Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
1.
J Agric Food Chem ; 72(36): 19644-19656, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39225292

RESUMEN

The growing problem of herbicide resistance necessitates the development of novel herbicidal active ingredients, together with other integrated weed management approaches. Natural products are a major source of inspiration for novel actives. In previous research, we identified a 3-acyltetramic acid of microbial origin that inhibited algal growth in marine biofilms, at least in part through inhibition of photosystem II. In this work, we demonstrate the herbicidal effect of this lead compound and construct multiple libraries to test the impact of the different substituents of the central scaffold in order to study the structure-activity relationships. Among these analogues, the highest activities were found for medium- to long-chain acyl groups and apolar secondary amino acid residues. Finally, we provide first insights into the herbicidal mechanisms and present preliminary field-trial and ecotoxicological results for TA12-Pro, the most active analogue in our library. Together, this research shows the potential of 3-acyltetramic acids for herbicide development.


Asunto(s)
Aminoácidos , Herbicidas , Herbicidas/farmacología , Herbicidas/química , Relación Estructura-Actividad , Aminoácidos/química , Aminoácidos/farmacología , Malezas/efectos de los fármacos , Malezas/crecimiento & desarrollo , Ácido Tenuazónico/farmacología , Ácido Tenuazónico/química , Estructura Molecular
2.
Food Res Int ; 194: 114941, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39232551

RESUMEN

The fate of Alternaria toxin tenuazonic acid (TeA) during the processing chain of wheat flour products was systemically evaluated. TeA was analyzed by liquid chromatography-mass spectrometry (LC-MS/MS) in wheat grains and the corresponding wheat flour products produced throughout the whole chain. The results indicated that TeA contamination in wheat grains largely determines the level of TeA toxin present in byproducts, semi-finished products, and finished products of the processing of four types of simulated processed wheat flour products (e.g., dry noodles, steamed breads, baked breads, and biscuits). The different food processing techniques had different effects on the fate of TeA. Wheat flour processing can reduce the TeA content in wheat grains by 58.7-83.2 %, indicating that wheat flour processing is a key step in reducing the TeA content in the food chain. Among the four types of wheat flour products, the decreases in TeA content in biscuits (69.8-76.7 %) were greater than those in dry noodles (15.5-22.3 %) and steamed breads (24.9-43.6 %). In addition, the decreasing effect of TeA was especially obvious in the wheat flour product chain with a high level of contamination. The processing factors (PFs) for TeA were as low as 0.20 for the four wheat processing methods and as high as 1.24 for the dry noodle processing method. At the average and 95th percentiles, dietary exposure to TeA in Chinese consumers including infants and young children did not exceed the relevant threshold value of toxicological concern (TTC) of TeA (1.5 µg/kg body weight per day), indicating an acceptable health risk for Chinese consumers via wheat flour products. These findings provide new insight into the fate of TeA in the food chain and mycotoxin control on the safety of wheat flour products and public health.


Asunto(s)
Alternaria , Harina , Contaminación de Alimentos , Manipulación de Alimentos , Espectrometría de Masas en Tándem , Ácido Tenuazónico , Triticum , Ácido Tenuazónico/análisis , Harina/análisis , Triticum/química , Contaminación de Alimentos/prevención & control , Contaminación de Alimentos/análisis , Manipulación de Alimentos/métodos , Micotoxinas/análisis , Humanos , Cromatografía Liquida , Pan/análisis
3.
Toxins (Basel) ; 16(7)2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39057959

RESUMEN

Tenuazonic acid (TeA), usually found in cereals, fruits, vegetables, oil crops, and their products, was classified as one of the highest public health problems by EFSA as early as 2011, but it has still not been regulated by legislation due to the limited toxicological profile. Moreover, it has been reported that the coexistence of TeA and patulin (PAT) has been found in certain agricultural products; however, there are no available data about the combined toxicity. Considering that the gastrointestinal tract is the physiological barrier of the body, it would be the first target site at which exogenous substances interact with the body. Thus, we assessed the combined toxicity (cell viability, ROS, CAT, and ATP) in Caco-2 cells using mathematical modeling (Chou-Talalay) and explored mechanisms using non-targeted metabolomics and molecular biology methods. It revealed that the co-exposure of TeA + PAT (12.5 µg/mL + 0.5 µg/mL) can induce enhanced toxic effects and more severe oxidative stress. Mechanistically, the lipid and amino acid metabolisms and PI3K/AKT/FOXO signaling pathways were mainly involved in the TeA + PAT-induced synergistic toxic effects. Our study not only enriches the scientific basis for the development of regulatory policies but also provides potential targets and treatment options for alleviating toxicities.


Asunto(s)
Supervivencia Celular , Sinergismo Farmacológico , Metaboloma , Estrés Oxidativo , Patulina , Ácido Tenuazónico , Células CACO-2 , Patulina/toxicidad , Humanos , Ácido Tenuazónico/toxicidad , Ácido Tenuazónico/metabolismo , Metaboloma/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos
4.
Chemosphere ; 363: 142812, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39004150

RESUMEN

Patients with impaired immune systems are particularly vulnerable to infections. With the increasing number of immunocompromised patients, it becomes necessary to design studies that evaluate the effects of toxic contaminants that are a part of our daily lives. Simultaneously, the management of these toxic components also becomes essential. Therefore, the present study evaluated the possible protective role of cinnamaldehyde (Cin) against tenuazonic acid-induced mycotoxicosis in the immunosuppressed murine model. Tenuazonic acid (TeA), a toxin usually produced by Alternaria species, is a common contaminant in tomato and tomato-based products. Evaluating the potential toxicity of a hazardous chemical necessitates the use of in vitro, in vivo, and in silico methods. Here, the immunomodulatory effect of TeA was assessed in vitro using mouse splenocytes. In silico docking was carried out for the tumour markers of eight organs and TeA. The haematological, histopathological, and biochemical aspects were analysed in vivo. The sub-chronic intoxication of mice with TeA showed elevated malondialdehyde, reduced catalase, and superoxide dismutase production, along with abnormal levels of aspartate aminotransferase and alanine transaminase. The treatment with Cin prevented TeA-induced alterations of antioxidant defense enzyme activities and significantly forbade TeA-induced organ damage, showing therapeutic effects and toxicity reduction in TeA-induced mycotoxicosis.


Asunto(s)
Acroleína , Micotoxicosis , Ácido Tenuazónico , Animales , Acroleína/análogos & derivados , Acroleína/toxicidad , Acroleína/farmacología , Acroleína/química , Ratones , Ácido Tenuazónico/farmacología , Micotoxicosis/prevención & control , Micotoxicosis/tratamiento farmacológico , Modelos Animales de Enfermedad , Superóxido Dismutasa/metabolismo , Catalasa/metabolismo , Masculino , Huésped Inmunocomprometido , Malondialdehído/metabolismo , Simulación del Acoplamiento Molecular , Alternaria , Antioxidantes/farmacología , Antioxidantes/metabolismo
5.
J Biol Chem ; 300(4): 107167, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38490436

RESUMEN

The increasing prevalence of herbicide-resistant weeds has led to a search for new herbicides that target plant growth processes differing from those targeted by current herbicides. In recent years, some studies have explored the use of natural compounds from microorganisms as potential new herbicides. We previously demonstrated that tenuazonic acid (TeA) from the phytopathogenic fungus Stemphylium loti inhibits the plant plasma membrane (PM) H+-ATPase, representing a new target for herbicides. In this study, we further investigated the mechanism by which TeA inhibits PM H+-ATPase and the effect of the toxin on plant growth using Arabidopsis thaliana. We also studied the biochemical effects of TeA on the PM H+-ATPases from spinach (Spinacia oleracea) and A. thaliana (AHA2) by examining PM H+-ATPase activity under different conditions and in different mutants. Treatment with 200 µM TeA-induced cell necrosis in larger plants and treatment with 10 µM TeA almost completely inhibited cell elongation and root growth in seedlings. We show that the isoleucine backbone of TeA is essential for inhibiting the ATPase activity of the PM H+-ATPase. Additionally, this inhibition depends on the C-terminal domain of AHA2, and TeA binding to PM H+-ATPase requires the Regulatory Region I of the C-terminal domain in AHA2. TeA likely has a higher binding affinity toward PM H+-ATPase than the phytotoxin fusicoccin. Finally, our findings show that TeA retains the H+-ATPase in an inhibited state, suggesting that it could act as a lead compound for creating new herbicides targeting the PM H+-ATPase.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Membrana Celular , Herbicidas , ATPasas de Translocación de Protón , Spinacia oleracea , Ácido Tenuazónico , Arabidopsis/crecimiento & desarrollo , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Arabidopsis/enzimología , ATPasas de Translocación de Protón/metabolismo , ATPasas de Translocación de Protón/antagonistas & inhibidores , Ácido Tenuazónico/metabolismo , Ácido Tenuazónico/farmacología , Membrana Celular/metabolismo , Membrana Celular/efectos de los fármacos , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Herbicidas/farmacología , Herbicidas/química , Spinacia oleracea/efectos de los fármacos , Spinacia oleracea/crecimiento & desarrollo , Spinacia oleracea/metabolismo
6.
Vopr Pitan ; 93(1): 103-111, 2024.
Artículo en Ruso | MEDLINE | ID: mdl-38555614

RESUMEN

Tomatoes and tomato products are widely produced and consumed throughout the world. Alternaria spp. are the main cause of alternariosis (black mold disease) on fresh tomatoes, both in the field and after harvesting. Alternaria toxins are widespread contaminants of tomato products. The aim of the present study was to evaluate the contamination of tomato processing products from the domestic market with Alternaria toxins, as well as to assess their intake by humans through the consumption of tomato juices. Material and methods. The content of Alternaria toxins (alternatiol, alternariol monomethyl ether, altenuene, tentoxin, tenuazonic acid) was determined in 64 samples of tomato products (paste, ketchup, juice) by high-performance liquid chromatography coupled to tandem mass-spectrometric detection (HPLC-MS/MS). Results. The priority Alternaria toxins for tomato paste, ketchup and juice were tenuazonic acid (61% of 64 samples, in amounts from 20.0 to 1065.5 µg/kg), altenuene (52%, 8.9-200.1 µg/kg) and alternariol (27%, 12.2-561.6 µg/kg). Samples of tomato paste turned out to be the most contaminated with Alternaria toxins while tomato juice samples were the least contaminated. At the same time, several toxins were found in 91% of tomato paste samples, 35% of ketchups, and 23% of tomato juices. Conclusion. To the best of our knowledge, the present study is the first survey devoted to Alternaria toxins contamination of tomato paste, ketchup and tomato juice sold on the Russian market. The high frequency of their contamination with tenuazonic acid, altenuene and, to a lesser extent, alternariol has been established, which indicates a potential risk to human health when tomato processing products are consumed. This indicates the need for a hygienic assessment of contamination the above products with tenuazonic acid, altenuene and alternariol. When calculating the potential intake of Alternaria toxins for different age population groups, it was shown that high levels of alternariol (up to 56.77 ng/kg body weight per day) could be obtained under daily consumption of tomato juice by adults and children under three years of age, as well as tenuazonic acid when consuming tomato juice contaminated at the 95th percentile level as part of the diet in organized groups for orphans and children without parental care.


Asunto(s)
Lactonas , Micotoxinas , Solanum lycopersicum , Niño , Humanos , Preescolar , Ácido Tenuazónico/análisis , Micotoxinas/análisis , Micotoxinas/química , Alternaria , Espectrometría de Masas en Tándem/métodos , Contaminación de Alimentos/análisis
7.
Lett Appl Microbiol ; 77(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38244231

RESUMEN

The ecological relationships among antimicrobial producing, resistant, and sensitive strains have been proposed to follow rock-paper-scissors dynamics, but evidence is mainly based on Gram-negative bacteriocins in vitro. The ecological relevance of antimicrobials in vivo or in situ has not been systematically studied. This study therefore aimed to analyze binary and ternary competitions among reutericyclin-producing strain Limosilactobacillus reuteri TMW1.656, its reutericyclin-resistant, nonproducing isogenic derivative L. reuteri TMW1.656∆rtcN, and the reutericyclin-sensitive, nonproducing L. reuteri TMW1.656∆rtcN∆rtcT in vitro (liquid culture and static plate), in situ (sourdough fermentation), and in vivo (gut of germ-free mice). In liquid culture, L. reuteri TMW1.656 had a higher fitness than TMW1.656∆rtcN and TMW1.656∆rtcN∆rtcT. Limosilactobacillus reuteri TMW1.656∆rtcN∆rtcT had a higher fitness than TMW1.656∆rtcN. On agar plates, L. reuteri TMW1.656 had a higher fitness than TMW1.656∆rtcN∆rtcT. In situ, reutericyclin production and resistance had no influence on the fitness of the strains. In vivo, TMW1.656 had an advantage over TMW1.656∆rtcN and TMW1.656∆rtcN∆rtcT. Ternary competitions showed reutericyclin production was ecologically beneficial in all ecosystems. The findings support the ecological importance of reutericyclin in a variety of environments/niches, providing an explanation for the acquisition of the reutericyclin gene cluster in L. reuteri and its contribution to the ecological fitness of Streptococcus mutans.


Asunto(s)
Limosilactobacillus reuteri , Ratones , Animales , Ecosistema , Ácido Tenuazónico
8.
Plant Commun ; 5(3): 100775, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38050356

RESUMEN

The chloroplast is a critical battleground in the arms race between plants and pathogens. Among microbe-secreted mycotoxins, tenuazonic acid (TeA), produced by the genus Alternaria and other phytopathogenic fungi, inhibits photosynthesis, leading to a burst of photosynthetic singlet oxygen (1O2) that is implicated in damage and chloroplast-to-nucleus retrograde signaling. Despite the significant crop damage caused by Alternaria pathogens, our understanding of the molecular mechanism by which TeA promotes pathogenicity and cognate plant defense responses remains fragmentary. We now reveal that A. alternata induces necrotrophic foliar lesions by harnessing EXECUTER1 (EX1)/EX2-mediated chloroplast-to-nucleus retrograde signaling activated by TeA toxin-derived photosynthetic 1O2 in Arabidopsis thaliana. Mutation of the 1O2-sensitive EX1-W643 residue or complete deletion of the EX1 singlet oxygen sensor domain compromises expression of 1O2-responsive nuclear genes and foliar lesions. We also found that TeA toxin rapidly induces nuclear genes implicated in jasmonic acid (JA) synthesis and signaling, and EX1-mediated retrograde signaling appears to be critical for establishing a signaling cascade from 1O2 to JA. The present study sheds new light on the foliar pathogenicity of A. alternata, during which EX1-dependent 1O2 signaling induces JA-dependent foliar cell death.


Asunto(s)
Alternaria , Arabidopsis , Alternaria/metabolismo , Ácido Tenuazónico/metabolismo , Oxígeno Singlete/metabolismo , Virulencia , Cloroplastos/metabolismo , Arabidopsis/genética , Plantas/metabolismo , Transducción de Señal
9.
Ecotoxicol Environ Saf ; 270: 115871, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38141335

RESUMEN

Tenuazonic acid (TeA) and patulin (PAT), as the naturally occurring mycotoxins with various toxic effects, are often detected in environment and food chain, has attracted more and more attention due to their widespread and high contaminations as well as the coexistence, which leads to potential human and animals' risks. However, their combined toxicity has not been reported yet. In our study, C. elegans was used to evaluate the type of combined toxicity caused by TeA+PAT and its related mechanisms. The results showed that TeA and PAT can induce synergistic toxic effects based on Combination Index (CI) evaluation model (Chou-Talalay method), that is, the body length, brood size as well as the levels of ROS, CAT and ATP were significantly affected in TeA+PAT-treated group compared with those in TeA- or PAT-treated group. Besides, the expressions of oxidative (daf-2, daf-16, cyp-35a2, ctl-1, ctl-3, pmk-1, jnk-1, skn-1) and intestinal (fat-5, pod-2, egl-8, pkc-3, ajm-1, nhx-2) stress-related genes were disrupted, among which daf-16 displayed the most significant alternation. Further study on daf-16 gene defective C. elegans showed that the damages to the mutant nematodes were significantly attenuated. Since daf-2, daf-16, jnk-1 and pmk-1 are evolutionarily conserved, our findings could hint synergistic toxic effects of TeA+PAT on higher organisms.


Asunto(s)
Proteínas de Caenorhabditis elegans , Patulina , Animales , Humanos , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Patulina/toxicidad , Patulina/metabolismo , Ácido Tenuazónico/metabolismo , Ácido Tenuazónico/farmacología , Oxidación-Reducción , Longevidad
10.
Artículo en Inglés | MEDLINE | ID: mdl-38011597

RESUMEN

To evaluate the safety of orange consumption induced by mycotoxins, 'Newhall' navel oranges were artificially inoculated with P. expansum and A. tenuissima, followed by an evaluation of the distribution and migration patterns of corresponding mycotoxins (patulin [PAT], tentoxin [Ten], altenuene [ALT], alternariol monomethyl ether [AME], alternariol [AOH] and tenuazonic acid [TeA]) during orange storage and processing. The concentration of mycotoxins decreased as the increase of distance from the lesion, and mycotoxins could be detected throughout the orange when the lesion extended to 8 mm in diameter. AOH and AME pose the primary source of dietary risk with high concentrations and low thresholds of toxicological concern. Orange juice and pectin processing could remove 43.4-98.7% of mycotoxins, while tangerine peelprocessing might lead to significant enrichment of mycotoxins with the processing factors (PFs) of 2.8-3.5. The findings may offer scientific insights into mitigating the dietary risk of mycotoxin exposure from oranges and their derivatives.


Asunto(s)
Citrus sinensis , Micotoxinas , Patulina , Micotoxinas/análisis , Alternaria , Ácido Tenuazónico , Lactonas/análisis , Contaminación de Alimentos/análisis
11.
Food Chem Toxicol ; 182: 114183, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37951345

RESUMEN

Mycotoxins are secondary metabolites produced by fungi such as Aspergillus, Alternaria, and Penicillium, affecting nearly 80% of global food crops. Tenuazonic acid (TeA) is the major mycotoxin produced by Alternaria alternata, a prevalent pathogen affecting plants, fruits, and vegetables. TeA is notably prevalent in European diets, however, TeA biomarkers of exposure and metabolites remain unknown. This research aims to bridge this knowledge-gap by gaining insights about human TeA exposure and metabolization. Nine subjects were divided into two groups. The first group received a single bolus of TeA at the Threshold of Toxicological Concern (TTC) to investigate the presence of TeA urinary biomarkers, while the second group served as a control. Sixty-nine urinary samples were prepared and analyzed using UPLC-Xevo TQ-XS for TeA quantification and UPLC-Orbitrap Exploris for polar metabolome acquisition. TeA was rapidly excreted during the first 13 h and the fraction extracted was 0.39 ± 0.22. The polar metabolome compounds effectively discriminating the two groups were filtered using Orthogonal Partial Least Squares-Discriminant Analysis and subsequently annotated (n = 122) at confidence level 4. Finally, the urinary metabolome was compared to in silico predicted TeA metabolites. Nine metabolites, including oxidized, N-alkylated, desaturated, glucuronidated, and sulfonated forms of TeA were detected.


Asunto(s)
Micotoxinas , Ácido Tenuazónico , Humanos , Ácido Tenuazónico/análisis , Ácido Tenuazónico/metabolismo , Micotoxinas/análisis , Frutas/química , Metabolómica , Productos Agrícolas/metabolismo , Alternaria/metabolismo
12.
Toxins (Basel) ; 15(6)2023 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-37368690

RESUMEN

Wheat grains are susceptible to contamination with various natural mycotoxins including regulated and emerging mycotoxins. This study surveyed the natural presence of regulated mycotoxins, such as deoxynivalenol (DON) and zearalenone (ZEN), and emerging mycotoxins such as beauvericin (BEA), enniatins (ENNs such as ENA, ENA1, ENB, ENB1) and Alternaria mycotoxins (i.e., alternariol monomethyl ether (AME), alternariol (AOH), tenuazonic acid (TeA), tentoxin (TEN), and altenuene (ALT)) in wheat grains randomly collected from eight provinces across China in 2021. The results revealed that each wheat grain sample was detected with at least one type of mycotoxin. The detection rates of these mycotoxins ranged from 7.1% to 100%, with the average occurrence level ranging from 1.11 to 921.8 µg/kg. DON and TeA were the predominant mycotoxins with respect to both prevalence and concentration. Approximately 99.7% of samples were found to contain more than one toxin, and the co-occurrence of ten toxins (DON + ZEN + ENA + ENA1 + ENB + ENB1 + AME + AOH + TeA + TEN) was the most frequently detected combination. The dietary exposure to different mycotoxins among Chinese consumers aged 4-70 years was as follows: 0.592-0.992 µg/kg b.w./day for DON, 0.007-0.012 µg/kg b.w./day for ZEN, 0.0003-0.007 µg/kg b.w./day for BEA and ENNs, 0.223-0.373 µg/kg b.w./day for TeA, and 0.025-0.041 µg/kg b.w./day for TEN, which were lower than the health-based guidance values for each mycotoxin, with the corresponding hazard quotient (HQ) being far lower than 1, implying a tolerable health risk for Chinese consumers. However, the estimated dietary exposure to AME and AOH was in the range of 0.003-0.007 µg/kg b.w./day, exceeding the Threshold of Toxicological Concern (TTC) value of 0.0025 µg/kg b.w./day, demonstrating potential dietary risks for Chinese consumers. Therefore, developing practical control and management strategies is essential for controlling mycotoxins contamination in the agricultural systems, thereby ensuring public health.


Asunto(s)
Micotoxinas , Zearalenona , Micotoxinas/análisis , Triticum , Exposición Dietética/efectos adversos , Contaminación de Alimentos/análisis , Espectrometría de Masas en Tándem/métodos , Zearalenona/análisis , Ácido Tenuazónico/análisis , China , Alternaria
13.
J Sci Food Agric ; 103(14): 6861-6870, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37288717

RESUMEN

BACKGROUND: Alternaria can infest pears to produce metabolites, which can contaminate pears and their processed products. Pear paste, one of the most important pear-based products, is popular among Chinese consumers especially for its cough relieving and phlegm removal properties. Although people are concerned about the risk of Alternaria toxins in many agro-foods and their products, little is known about the toxins in pear paste. RESULTS: A method was developed for the determination of tenuazonic acid, alternariol, alternariol menomethyl ether, altenuene and tentoxin in pear paste by ultra-performance liquid chromatography tandem mass spectrometry with saturated sodium sulphate dissolution and acidified acetonitrile extraction. The mean recoveries of the five toxins were 75.3-113.8% with relative standard deviations of 2.8-12.2% at spiked levels of 1.0-100 µg kg-1 . Alternaria toxins were detected in 53 out of 76 samples, with a detection rate of 71.4%. Tenuazonic acid (67.1%), alternariol (35.5%), tentoxin (23.7%) and alternariol monomethyl ether (7.9%) were detected in all samples at concentrations of < limit of quantification (LOQ)-105.0 µg kg-1 , < LOQ-32.1 µg kg-1 , < LOQ-74.2 µg kg-1 and < LOQ-15.1 µg kg-1 , respectively. Altenuene was never found in pear paste samples. Tenuazonic acid, alternariol, tentoxin and alternariol menomethyl ether should be focused on due to their toxicity and detection rates. CONCLUSION: To the best of our knowledge, this is the first report on the detection method and residue levels of Alternaria toxins in pear paste. The proposed method and research data can provide technical support for the Chinese government to continuously monitor and control Alternaria toxins in pear paste, especially tenuazonic acid. It can also provide a useful reference for related researchers. © 2023 Society of Chemical Industry.


Asunto(s)
Micotoxinas , Pyrus , Humanos , Cromatografía Liquida , Espectrometría de Masas en Tándem/métodos , Ácido Tenuazónico/análisis , Micotoxinas/metabolismo , Pyrus/metabolismo , Cromatografía Líquida de Alta Presión/métodos , Alternaria/metabolismo , Solubilidad , Lactonas/análisis , Extracción Líquido-Líquido , Éteres/análisis , Éteres/metabolismo , Contaminación de Alimentos/análisis
14.
Toxins (Basel) ; 15(5)2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37235359

RESUMEN

A total of 181 citrus-based products, including dried fruits, canned fruits, and fruit juices, collected from China and from abroad in 2021 were analyzed for the four Alternaria toxins (ALTs): alternariol (AOH), alternariol monomethyl ether (AME), tentoxin (TEN), and tenuazonic acid (TeA) via ultra-high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS). Although the concentrations of the four ALTs varied by product and geographically, TeA was the predominant toxin followed by AOH, AME, and TEN. Products made in China showed higher levels of ALTs than those made abroad. Maximum levels of TeA, AOH, and AME in analyzed domestic samples were 4.9-fold, 1.3-fold, and 1.2-fold, respectively, higher than those in imported products. Furthermore, 83.4% (151/181) of the analyzed citrus-based products were contaminated with at least two or more ALTs. There were significant positive correlations between AOH and AME, AME and TeA, and TeA and TEN in all analyzed samples. More importantly, the solid and the condensed liquid products had higher concentrations of ALTs than the semi-solid product samples, as well as tangerines, pummelos, and grapefruits compared to the other kinds of citrus-based products. In conclusion, co-contamination with ALTs in commercially available Chinese citrus-based products was universal. Extensive and systematic surveillance of ALTs in citrus-based products, both domestic and imported, is required to obtain more scientific data for the determination of the maximum allowable concentrations of ALTs in China.


Asunto(s)
Citrus , Micotoxinas , Micotoxinas/análisis , Alternaria/química , Espectrometría de Masas en Tándem/métodos , Contaminación de Alimentos/análisis , Ácido Tenuazónico/análisis , China , Lactonas/análisis
15.
Molecules ; 28(7)2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37050021

RESUMEN

Alternaria fungi are widely distributed plant pathogens that invade crop products, causing significant economic damage. In addition, toxic secondary metabolites produced by the fungi can also endanger consumers. Many of these secondary metabolites are chemically characterized as mycotoxins. In this study, Q Exactive Orbitrap mass spectrometry was used for the non-targeted analysis of the metabolome of seven Alternaria isolates cultured on Potato Carrot Agar (PCA), Potato Dextrose Agar (PDA) and Potato Sucrose Agar (PSA) medium. Due to the difficulty of detecting modified toxins, an analytical strategy with multiple visual analysis tools was also used to determine the presence of sulfate conjugated toxins, as well as to visualize the molecular network of Alternaria toxins. The results show that PSA medium exhibits more advantageous properties for the culture of Alternaria, with more toxigenic species and quantities and more obvious metabolic pathways. Based on high-resolution tandem mass spectrometry (MS/MS) data, the mycotoxins and their metabolites were mainly clustered into four groups: alternariol (AOH)/alternariol monomethyl ether (AME)/altenusin (ALU)/altenuene (ALT)/dehydroaltenusin (DHA)/Desmethyldehydroaltenusin (DMDA) families, Altertoxin-I (ATX-I) family, tentoxin (TEN) family and tenuazonic acid (TeA) family. Moreover, the PSA medium is more suitable for the accumulation of AOH, AME, ALU, ALT, DHA and DMDA, while the PDA medium is more suitable for the accumulation of ATX-I, TEN and TeA. This research may provide theoretical support for the metabolomics study of Alternaria.


Asunto(s)
Micotoxinas , Humanos , Micotoxinas/análisis , Espectrometría de Masas en Tándem/métodos , Alternaria/química , Cromatografía Liquida , Contaminación de Alimentos/análisis , Agar , Ácido Tenuazónico , Lactonas/metabolismo
16.
Mycotoxin Res ; 39(2): 135-149, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37071305

RESUMEN

Tenuazonic acid (TeA) is synthesized by phytopathogenic and opportunistic fungi and is detected in a broad range of foods. This natural compound is of interest in terms of toxicity to animals, but its mechanisms of action on insects are poorly understood. We administered TeA orally at different concentrations (0.2-5.0 mg/[gram of a growth medium]) to the model insect Galleria mellonella, with subsequent estimation of physiological, histological, and immunological parameters in different tissues (midgut, fat body, and hemolymph). Susceptibility of the TeA-treated larvae to pathogenic microorganisms Beauveria bassiana and Bacillus thuringiensis was also analyzed. The feeding of TeA to the larvae led to a substation delay of larval growth, apoptosis-like changes in midgut cells, and an increase in midgut bacterial load. A decrease in activities of detoxification enzymes and downregulation of genes Nox, lysozyme, and cecropin in the midgut and/or hemocoel tissues were detected. By contrast, genes gloverin, gallerimycin, and galiomycin and phenoloxidase activity proved to be upregulated in the studied tissues. Hemocyte density did not change under the influence of TeA. TeA administration increased susceptibility of the larvae to B. bassiana but diminished their susceptibility to B. thuringiensis. The results indicate that TeA disturbs wax moth gut physiology and immunity and also exerts a systemic action on this insect. Mechanisms underlying the observed changes in wax moth susceptibility to the pathogens are discussed.


Asunto(s)
Mariposas Nocturnas , Ácido Tenuazónico , Animales , Larva , Mariposas Nocturnas/genética , Mariposas Nocturnas/microbiología , Hongos
17.
BMC Complement Med Ther ; 23(1): 103, 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37013553

RESUMEN

BACKGROUND: Due to the extensive potential of previously studied endophytes in addition to plants belonging to genus Physalis as a source of anti-inflammatory constituents, the present study aimed at isolation for the first time some endophytic fungi from the medicinal plant Physalis pruinosa. METHODS: The endophytic fungi were isolated from the fresh leaves of P. pruinosa then purified and identified by both morphological and molecular methods. Comparative evaluation of the cytotoxic and ex vivo anti-inflammatory activity in addition to gene expression of the three pro-inflammatory indicators (TNF-α, IL-1ß and INF-γ) was performed in WBCs treated with lipopolysaccharide (LPS) for the identified endophytes, isolated compounds and the standard anti-inflammatory drug (piroxicam). For prediction of the binding mode of the top-scoring constituents-targets complexes, the Schrödinger Maestro 11.8 package (LLC, New York, NY) was employed in the docking study. RESULTS: A total of 50 endophytic fungal isolates were separated from P. pruinosa leaves. Selection of six representative isolates was performed for further bioactivity screening based on their morphological characters, which were then identified as Stemphylium simmonsii MN401378, Stemphylium sp. MT084051, Alternaria infectoria MT573465, Alternaria alternata MZ066724, Alternaria alternata MN615420 and Fusarium equiseti MK968015. It could be observed that A. alternata MN615420 extract was the most potent anti-inflammatory candidate with a significant downregulation of TNF-α. Moreover, six secondary metabolites, alternariol monomethyl ether (1), 3'-hydroxyalternariol monomethyl ether (2), alternariol (3), α-acetylorcinol (4), tenuazonic acid (5) and allo-tenuazonic acid (6) were isolated from the most potent candidate (A. alternata MN615420). Among the tested isolated compounds, 3'-hydroxyalternariol monomethyl ether showed the highest anti-inflammatory potential with the most considerable reductions in the level of INF-γ and IL-1ß. Meanwhile, alternariol monomethyl ether was the most potent TNF-α inhibitor. The energy values for the protein (IL-1ß, TNF-α and INF-γ)-ligand interaction for the best conformation of the isolated compounds were estimated using molecular docking analysis. CONCLUSIONS: The results obtained suggested alternariol derivatives may serve as naturally occurring potent anti-inflammatory candidates. This study opens new avenues for the design and development of innovative anti-inflammatory drugs that specifically target INF-γ, IL-1ß and INF-γ.


Asunto(s)
Physalis , Ácido Tenuazónico , Ácido Tenuazónico/química , Endófitos/química , Simulación del Acoplamiento Molecular , Factor de Necrosis Tumoral alfa , Antiinflamatorios/farmacología , Éteres
18.
Toxins (Basel) ; 15(3)2023 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-36977092

RESUMEN

In this work, we proposed an acid hydrolysis-based analytical method for the detection of Alternaria toxins (ATs) in solanaceous vegetables and their products with solid-phase extraction (SPE) and ultrahigh-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). This study was the first to reveal that some compounds in the eggplant matrix bind to altenusin (ALS). Validation under optimal sample preparation conditions showed that the method met the EU criteria, exhibiting good linearity (R2 > 0.99), matrix effects (-66.6--20.5%), satisfying recovery (72.0-107.4%), acceptable precision (1.5-15.5%), and satisfactory sensitivity (0.05-2 µg/kg for limit of detection, 2-5 µg/kg for limit of quantification). Out of 393 marketed samples, only 47 samples were detected, ranging from 0.54-806 µg/kg. Though the occurrence ratio (2.72%) in solanaceous vegetables could be negligible, the pollution status in solanaceous vegetable products was much more serious, and the incidences were 41.1%. In the 47 contaminated samples, the incidences were 4.26% for alternariol monomethyl ether (AME), 6.38% for alternariol (AOH) and altenuene (ALT), 42.6% for tentoxin (TEN), and 55.3% for tenuazonic acid (TeA).


Asunto(s)
Alternaria , Micotoxinas , Cromatografía Líquida de Alta Presión/métodos , Cromatografía Liquida/métodos , Alternaria/metabolismo , Verduras , Espectrometría de Masas en Tándem/métodos , Micotoxinas/análisis , Hidrólisis , Contaminación de Alimentos/análisis , Ácido Tenuazónico/análisis , Lactonas/análisis
19.
Molecules ; 28(3)2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36771134

RESUMEN

The regulation of food contaminants in the European Union (EU) is comprehensive, and there are several compounds in the register or being added to the recommendation list. Recently, European standard methods for analysis have also been issued. The quick analysis of different groups of analytes in one sample requires a number of methods and the simultaneous use of various instruments. The aim of the present study was to develop a method that could analyze several groups of food contaminants: in this case, 266 pesticides, 12 mycotoxins, 14 alkaloid toxins, and 3 Alternaria toxins. The main advantage of the herein described approach over other methods is the simultaneous analysis of tenuazonic acid (TEA) and other relevant food contaminants. The developed method unites the newly published standard methods such as EN 15662:2018, EN 17194:2019, EN 17256:2019, EN 17425:2021, EN 17521:2021, which describes the analysis of both regulated and emerging contaminants. The developed method is based on a QuEChERS sample preparation, followed by LC-MS/MS analysis under alkaline mobile phase conditions. The pH of the aqueous eluent was set to 8.3, which resulted in baseline separation among ergot alkaloids and their corresponding epimers, a symmetric chromatographic peak shape for analyzing TEA and fit-for-purpose sensitivity for MS/MS detection in both positive and negative ionization modes. Those compounds, which possess the corresponding isotopically labeled internal standards (ISTD), allowed for direct quantification by the developed method and no further confirmation was necessary. This was proven by satisfactory analyses of a number of quality control (QC), proficiency test (PT), and validation samples.


Asunto(s)
Micotoxinas , Ácido Tenuazónico , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos , Alternaria/química , Contaminación de Alimentos/análisis , Micotoxinas/análisis , Cromatografía Líquida de Alta Presión
20.
Int J Food Microbiol ; 388: 110070, 2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36610234

RESUMEN

For temperature-dependent Alternaria mycotoxins production analysis, cherry samples were inoculated with Alternaria sp. and incubated at two different temperatures (4 °C and 25 °C). Six Alternaria mycotoxins, including altenuene (ALT), alternariol monomethyl ether (AME), alternariol (AOH), altertoxin-I (ATX-I), tenuazonic acid (TeA), and tentoxin (TEN), in cherries were detected with integrated visible data-processing tools. Maximum concentration of these mycotoxins reached 71,862.2 µg/kg at 25 °C. Notably, considerable amount of TeA (290.4 µg/kg) was detected at 4 °C, which indicated that low temperature is not a safe storage condition for fruits. A total of 102 compounds were detected with a neutral loss of 162.0528 Da, and TeA-glucose was identified in this work. Based on MS/MS cosine similarity, products were verified and annotated with feature based molecular networking (FBMN) in global natural products social networking (GNPS). The results showed Alternaria mycotoxins in cherry samples were mainly demethylation, hydrogenation, and dehydration. This work revealed the production of Alternaria mycotoxins in cherries under different storage temperature, which will provide theoretical basis for the control of mycotoxin contamination in food commodities.


Asunto(s)
Micotoxinas , Micotoxinas/análisis , Cromatografía Líquida de Alta Presión , Temperatura , Alternaria , Espectrometría de Masas en Tándem/métodos , Contaminación de Alimentos/análisis , Ácido Tenuazónico/análisis , Lactonas/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...