Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.112
Filtrar
1.
Chemosphere ; 358: 142179, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38692364

RESUMEN

Household and personal care chemicals (HPCCs) constitute a significant component of everyday products, with their global usage on the rise. HPCCs are eventually discharged into municipal wastewater treatment plants (WWTPs). However, the behaviors of HPCCs inside the Bacillus Bioreactor (BBR) process, including their prevalence, fate, and elimination mechanisms, remain underexplored. Addressing this gap, our study delves into samples collected from a BBR process at a significant WWTP in the northeast of China. Our results spotlight the dominance of linear alkylbenzene sulfonates (LASs) in the influent with concentrations ranging between 238 and 789 µg/L, much higher than the other HPCC concentrations, and remained dominant in the subsequent treatment units. After treatment using the BBR process, the concentrations of HPCCs in the effluent were diminished. Examination of different treatment units underscores the grit chamber removed over 60% of higher-concentration HPCCs, while the performance of the (RBC) tank needs to be improved. Except for the ultraviolet radiation (UV)-filters, seasonal variations exert minimal impact on the concentrations and removal efficiencies of other HPCCs in the BBR process. According to the mass balance analysis, the important mechanisms for HPCC removal were biodegradation and sludge adsorption. Also, the octocrylene (OCT) concerns raised by the environmental risk assessment of the HPCCs residuals in the final effluent, indicate a moderate risk to the surrounding aquatic environment (0.1 < RQ < 1), whereas other HPCCs have a lower risk level (RQ < 0.1). Overall, the research offers new perspectives on the fate and elimination mechanisms of HPCCs throughout the BBR process.


Asunto(s)
Bacillus , Reactores Biológicos , Estaciones del Año , Eliminación de Residuos Líquidos , Aguas Residuales , Contaminantes Químicos del Agua , Reactores Biológicos/microbiología , Aguas Residuales/química , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/metabolismo , Eliminación de Residuos Líquidos/métodos , Bacillus/metabolismo , China , Biodegradación Ambiental , Cosméticos/análisis , Productos Domésticos/análisis , Ácidos Alcanesulfónicos/análisis , Monitoreo del Ambiente , Aguas del Alcantarillado
2.
J Hazard Mater ; 470: 134203, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38581874

RESUMEN

Wastewater treatment plants (WWTPs) have been recognized as secondary sources of per- and polyfluoroalkyl substances (PFAS) released into the environment. In this study, PFAS concentrations were measured in effluent and biosolids samples collected from 75 WWTPs across Australia during the 2016 Census period, which covers more than half of the Australian population. Twelve PFAS compounds, including six C5-C10 perfluoroalkyl carboxylic acids (PFCAs), four perfluoro sulfonic acids (PFSAs) such as perfluorobutane sulfonate (PFBS), perfuorohexane sulfonic (PFHxS), perfluorooctane sulfonic acid (PFOS), and perfluorodecane sulfonic acid (PFDS), and one fluorotelomer sulfonic acid (6:2 FTS), were detected in the effluent, with concentrations up to 504 ng/L (PFHxS). Among these, perfluorooctanoic acid (PFOA), perfluorohexanoic acid (PFHxA), and perfluoropentanic acid (PFPeA) exhibited the highest median concentrations. In the biosolids, a total of 21 PFAS compounds were detected, encompassing ten C4-C14 PFCAs, four PFSAs, two FTS (6:2 and 8:2 FTS), perfluorooctane sulfonamide (PFOSA), two perfluorooctane sulfonamido acetic acid (NMethyl FOSAA and NEthyl FOSAA), and two perfluorooctane sulfonamido ethanol (FOSE), with dry weight (dw) concentrations approaching 235 ng/g (PFOS). The highest median and mean concentrations were observed for perfluorodecanoic acid (PFDA) and PFOS. An annual discharge of approximately 250 kg of the total 21 PFAS compounds was estimated through the effluent and biosolids of the participating WWTPs. Notably, PFOS and 6:2 FTS constituted the largest proportion of total PFAS in the WWTPs' output. While PFCAs were higher in effluent concentrations compared to influent levels across most WWTPs (92% of WWTPs for ∑8PFCAs), the concentrations of PFSAs either decreased or remained relatively stable (in 80% of WWTPs for ∑4PFSAs) throughout the wastewater treatment process.


Asunto(s)
Fluorocarburos , Eliminación de Residuos Líquidos , Aguas Residuales , Contaminantes Químicos del Agua , Australia , Fluorocarburos/análisis , Contaminantes Químicos del Agua/análisis , Aguas Residuales/química , Monitoreo del Ambiente , Aguas del Alcantarillado/análisis , Ácidos Alcanesulfónicos/análisis
3.
Water Res ; 256: 121570, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38640564

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) are environmental contaminants of concern due to their long persistence in the environment, toxicity, and widespread presence in humans and wildlife. Knowledge regarding the extent of PFAS contamination in the environment is limited due to the need for analytical methods that can reliably quantify all PFAS, since traditional target methods using liquid chromatography (LC)-mass spectrometry (MS) fail to capture many. For a more comprehensive analysis, a total organic fluorine (TOF) method can be used as a screening tool. We combined TOF analysis with target LC-MS/MS analysis to create a statewide PFAS hotspot map for surface waters throughout South Carolina. Thirty-eight of 40 locations sampled contained detectable concentrations of organic fluorine (above 100 ng/L). Of the 33 target PFAS analyzed using LC-MS/MS, the most prevalent were perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluoroheptanoic acid (PFHpA), and perfluorohexanesulfonate (PFHxS). On average, LC-MS/MS only accounted for 2 % of the TOF measured. Locations with high TOF did not necessarily correlate to high total quantified PFAS concentrations and vice-versa, demonstrating the limitations of target PFAS analysis and indicating that LC-MS may miss highly contaminated sites. Results suggest that future surveys should utilize TOF to more comprehensively capture PFAS in water bodies.


Asunto(s)
Fluorocarburos , Espectrometría de Masas en Tándem , Contaminantes Químicos del Agua , South Carolina , Fluorocarburos/análisis , Contaminantes Químicos del Agua/análisis , Cromatografía Liquida , Monitoreo del Ambiente/métodos , Flúor/análisis , Ácidos Alcanesulfónicos/análisis , Cromatografía Líquida con Espectrometría de Masas , Caprilatos
4.
Sci Total Environ ; 928: 172316, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38593875

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) are fluorinated organic compounds used in a variety of consumer products and industrial applications that persist in the environment, bioaccumulate in biological tissues, and can have adverse effects on human health, especially in vulnerable populations. In this study, we focused on PFAS exposures in residents of senior care facilities. To investigate relationships between indoor, personal, and internal PFAS exposures, we analyzed 19 PFAS in matched samples of dust collected from the residents' bedrooms, and wristbands and serum collected from the residents. The median ∑PFAS concentrations (the sum of all PFAS detected in the samples) measured in dust, wristbands, and serum were 120 ng/g, 0.05 ng/g, and 4.0 ng/mL, respectively. The most abundant compounds in serum were linear- and branched-perfluorooctane sulfonic acid (L-PFOS and B-PFOS, respectively) at medians of 1.7 ng/mL and 0.83 ng/mL, respectively, followed by the linear perfluorooctanoic acid (L-PFOA) found at a median concentration of 0.59 ng/mL. Overall, these three PFAS comprised 80 % of the serum ∑PFAS concentrations. A similar pattern was observed in dust with L-PFOS and L-PFOA found as the most abundant PFAS (median concentrations of 13 and 7.8 ng/g, respectively), with the overall contribution of 50 % to the ∑PFAS concentration. Only L-PFOA was found in wristbands at a median concentration of 0.02 ng/g. Significant correlations were found between the concentrations of several PFAS in dust and serum, and in dust and wristbands, suggesting that the indoor environment could be a significant contributor to the personal and internal PFAS exposures in seniors. Our findings demonstrate that residents of assisted living facilities are widely exposed to PFAS, with several PFAS found in blood of each study participant and in the assisted living environment.


Asunto(s)
Exposición a Riesgos Ambientales , Fluorocarburos , Fluorocarburos/análisis , Fluorocarburos/sangre , Humanos , Anciano , Exposición a Riesgos Ambientales/estadística & datos numéricos , Exposición a Riesgos Ambientales/análisis , Polvo/análisis , Contaminantes Ambientales/sangre , Contaminantes Ambientales/análisis , Monitoreo del Ambiente , Femenino , Masculino , Ácidos Alcanesulfónicos/sangre , Ácidos Alcanesulfónicos/análisis , Anciano de 80 o más Años , Caprilatos/sangre , Caprilatos/análisis , Hogares para Ancianos/estadística & datos numéricos
5.
Sci Total Environ ; 927: 172132, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38569952

RESUMEN

This study investigated the occurrence and distribution of per- and polyfluoroalkyl substances (PFASs) in house dust samples from six regions across four continents. PFASs were detected in all indoor dust samples, with total median concentrations ranging from 17.3 to 197 ng/g. Among the thirty-one PFAS analytes, eight compounds, including emerging PFASs, exhibited high detection frequencies in house dust from all six locations. The levels of PFASs varied by region, with higher concentrations found in Adelaide (Australia), Tianjin (China), and Carbondale (United States, U.S.). Moreover, PFAS composition profiles also differed among regions. Dust from Australia and the U.S. contained high levels of 6:2 fluorotelomer phosphate ester (6:2 diPAP), while perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) were predominant in other regions. Furthermore, our results indicate that socioeconomic factors impact PFAS levels. The assessment of human exposure through dust ingestion and dermal contact indicates that toddlers may experience higher exposure levels than adults. However, the hazard quotients of PFASs for both toddlers and adults were below one, indicating significant health risks are unlikely. Our study highlights the widespread occurrence of PFASs in global indoor dust and the need for continued monitoring and regulation of these chemicals.


Asunto(s)
Contaminación del Aire Interior , Polvo , Exposición a Riesgos Ambientales , Monitoreo del Ambiente , Fluorocarburos , Polvo/análisis , Humanos , Contaminación del Aire Interior/análisis , Contaminación del Aire Interior/estadística & datos numéricos , Fluorocarburos/análisis , Exposición a Riesgos Ambientales/estadística & datos numéricos , Exposición a Riesgos Ambientales/análisis , Contaminantes Atmosféricos/análisis , Caprilatos/análisis , Ácidos Alcanesulfónicos/análisis , Australia , China
6.
Environ Pollut ; 349: 123925, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38593937

RESUMEN

Legacy and emerging per- and polyfluoroalkyl substances (PFASs) were measured in livers of finless porpoises (Neophocaena asiaeorientalis; n = 167) collected in Korean waters from 2002 to 2015 to investigate their occurrence, bioaccumulation feature, temporal trends, and ecotoxicological implications. Perfulorooctane sulfonate (PFOS), perfluoroundecanoate (PFUnDA), and perfluorotridecanoate (PFTrDA) were the predominant PFASs found in the porpoises. The concentration of 6:2 chlorinated polyfluoroalkyl ether sulfonate (F-53B), an alternative to PFOS, was comparable to that of PFTrDA. Perfluorooctane sulfonamide (FOSA), a precursor of PFOS, was also detected in all the porpoises examined. All PFASs, including F-53B, accumulated to higher concentrations in immature porpoises compared with mature specimens, implying substantial maternal transfer and limited metabolizing capacity for PFASs. A significant correlation was observed between PFOS and F-53B concentrations, indicating similar bioaccumulation processes. Based on prenatal exposure and toxicity, F-53B is an emerging contaminant in marine ecosystems. Significantly increasing trends were observed in the concentrations of sulfonates, carboxylates, and F-53B between 2002/2003 and 2010, whereas the FOSA concentration significantly decreased. During 2010-2015, decreasing trends were observed in the concentrations of FOSA and sulfonates, whereas concentrations of carboxylate and F-53B increased without statistical significance, likely due to a gap for the implementation of regulatory actions between sulfonates and carboxylates. Although PFOS and PFOA were found to pose little health risk to porpoises, the combined toxicological effects of other contaminants should be considered to protect populations and to mitigate PFAS contamination in marine ecosystems.


Asunto(s)
Ácidos Alcanesulfónicos , Monitoreo del Ambiente , Fluorocarburos , Marsopas , Contaminantes Químicos del Agua , Fluorocarburos/metabolismo , Fluorocarburos/análisis , Animales , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/análisis , República de Corea , Ácidos Alcanesulfónicos/análisis , Marsopas/metabolismo
7.
Environ Toxicol Chem ; 43(5): 965-975, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38501493

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) are persistent, bioaccumulative, and toxic synthetic chemicals of concern, which have been detected in nearly all environmental compartments. The present study provides a data analysis on PFAS concentrations in the Dutch inland and coastal national waters and fish sampled from 2008 to 2022 and 2015 to 2022, respectively. Although the fish database is relatively small, the water database is unique because of its temporal dimension. It appears that PFAS are omnipresent in Dutch water and fish, with relatively small spatial differences in absolute and relative concentrations (fingerprints) and few obvious temporal trends. Only perfluorooctanoic acid and perfluorooctanesulfonic acid (PFOS) aqueous concentrations in the rivers Rhine and Scheldt have substantially decreased since 2012. Still, PFOS concentrations exceed the European water quality standards at all and fish standards at many locations. Masses of PFAS entering the country and the North Sea are roughly 3.5 tonnes/year. Generally, the data suggest that most PFAS enter the Dutch aquatic environment predominantly through diffuse sources, yet several major point sources of specific PFAS were identified using fingerprints and monthly concentration profiles as identification tools. Finally, combining concentrations in fish and water, 265 bioaccumulation factors were derived, showing no statistically significant differences between freshwater and marine fish. Overall, the analysis provides new insights into PFAS bioaccumulation and spatiotemporal trends, mass discharges, and sources in The Netherlands. Environ Toxicol Chem 2024;43:965-975. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Asunto(s)
Monitoreo del Ambiente , Peces , Fluorocarburos , Contaminantes Químicos del Agua , Países Bajos , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/análisis , Fluorocarburos/metabolismo , Fluorocarburos/análisis , Peces/metabolismo , Animales , Ácidos Alcanesulfónicos/análisis , Ácidos Alcanesulfónicos/metabolismo , Bioacumulación , Ríos/química , Caprilatos/metabolismo
8.
Sci Total Environ ; 926: 171932, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38522527

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) are a class of persistent chemicals that have been associated with a diverse array of adverse environmental and human health related effects. In addition to a growing list of health concerns, PFAS are also ubiquitously used and pervasive in our natural and built environments, and they have an innate ability to be highly mobile once released into the environment with an unmatched ability to resist degradation. As such, PFAS have been detected in a wide variety of environmental matrices, including soil, water, and biota; however, the matrix that largely dictates human exposure to PFAS is drinking water, in large part due to their abundance in water sources and our reliance on drinking water. As Florida is heavily reliant upon water and its varying sources, the primary objective of this study was to survey the presence of PFAS in drinking water collected from taps from the state of Florida (United States). In this study, 448 drinking water samples were collected by networking with trained citizen scientists, with at least one sample collected from each of the 67 counties in Florida. Well water, tap water, and bottled water, all sourced from Florida, were extracted and analyzed (31 PFAS) using isotope dilution and ultra-high-performance liquid chromatography - tandem mass spectrometry (UHPLC-MS/MS). Overall, when examining ∑PFAS: the minimum, maximum, median, and mean were ND, 219, 2.90, and 14.06 ng/L, respectively. The data herein allowed for a comparison of PFAS in drinking water geographically within the state of Florida, providing vital baseline concentrations for prospective monitoring and highlighting hotspots that require additional testing and mitigation. By incorporating citizen scientists into the study, we aimed to educate impacted communities regarding water quality issues and solutions.


Asunto(s)
Ácidos Alcanesulfónicos , Colaboración de las Masas , Agua Potable , Fluorocarburos , Contaminantes Químicos del Agua , Humanos , Florida , Estudios Prospectivos , Espectrometría de Masas en Tándem , Fluorocarburos/análisis , Contaminantes Químicos del Agua/análisis , Ácidos Alcanesulfónicos/análisis
9.
Environ Pollut ; 347: 123735, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38458514

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) were analysed in a high number of terrestrial samples of soil, earthworm, bird eggs and liver from red fox and brown rat in an urban area in Norway from 2013 to 2020. PFOS and the long chain PFCAs were the most dominating compounds in all samples, proving their ubiquitous distribution. Other less studied compounds such as 6:2 FTS were first and foremost detected in earthworm. 8:2 FTS was found in many samples of fieldfare egg, sparrowhawk egg and earthworm, where the eggs had highest concentrations. Highest concentrations for both 6:2 FTS and 8:2 FTS were detected at present and former industry areas. FOSA was detected in many samples of the species with highest concentrations in red fox liver and brown rat liver of 3.3 and 5.5 ng/g ww. PFAS concentrations from the urban area were significantly higher than from background areas indicating that some of the species can be suitable as markers for PFAS emissions in an urban environment. Fieldfare eggs had surprisingly high concentrations of PFOS and PFCA concentrations from areas known to be or have been influenced by industry. Biota-soil-accumulation factor and magnification calculations indicate accumulation and magnification potential for several PFAS. Earthworm and fieldfare egg had average concentrations above the Canadian and European thresholds in diet for avian wildlife and predators. For earthworms, 18 % of the samples exceeded the European threshold (33 ng/g ww) of PFOS in prey for predators, and for fieldfare eggs, 35 % of the samples were above the same threshold. None of the soil samples exceeded a proposed PNEC of PFOS for soil living organisms of 373 ng/g dw.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Animales , Ratas , Ecosistema , Monitoreo del Ambiente , Zorros , Canadá , Fluorocarburos/análisis , Aves , Suelo , Ácidos Alcanesulfónicos/análisis
10.
J Hazard Mater ; 469: 133992, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38460262

RESUMEN

Perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) are persistent anthropogenic chemicals that are widely distributed in the environment and pose significant risks to human health. Foam fractionation has emerged as a promising method to recover PFOS/PFOA from water. However, PFOS/PFOA concentrations in wastewater are often inadequate to generate stable foams due to their high critical micelle concentrations and the addition of a cosurfactant is necessary. In this study, we developed whey soy protein (WSP) as a green frother and collector derived from soybean meal (SBM), which is an abundant and cost-effective agro-industrial residue. WSP exhibited excellent foaming properties across a wide pH range and demonstrated strong collection capabilities that enhanced the recovery of PFOS/PFOA. The mechanism underlying this collection ability was elucidated through various methods, revealing the involvement of electrostatic attraction, hydrophobic interaction, and hydrogen bonding. Furthermore, we designed a double plate internal to improve the enrichment of PFOS/PFOA by approximately 2.3 times while reducing water recovery. Under suitable conditions (WSP concentration: 300 mg/L, pH: 6.0, air flowrate: 300 mL/min), we achieved high recovery percentages of 94-98% and enrichment ratios of 7.5-12.8 for PFOS/PFOA concentrations ranging from 5 to 20 mg/L. This foam fractionation process holds great promise for the treatment of PFOS/PFOA and other per- and polyfluoroalkyl substances.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Contaminantes Químicos del Agua , Humanos , Agua , Proteínas de Soja , Suero Lácteo/química , Proteína de Suero de Leche , Fluorocarburos/análisis , Caprilatos/análisis , Ácidos Alcanesulfónicos/análisis , Contaminantes Químicos del Agua/análisis
13.
Environ Int ; 185: 108540, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38428191

RESUMEN

The contamination characteristics, migration patterns and health risks of per- and polyfluoroalkyl substances (PFAS) were investigated in 66 Chinese paper products by using target and non-target screening methods. Among 57 target PFASs, 5 and 6 PFASs were found in the hygiene paper products (

Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Humanos , Fluorocarburos/análisis , Etanol , Alimentos , Inocuidad de los Alimentos , China , Ácidos Alcanesulfónicos/análisis
14.
Environ Sci Technol ; 58(9): 4115-4126, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38390687

RESUMEN

Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are potentially related to many adverse health outcomes and could be transferred from maternal blood to human milk, which is an important exposure source for infants during a long-term period. In this study, the maternal blood of 76 women after delivery and their matched human milk samples obtained at 0.5, 1, and 3 months were analyzed by solid-phase extraction method with metal-organic framework/polymer hybrid nanofibers as the sorbents and ultrahigh-performance liquid chromatography-negative electrospray ionization mass spectrometric for quantitative analysis of 31 PFAS. The perfluorooctanoic acid, perfluorooctane sulfonate, and N-methyl perfluorooctane sulfonamido acetic acid (N-MeFOSAA) contributed to more than approximately 50% of the total PFAS concentrations in blood and human milk, while N-MeFOSAA (median: 0.274 ng/mL) was the highest PFAS in human milk at 3 months. The transfer efficiencies for PFAS from maternal blood to human milk at 0.5 months were generally lower, with medians ranging from 0.20% to 16.9%. The number of PFAS species detected in human milk increased as the lactation time went on from 0.5 to 3 months, and the concentrations of 10 PFAS displayed an increasing trend as the prolongation of lactation time (p < 0.05).


Asunto(s)
Ácidos Alcanesulfónicos , Contaminantes Ambientales , Fluorocarburos , Sulfonamidas , Lactante , Humanos , Femenino , Exposición Materna , Leche Humana/química , Contaminantes Ambientales/análisis , Fluorocarburos/análisis , Lactancia , Ácidos Alcanesulfónicos/análisis
15.
Sci Total Environ ; 917: 170611, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38309351

RESUMEN

The pollution of per- and polyfluorinated alkyl substances (PFAS) in aquatic environments is a worldwide concern of which the ecological impact is still not well understood. Especially field-based effect studies in aquatic ecosystems are generally lacking, creating a knowledge gap that goes along with monitoring and regulatory challenges. Therefore, this study examined if bioaccumulated PFAS concentrations could be related to ecological responses assessed by changes in the macroinvertebrate community structure. In addition, threshold body burdens that are protective of ecological damage were estimated. Aquatic macroinvertebrates were sampled in 30 streams across Flanders (Belgium) and 28 PFAS target analytes were measured in three resident taxa (Gammarus sp., Asellus sp. and Chironomus sp.) and translocated zebra mussels (Dreissena polymorpha). The macroinvertebrate community structure was assessed by calculating the Multimetric Macroinvertebrate Index Flanders (MMIF). Primarily long-chain perfluorinated carboxylic acids (PFCAs) were detected in both resident taxa (passive biomonitoring) and zebra mussels (active biomonitoring). Based on a 90th quantile regression model, safe threshold body burdens could be calculated for PFTeDA (7.1 ng/g ww) and ΣPFAS (2264 ng/g ww) in Gammarus sp. and for PFOA (5.5 ng/g ww), PFDoDA (1.7 ng/g ww), PFTrDA (0.51 ng/g ww), PFTeDA (2.4 ng/g ww), PFOS (644 ng/g ww) and ΣPFAS (133 ng/g ww) in zebra mussel. An additional threshold value was calculated for most compounds and species using the 95th percentile method. However, although these estimated thresholds are pertinent and indicative, regulatory applicability requires further lines of evidence and validation. Nevertheless, this study offers first-time evidence of associations between accumulated PFAS concentrations in invertebrates and a reduced ecological water quality in terms of macroinvertebrate community structure and highlights the potential of Gammarus sp. and zebra mussels to serve as reliable PFAS biomonitoring species.


Asunto(s)
Ácidos Alcanesulfónicos , Dreissena , Fluorocarburos , Contaminantes Químicos del Agua , Animales , Carga Corporal (Radioterapia) , Monitoreo del Ambiente , Ecosistema , Calidad del Agua , Fluorocarburos/toxicidad , Fluorocarburos/análisis , Ácidos Alcanesulfónicos/análisis , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis
16.
Environ Pollut ; 346: 123575, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38365077

RESUMEN

We have investigated the occurrence, distribution, and biomagnification of per- and polyfluoroalkyl substances (PFAS) in two tropical lakes (Asejire and Eleyele) of Southwestern Nigeria, with contrasting urban intensities. Over an 8-month period, we sampled sediment and fish species (Clarias gariepinus: CIG; Oreochromis niloticus: ON; Coptodon guineensis: CG; Sarotherodon melanotheron: SM) across trophic levels, and analyzed various PFAS congeners, in addition to a select group of toxicological responses. While herbivores (SM) and benthic omnivores (CIG) at Asejire exhibited elevated levels of PFBS and PFOS, the pelagic omnivores (ON) showed a dominance of PFOS, PFDA, PFHxDA and EtFOSE in the muscle. At the Eleyele urban lake, PFAS patterns was dominated by PFBS, EtFOSE, PFPeS, PFOcDA and PFOS in the herbivores (SM, CG), EtFOSE, PFOS and PFBS in the pelagic omnivore (ON) and benthic omnivore (ClG). The estimated biomagnification factor (BMF) analysis for both lakes indicated trophic level increase of PFOS, PFUnA and PFDA at the suburban lake, while PFOS and EtFOSE biomagnified at the urban lake. We detected the occurrence of diSAMPAP and 9CL-PF3ONS, novel compounds not commonly reported, in PFAS studies at both lakes. The studied toxicological responses varied across trophic groups in both lakes with probable modulations by environmental conditions, trophic structure, and relative PFAS exposures in the lakes. The present study documents, for the first time in Nigeria, or any other African country, the role of urbanization on contaminant load into the environment and their implications for contaminant dynamics within the ecosystem and for aquatic food safety.


Asunto(s)
Ácidos Alcanesulfónicos , Cíclidos , Fluorocarburos , Contaminantes Químicos del Agua , Animales , Lagos/química , Ecosistema , Bioacumulación , Contaminantes Químicos del Agua/análisis , Fluorocarburos/análisis , Nigeria , Monitoreo del Ambiente , Ácidos Alcanesulfónicos/análisis
17.
J Hazard Mater ; 468: 133743, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38377901

RESUMEN

In this study, we examined the distribution of per- and polyfluoroalkyl substances (PFASs) in liver and bile tissues from the patients with liver cancer (n = 202) and healthy controls (n = 30), and calculated the hepatobiliary transport efficiency (TB-L) of PFASs. Among 21 PFASs, 13 PFASs were frequently detected in the liver (median: 8.80-16.3 ng/g) and bile (median: 11.03-14.26 ng/mL) samples. PFAS concentrations in liver were positively correlated with age, with higher levels of PFASs in the older. Variance analysis showed that gender and BMI (Body Mass Index) have an important impact on the distribution of PFASs. A U-shaped trend in TB-L of PFASs with the increasing of carbon chain length was found for the first time, and the TB-L of most PFASs in the control was higher than that of those in cases (p < 0.05), suggesting that hepatic injury would affect their transport. PFASs were positively associated with liver injury biomarkers, including γ-glutamyl transferase (GGT), alanine aminotransferase (ALT), and total bilirubin (TB) levels (p < 0.05). This is the first study on examining the hepatobiliary transport characteristics of PFASs, which may help understand the connection between PFAS accumulation and liver cancer risk.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Neoplasias Hepáticas , Contaminantes Químicos del Agua , Humanos , Fluorocarburos/análisis , Biomarcadores , Ácidos Alcanesulfónicos/análisis , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente
18.
J Hazard Mater ; 468: 133808, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38387177

RESUMEN

Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are emerging contaminants that pose a threat to the biodiversity of the Beiluo River, a polluted watercourse on the Loess Plateau impacted by diverse human activities. However, the occurrence, spatial distribution, and substitution characteristics of PFASs in this region remain unclear. This study aimed to unravel PFAS distribution patterns and their impact on the aquatic ecosystems of the Beiluo River Basin. The total PFAS concentration in the area ranged from 16.64-35.70 ng/L, with predominantly perfluorocarboxylic acids (PFCAs) and perfluorosulfonic acids (PFSAs), collectively contributing 94%. The Mantel test revealed threats to aquatic communities from both legacy long-chain (perfluorooctanoic acid and sodium perfluorooctane sulfonic acid) and emerging (6:2 fluorotelomer sulfonic acid, 2-Perfluorohexyl ethanoic acid, and hexafluoropropylene oxide dimer acid (Gen-X)) PFSAs. The canonical correspondence analysis ordination indicated that trace quantities of emerging PFASs, specifically 2-Perfluorohexyl ethanoic acid and hexafluoropropylene oxide dimer acid (Gen-X), significantly influenced geographical variations in aquatic communities. In conclusion, this study underscores the importance of comprehensively exploring the ecological implications and potential risks associated with PFASs in the Beiluo River Basin.


Asunto(s)
Ácidos Alcanesulfónicos , Polímeros de Fluorocarbono , Fluorocarburos , Heptanoatos , Propionatos , Contaminantes Químicos del Agua , Humanos , Ríos , Ecosistema , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Fluorocarburos/análisis , China , Ácidos Alcanesulfónicos/análisis , Agua/análisis
19.
Sci Total Environ ; 922: 171187, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38408678

RESUMEN

Wild boars have been reported as bioindicators for per- and polyfluoroalkyl substances (PFAS) in a variety of studies. However, data about PFAS levels in wild boars from sites with limited industrial and general human activity is scarce. In this study, wild boar (Sus scrofa) organs from the Bohemian Forest National Park (Czech Republic) were used as bioindicators for PFAS pollution. In this work, 29 livers and 24 kidneys from 30 wild boars (0.5-5 years) were investigated using a fluorine mass balance approach. For this, the samples were measured using high performance liquid chromatography with electrospray ionisation tandem mass spectrometry (HPLC-ESI-MS/MS), targeting 30 PFAS, including legacy and replacement PFAS, direct total oxidisable precursor assay (dTOPA) and combustion ion chromatography (CIC). Perfluorocarboxylic acids (PFCAs) from C7 to C14 and perfluorooctanesulfonic acid (PFOS) were detected in >50 % of samples. In the livers, PFCAs dominated the profile with median concentrations of 230 µg/kg for perfluorononanoic acid (PFNA) and 75 µg/kg perfluorooctanoic acid (PFOA). PFOA and PFNA concentrations in the livers were one order of magnitude higher than in livers from wild boars caught in rural NE Germany considered as background concentration. PFOS in liver contributed only 30 % to the Σc(PFASTarget) with a median concentration of 170 µg/kg. Kidneys and livers contain an average of 2460 µg F/kg and 6800 µg F/kg extractable organic fluorine (EOF) respectively. Σc(PFASTarget) add up to a maximum of 10 % of the extractable organic fluorine. After oxidisation of the samples, PFOA, PFNA and Σc(PFASdTOPA) increased in livers, but could not explain the EOF. The elevated concentration of PFOA and PFNA may indicate differences in biomagnification for different habitats or an unidentified PFAS source in proximity to the national park.


Asunto(s)
Ácidos Alcanesulfónicos , Caprilatos , Contaminantes Ambientales , Ácidos Grasos , Fluorocarburos , Humanos , Animales , Porcinos , Flúor/análisis , Biomarcadores Ambientales , Espectrometría de Masas en Tándem , Parques Recreativos , Ácidos Alcanesulfónicos/análisis , Fluorocarburos/análisis , Bosques , Sus scrofa , Contaminantes Ambientales/análisis
20.
Environ Pollut ; 346: 123613, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38423274

RESUMEN

Homegrown food serves as an important human exposure source of per- and polyfluoroalkyl substances (PFAS), yet little is known about their spatiotemporal distribution within and among private gardens. This knowledge is essential for more accurate site-specific risk assessment, identification of new sources and evaluating the effectiveness of regulations. The present study evaluated spatiotemporal changes of legacy and emerging PFAS in surface soil from vegetable gardens (N = 78) and chicken enclosures (N = 102), as well as in homegrown eggs (N = 134) of private gardens, across the Province of Antwerp (Belgium). Hereby, the potential influence of the wind orientation and distance towards a major fluorochemical plant was examined. The ∑short-chain PFAS and precursor concentrations were higher in vegetable garden soil (8.68 ng/g dry weight (dw)) compared to chicken enclosure soil (4.43 ng/g dw) and homegrown eggs (0.77 ng/g wet weight (ww)), while long-chain sulfonates and C11-14 carboxylates showed the opposite trend. Short-term (2018/2019-2022) changes were mostly absent in vegetable garden soil, while changes in chicken enclosure soils oriented S-SW nearby (<4 km) the fluorochemical plant were characterized by a local, high-concentration plume. Moreover, soil from chicken enclosures oriented SE and remotely from the plant site was characterized by a widespread, diffuse but relatively low-concentration plume. Long-term data (2010-2022) suggest that phaseout and regulatory measures have been effective, as PFOS concentrations nearby the fluorochemical plant in soil and eggs have declined from 25.8 to 2.86 ng/g dw and from 528 to 39.4 ng/g ww, respectively. However, PFOS and PFOA concentrations have remained largely stable within this timeframe in gardens remotely from the plant site, warranting further rapid regulation and remediation measures. Future monitoring efforts are needed to allow long-term comparison for multiple PFAS and better distinction from potential confounding variables, such as variable emission outputs and variability in wind patterns.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Humanos , Suelo/química , Monitoreo del Ambiente , Jardines , Verduras , Fluorocarburos/análisis , Ácidos Alcanesulfónicos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA