly-γ-glutamic acid (PGA) is biosynthesized by various Bacillus species through PGA synthetase, encoded by the PGA operon comprised of the ywsC and ywtABC genes. Due to the minimal available knowledge, understanding the expression pattern of PGA operon genes is pivotal. In this study, the effect of glucose and glutamic acid on the global gene expression profile of Bacillus subtilis Natto3 was investigated using high throughput microarray, with an emphasis on the PGA operon and genes influencing PGA production. Two treatment groups (set1-in the presence of glutamic acid and set2-in the presence of glutamic acid + glucose) were analyzed against the control (in the presence of glucose). In the microarray, both the groups showed a trend of up-regulation for ywsC and ywtA genes (log2 fold change of 0.55, P = 0.0194, 0.92, P = 0.0069 in set1 and 0.78, P = 0.0023, 0.59, P = 0.0172 in set2, respectively) and down-regulation of ywtB and ywtC genes (log2 fold change of -1.83, P = 0.0001, -1.42, P = 0.0017 in set1 and -1.52, P = 0.0012, -0.55, P = 0.1112 in set2, respectively), supporting the indispensability of the ywsC and ywtA genes in PGA production. Interestingly, the ywtB and ywtC genes, belonging to the same operon, were down-regulated in both the conditions (set1 and set2). To the best of our knowledge, this expression pattern of PGA operon genes is a unique observation.


Asunto(s)
Bacillus subtilis/genética , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Ácido Glutámico/farmacología , Operón/efectos de los fármacos , Péptido Sintasas/genética , Ácido Poliglutámico/análogos & derivados , Bacillus subtilis/efectos de los fármacos , Bacillus subtilis/enzimología , Proteínas Bacterianas/genética , Regulación hacia Abajo/efectos de los fármacos , Glucosa/farmacología , Análisis de Secuencia por Matrices de Oligonucleótidos , Ácido Poliglutámico/biosíntesis , Ácido Poliglutámico/genética , Regulación hacia Arriba/efectos de los fármacos
15.
Appl Microbiol Biotechnol ; 102(23): 10127-10137, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30229325

RESUMEN

Poly gamma glutamic acid (γ-PGA) is an anionic polyamide with numerous applications. Previous studies revealed that L-proline metabolism is implicated in a wide range of cellular processes by increasing intercellular reactive oxygen species (ROS) generation. However, the relationship between L-proline metabolism and γ-PGA synthesis has not yet been analyzed. In this study, our results confirmed that deletion of Δ1-pyrroline-5-carboxylate dehydrogenase gene ycgN in Bacillus licheniformis WX-02 increased γ-PGA yield to 13.91 g L-1, 85.22% higher than that of the wild type (7.51 g L-1). However, deletion of proline dehydrogenase gene ycgM had no effect on γ-PGA synthesis. Furthermore, a 2.92-fold higher P5C content (19.24 µmol gDCW-1) was detected in the ycgN deficient strain WXΔycgN, while the P5C levels of WXΔycgM and the double mutant strain WXΔycgMN showed no difference, compared to WX-02. Moreover, the ROS level of WXΔycgN was increased by 1.18-fold, and addition of n-acetylcysteine (antioxidant) decreased its ROS level, which further reduced γ-PGA synthesis capability of WXΔycgN. Collectively, our results demonstrated that proline catabolism played an important role in maintaining ROS homeostasis, and deletion of ycgN-enhanced P5C accumulation, which induced a transient ROS signal to promote γ-PGA synthesis in B. licheniformis.


Asunto(s)
1-Pirrolina-5-Carboxilato Deshidrogenasa/genética , Bacillus licheniformis/genética , Proteínas Bacterianas/genética , Ácido Poliglutámico/análogos & derivados , Especies Reactivas de Oxígeno/metabolismo , 1-Pirrolina-5-Carboxilato Deshidrogenasa/metabolismo , Bacillus licheniformis/enzimología , Proteínas Bacterianas/metabolismo , Citoplasma , Eliminación de Gen , Ácido Poliglutámico/biosíntesis , Ácido Poliglutámico/genética
16.
PLoS One ; 13(7): e0201182, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30024984

RESUMEN

Amyloid aggregates of Tau protein have been implicated in etiology of many neurodegenerative disorders including Alzheimer's disease (AD). When amyloid growth is induced by seeding with preformed fibrils assembled from the same protein, structural characteristics of the seed are usually imprinted in daughter generations of fibrils. This so-called conformational memory effect may be compromised when the seeding involves proteins with non-identical sequences leading to the emergence of distinct structural variants of fibrils (amyloid 'strains'). Here, we investigate cross-seeding of full-length human Tau (FL Tau) with fibrils assembled from K18 and K18ΔK280 fragments of Tau in the presence of poly-L-glutamate (poly-Glu) as an enhancer of Tau aggregation. To study cross-seeding between Tau polypeptides and the role of the conformational memory effect in induction of Tau amyloid polymorphism, kinetic assays, transmission electron microscopy, infrared spectroscopy and limited proteolysis have been employed. The fastest fibrillization was observed for FL Tau monomers seeded with preformed K18 amyloid yielding daughter fibrils with unique trypsin digestion patterns. Morphological features of daughter FL Tau fibrils induced by K18 and K18ΔK280 seeds were reminiscent of the mother fibrils (i.e. straight paired fibrils and paired helical filaments (PHFs), respectively) but disappeared in the following generations which became similar to unpaired FL Tau amyloid fibrils formed de novo. The structural evolution observed in our study was accompanied by disappearance of the unique proteolysis profile originated from K18. Our findings may have implications for understanding molecular mechanisms of the emergence and stability of Tau amyloid strains.


Asunto(s)
Amiloide/metabolismo , Proteínas tau/metabolismo , Amiloide/química , Amiloide/genética , Amiloide/ultraestructura , Escherichia coli , Humanos , Cinética , Ácido Poliglutámico/genética , Ácido Poliglutámico/metabolismo , Agregación Patológica de Proteínas/genética , Agregación Patológica de Proteínas/metabolismo , Multimerización de Proteína , Proteolisis , Tripsina/química , Tripsina/metabolismo , Proteínas tau/química , Proteínas tau/genética , Proteínas tau/ultraestructura
17.
BMC Microbiol ; 18(1): 67, 2018 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-29986655

RESUMEN

BACKGROUND: Bacillus endophyticus is a soil plant-endophytic bacterium, while B. anthracis is the causative agent of anthrax. The virulence factors of B. anthracis are the plasmid encoded tripartite toxins (pXO1) and poly-γ-glutamic acid (PGA) capsule (pXO2). B. endophyticus isolated alongside B. anthracis from animals that died of anthrax in Northern Cape Province (NCP), South Africa, harbored polyglutamate genes. The study compared the characteristics of B. anthracis and B. endophyticus with other Bacillus species with a focus on the presence of the PGA capsule or/and unbound PGA. The morphology and whole genome sequence analysis of B. endophyticus strains and B. anthracis were compared. RESULTS: In conventional microbiology, B. endophyticus showed gram-positive round-shaped rods in single/short chains, which were endospore-forming, non-motile, non-haemolytic with white and dry colonies, and γ-phage resistant. B. anthracis was differentiated from B. endophyticus based on the latter's box-shaped rods in pairs/long chains, white-grey and slimy colonies, encapsulated and γ-phage susceptible. The study identified a PGA polyglutamate synthase operon that consisted of pgsBCA, γ-glutamyltranspeptidase (ggt) and pgsE in B. endophyticus genomes. CONCLUSIONS: PGA regions of B. anthracis contain capBCADE genes located in the pXO2 required for capsulation formation, while B. endophyticus contain the pgsBCAE genes in the chromosome. Whole genome and microbiology analysis identified B. endophyticus, as a non-capsuled endospore-forming bacterium that consists of PGA required for biosynthesis. B. endophyticus strains do not synthesize surface associated PGA, therefore capsule visualization of B. anthracis is a key diagnostic characteristic. The study highlights the significance of using whole genome shotgun sequencing to identify virulence and other important genes that might be present amongst unknown samples from natural outbreaks. None of the B. anthracis related plasmids or virulence genes were found in the B. endophyticus genomes.


Asunto(s)
Carbunco/epidemiología , Carbunco/microbiología , Bacillus/aislamiento & purificación , Brotes de Enfermedades , Animales , Bacillus/clasificación , Bacillus/genética , Bacillus/metabolismo , Bacillus anthracis/clasificación , Bacillus anthracis/genética , Bacillus anthracis/aislamiento & purificación , Bacillus anthracis/metabolismo , Cápsulas Bacterianas/metabolismo , Genoma Bacteriano/genética , Fenotipo , Filogenia , Ácido Poliglutámico/análogos & derivados , Ácido Poliglutámico/genética , Ácido Poliglutámico/metabolismo , ARN Ribosómico 16S/genética , Sudáfrica/epidemiología , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Secuenciación Completa del Genoma
18.
Biotechnol Bioeng ; 115(10): 2541-2553, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29940069

RESUMEN

Poly-γ-glutamic acid (γ-PGA) is an important multifunctional biopolymer with various applications, for which adenosine triphosphate (ATP) supply plays a vital role in biosynthesis. In this study, the enhancement of γ-PGA production was attempted through various approaches of improving ATP supply in the engineered strains of Bacillus licheniformis. The first approach is to engineer respiration chain branches of B. licheniformis, elimination of cytochrome bd oxidase branch reduced the maintenance coefficient, leading to a 19.27% increase of γ-PGA yield. The second approach is to introduce Vitreoscilla hemoglobin (VHB) into recombinant B. licheniformis, led to a 13.32% increase of γ-PGA yield. In the third approach, the genes purB and adK in ATP-biosynthetic pathway were respectively overexpressed, with the AdK overexpressed strain increased γ-PGA yield by 14.69%. Our study also confirmed that the respiratory nitrate reductase, NarGHIJ, is responsible for the conversion of nitrate to nitrite, and assimilatory nitrate reductase NasBC is for conversion of nitrite to ammonia. Both NarGHIJ and NasBC were positively regulated by the two-component system ResD-ResE, and overexpression of NarG, NasC, and ResD also improved the ATP supply and the consequent γ-PGA yield. Based on the above individual methods, a method of combining the deletion of cydBC gene and overexpression of genes vgB, adK, and resD were used to enhance ATP content of the cells to 3.53 µmol/g of DCW, the mutant WX-BCVAR with this enhancement produced 43.81 g/L of γ-PGA, a 38.64% improvement compared to wild-type strain WX-02. Collectively, our results demonstrate that improving ATP content in B. licheniformis is an efficient strategy to improve γ-PGA production.


Asunto(s)
Adenosina Trifosfato/metabolismo , Bacillus licheniformis , Vías Biosintéticas , Ingeniería Metabólica , Ácido Poliglutámico/análogos & derivados , Adenosina Trifosfato/genética , Bacillus licheniformis/genética , Bacillus licheniformis/metabolismo , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , Ácido Poliglutámico/biosíntesis , Ácido Poliglutámico/genética , Hemoglobinas Truncadas/biosíntesis , Hemoglobinas Truncadas/genética
19.
Biotechnol Adv ; 36(5): 1424-1433, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29852203

RESUMEN

Poly-γ-glutamic acid (γ-PGA) is a natural biopolymer of glutamic acid. The repeating units of γ-PGA may be derived exclusively from d-glutamic acid, or l-glutamic acid, or both. The monomer units are linked by amide bonds between the α-amino group and the γ-carboxylic acid group. γ-PGA is biodegradable, edible and water-soluble. It has numerous existing and emerging applications in processing of foods, medicines and cosmetics. This review focuses on microbial production of γ-PGA via genetically and metabolically engineered recombinant bacteria. Strategies for improving production of γ-PGA include modification of its biosynthesis pathway, enhancing the production of its precursor (glutamic acid), and preventing loss of the precursor to competing byproducts. These and other strategies are discussed. Heterologous synthesis of γ-PGA in industrial bacterial hosts that do not naturally produce γ-PGA is discussed. Emerging trends and the challenges affecting the production of γ-PGA are reviewed.


Asunto(s)
Bacterias , Biotecnología , Ingeniería Metabólica , Ácido Poliglutámico/análogos & derivados , Bacterias/genética , Bacterias/metabolismo , Biopolímeros , Redes y Vías Metabólicas , Ácido Poliglutámico/análisis , Ácido Poliglutámico/genética , Ácido Poliglutámico/metabolismo , Proteínas Recombinantes
20.
Microbiology (Reading) ; 164(5): 848-862, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29629859

RESUMEN

ATP-dependent proteases play essential roles in both protein quality control and the regulation of protein activities in bacteria. ClpYQ (also known as HslVU) is one of several highly conserved ATP-dependent proteases in bacteria. The regulation and biological function of ClpYQ have been well studied in Gram-negative bacteria, but are poorly understood in Gram-positive species. In this study, we showed that in the Gram-positive bacterium Bacillus subtilis, the ΔclpYQ deletion mutant formed early and robust biofilms, while swarming motility was severely impaired. Colonies of the ΔclpYQ mutant were also much less mucoid on agar plates, indicating the loss of the production of secreted γ-poly-dl-glutamic acid (γ-PGA). Global proteomic analysis using isobaric tags for relative and absolute quantification (iTRAQ) confirmed that a number of proteins involved in motility, chemotaxis and the production of γ-PGA were less abundant in the ΔclpYQ mutant. The results from both iTRAQ and Western immunoblotting showed that levels of the biofilm master repressor SinR were modestly reduced in the ΔclpYQ mutant, but probably significantly enough to alter biofilm regulation due to the ultrasensitivity of the expression of biofilm genes to SinR protein levels. Western immunoblotting also showed that the abundance of CodY, whose gene is clustered with clpYQ in the same operon, was not impacted on by ΔclpYQ. Lastly, our results suggested that, unlike in Escherichia coli, ClpYQ does not play an essential role in heat-shock response in both B. subtilis and Bacillus cereus. In conclusion, we propose that the ClpYQ protease is primarily involved in multicellular development in B. subtilis.


Asunto(s)
Bacillus subtilis/genética , Bacillus subtilis/fisiología , Endopeptidasa Clp/metabolismo , Regulación Bacteriana de la Expresión Génica , Bacillus subtilis/metabolismo , Proteínas Bacterianas/genética , Biopelículas/crecimiento & desarrollo , Endopeptidasa Clp/genética , Matriz Extracelular de Sustancias Poliméricas/genética , Flagelina/genética , Eliminación de Gen , Locomoción/genética , Operón , Ácido Poliglutámico/análogos & derivados , Ácido Poliglutámico/genética , Ácido Poliglutámico/metabolismo , Proteómica , Transactivadores/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA