Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.095
Filtrar
1.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39000270

RESUMEN

The combination of a polyphenol, quercetin, with dasatinib initiated clinical trials to evaluate the safety and efficacy of senolytics in idiopathic pulmonary fibrosis, a lung disease associated with the presence of senescent cells. Another approach to senotherapeutics consists of controlling inflammation related to cellular senescence or "inflammaging", which participates, among other processes, in establishing pulmonary fibrosis. We evaluate whether polyphenols such as caffeic acid, chlorogenic acid, epicatechin, gallic acid, quercetin, or resveratrol combined with different senotherapeutics such as metformin or rapamycin, and antifibrotic drugs such as nintedanib or pirfenidone, could present beneficial actions in an in vitro model of senescent MRC-5 lung fibroblasts. A senescent-associated secretory phenotype (SASP) was evaluated by the measurement of interleukin (IL)-6, IL-8, and IL-1ß. The senescent-associated ß-galactosidase (SA-ß-gal) activity and cellular proliferation were assessed. Fibrosis was evaluated using a Picrosirius red assay and the gene expression of fibrosis-related genes. Epithelial-mesenchymal transition (EMT) was assayed in the A549 cell line exposed to Transforming Growth Factor (TGF)-ß in vitro. The combination that demonstrated the best results was metformin and caffeic acid, by inhibiting IL-6 and IL-8 in senescent MRC-5 cells. Metformin and caffeic acid also restore cellular proliferation and reduce SA-ß-gal activity during senescence induction. The collagen production by senescent MRC-5 cells was inhibited by epicatechin alone or combined with drugs. Epicatechin and nintedanib were able to control EMT in A549 cells. In conclusion, caffeic acid and epicatechin can potentially increase the effectiveness of senotherapeutic drugs in controlling lung diseases whose pathophysiological component is the presence of senescent cells and fibrosis.


Asunto(s)
Senescencia Celular , Fibroblastos , Pulmón , Polifenoles , Humanos , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Senescencia Celular/efectos de los fármacos , Polifenoles/farmacología , Pulmón/patología , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Células A549 , Proliferación Celular/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Metformina/farmacología , Ácidos Cafeicos/farmacología , Indoles/farmacología , Senoterapéuticos/farmacología , Línea Celular , Fenotipo Secretor Asociado a la Senescencia/efectos de los fármacos , Sirolimus/farmacología , Interleucina-8/metabolismo , Interleucina-8/genética , Factor de Crecimiento Transformador beta/metabolismo , Piridonas
2.
J Mol Neurosci ; 74(3): 61, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954245

RESUMEN

Lifestyle influences physical and cognitive development during the period of adolescence greatly. The most important of these lifestyle factors are diet and stress. Therefore, the aim of this study was to investigate the impact of high fat diet (HFD) and chronic mild stress on cognitive function and anxiety-like behaviors in young rats and to study the role of caffeic acid as a potential treatment for anxiety and cognitive dysfunction. Forty rats were assigned into 4 groups: control, HFD, HFD + stress, and caffeic acid-treated group. Rats were sacrificed after neurobehavioral testing. We detected memory impairment and anxiety-like behavior in rats which were more exaggerated in stressed rats. Alongside the behavioral changes, there were biochemical and histological changes. HFD and/or stress decreased hippocampal brain-derived neurotrophic factor (BDNF) levels and induced oxidative and inflammatory changes in the hippocampus. In addition, they suppressed Wnt/ß-catenin pathway which was associated with activation of glycogen synthase kinase 3ß (GSK3ß). HFD and stress increased arginase 1 and inducible nitric oxide synthase (iNOS) levels as well. These disturbances were found to be aggravated in stressed rats than HFD group. However, caffeic acid was able to reverse these deteriorations leading to memory improvement and ameliorating anxiety-like behavior. So, the current study highlights an important neuroprotective role for caffeic acid that may guard against induction of cognitive dysfunction and anxiety disorders in adolescents who are exposed to HFD and/or stress.


Asunto(s)
Ansiedad , Factor Neurotrófico Derivado del Encéfalo , Ácidos Cafeicos , Dieta Alta en Grasa , Glucógeno Sintasa Quinasa 3 beta , Hipocampo , Fármacos Neuroprotectores , Estrés Psicológico , Animales , Ácidos Cafeicos/farmacología , Ácidos Cafeicos/uso terapéutico , Ratas , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Ansiedad/tratamiento farmacológico , Ansiedad/etiología , Masculino , Dieta Alta en Grasa/efectos adversos , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Estrés Psicológico/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Ratas Wistar , beta Catenina/metabolismo , Vía de Señalización Wnt/efectos de los fármacos , Cognición/efectos de los fármacos , Disfunción Cognitiva/etiología , Disfunción Cognitiva/prevención & control , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/tratamiento farmacológico , Óxido Nítrico Sintasa de Tipo II/metabolismo
3.
PLoS One ; 19(6): e0299372, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38885237

RESUMEN

Phenolic acids still gain significant attention due to their potential antimicrobial and cytotoxic properties. In this study, we have investigated the antimicrobial of six phenolic acids, namely chlorogenic, caffeic, p-coumaric, rosmarinic, gallic and tannic acids in the concentration range 0.5-500 µM, against Escherichia coli and Lactobacillus rhamnosus. The antimicrobial activity was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide colorimetric assay. Additionally, the cytotoxic effects of these phenolic acids on two cancer cell lines, the colorectal adenocarcinoma Caco-2 cell line and Dukes' type C colorectal adenocarcinoma DLD-1 cell line was examined. To further understand the molecular properties of these phenolic acids, quantum chemical calculations were performed using the Gaussian 09W program. Parameters such as ionization potential, electron affinity, electronegativity, chemical hardness, chemical softness, dipole moment, and electrophilicity index were obtained. The lipophilicity properties represented by logP parameter was also discussed. This study provides a comprehensive evaluation of the antimicrobial and cytotoxic activity of six phenolic acids, compounds deliberately selected due to their chemical structure. They are derivatives of benzoic or cinnamic acids with the increasing number of hydroxyl groups in the aromatic ring. The integration of experimental and computational methodologies provides a knowledge of the molecular characteristics of bioactive compounds and partial explanation of the relationship between the molecular structure and biological properties. This knowledge aids in guiding the development of bioactive components for use in dietary supplements, functional foods and pharmaceutical drugs.


Asunto(s)
Hidroxibenzoatos , Humanos , Hidroxibenzoatos/química , Hidroxibenzoatos/farmacología , Células CACO-2 , Línea Celular Tumoral , Escherichia coli/efectos de los fármacos , Antiinfecciosos/farmacología , Antiinfecciosos/química , Pruebas de Sensibilidad Microbiana , Ácido Gálico/química , Ácido Gálico/farmacología , Cinamatos/química , Cinamatos/farmacología , Ácidos Cafeicos/química , Ácidos Cafeicos/farmacología , Ácidos Cumáricos/química , Ácidos Cumáricos/farmacología
4.
Int J Mol Sci ; 25(11)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38891843

RESUMEN

Mesotrione, as a widely used herbicide, is present in the environment in detectable amounts, causing serious damage. Here, we aimed to investigate the effect of mesotrione on Caco-2 cells and the possibility of its toxicity mitigation by cichoric acid. Therefore, we analyzed the cytotoxicity of both these compounds and the selected oxidative stress parameters, apoptosis and interaction of both the tested compounds with the cell membrane and their accumulation within the cells. In cytotoxicity studies, the stimulating activity of mesotrione was observed, and simultaneously, the inhibitory effect of cichoric acid was noticed. This effect was related to the results of oxidative stress analysis and apoptosis measurements. The activity level of key enzymes (glutathione peroxidase, catalase and superoxide dismutase) in Caco-2 cells exposed to cichoric acid was higher as compared to that of the control. The treatment with mesotrione did not induce apoptosis in the Caco-2 cells. The penetration of the studied compounds into the Caco-2 cells was measured by using an HPLC methodology, and the results indicate mesotrione's high penetration capacity. The distribution of charge on the surface of the cell membranes changed under the influence of both compounds. Considering the mutual interactions of beneficial and potentially toxic food ingredients, it should be noted that, despite the observed favorable trend, cichoric acid is not able to overcome the toxic and cancer-stimulating effects of this pesticide.


Asunto(s)
Apoptosis , Ácidos Cafeicos , Ciclohexanonas , Estrés Oxidativo , Humanos , Células CACO-2 , Apoptosis/efectos de los fármacos , Ciclohexanonas/farmacología , Estrés Oxidativo/efectos de los fármacos , Ácidos Cafeicos/farmacología , Succinatos/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/patología , Adenocarcinoma/metabolismo , Herbicidas/toxicidad , Superóxido Dismutasa/metabolismo , Supervivencia Celular/efectos de los fármacos , Catalasa/metabolismo , Glutatión Peroxidasa/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo
5.
Int J Mol Sci ; 25(11)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38892114

RESUMEN

This study presents the effects of treating polystyrene (PS) cell culture plastic with oxidoreductase enzyme laccase and the catechol substrates caffeic acid (CA), L-DOPA, and dopamine on the culturing of normal human epidermal melanocytes (NHEMs) and human embryonal carcinoma cells (NTERA-2). The laccase-substrate treatment improved PS hydrophilicity and roughness, increasing NHEM and NTERA-2 adherence, proliferation, and NHEM melanogenesis to a level comparable with conventional plasma treatment. Cell adherence dynamics and proliferation were evaluated. The NHEM endpoint function was quantified by measuring melanin content. PS surfaces treated with laccase and its substrates demonstrated the forming of polymer-like structures. The surface texture roughness gradient and the peak curvature were higher on PS treated with a combination of laccase and substrates than laccase alone. The number of adherent NHEM and NTERA-2 was significantly higher than on the untreated surface. The proliferation of NHEM and NTERA-2 correspondingly increased on treated surfaces. NHEM melanin content was enhanced 6-10-fold on treated surfaces. In summary, laccase- and laccase-substrate-modified PS possess improved PS surface chemistry/hydrophilicity and altered roughness compared to untreated and plasma-treated surfaces, facilitating cellular adherence, subsequent proliferation, and exertion of the melanotic phenotype. The presented technology is easy to apply and creates a promising custom-made, substrate-based, cell-type-specific platform for both 2D and 3D cell culture.


Asunto(s)
Ácidos Cafeicos , Proliferación Celular , Dopamina , Lacasa , Melaninas , Melanocitos , Poliestirenos , Humanos , Lacasa/metabolismo , Melanocitos/metabolismo , Melanocitos/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Poliestirenos/química , Ácidos Cafeicos/farmacología , Ácidos Cafeicos/química , Dopamina/metabolismo , Melaninas/metabolismo , Adhesión Celular/efectos de los fármacos , Levodopa/farmacología , Levodopa/metabolismo , Levodopa/química , Propiedades de Superficie , Línea Celular Tumoral , Células Madre de Carcinoma Embrionario/metabolismo , Células Madre de Carcinoma Embrionario/efectos de los fármacos
6.
J Nutr Sci Vitaminol (Tokyo) ; 70(3): 280-287, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38945894

RESUMEN

Excessive immune response and inflammation are associated with an increased risk of various diseases. In particular, excessive myeloperoxidase (MPO) activity in neutrophils causes inflammatory reactions and lifestyle-related diseases. Adlay has a long history of being used as a traditional Chinese medicine. Polyphenols present in adlay seeds are expected to have the effect of suppressing excessive immune and inflammatory responses. Here, we conducted a randomized, double-blind, parallel group, placebo-controlled study was conducted to evaluate the suppressing effects of adlay seeds extract on excessive immune responses. One hundred and twenty adults participated in the study and they were equally divided into an adlay tea intake group and a placebo group. MPO activity was significantly elevated in the placebo group after 8-wk ingestion, while no significant change was observed in the adlay group. Vascular endothelial functions improved in the adlay group, especially in subjects over 40 y old. These results indicate that adlay tea intake may suppress an excessive immune and inflammatory responses, and improve arterial stiffness. Since caffeic acid, p-coumaric acid, and ferulic acid detected in adlay tea are known to inhibit MPO activity, these polyphenols may be the major functional molecules. Collectively, adlay tea is considered to have a preventative effect against lifestyle-related diseases through improving vascular endothelial function by effects to maintain immune homeostasis of the contained polyphenols. This trial was registered at University Hospital Medical Information Network Clinical Trials Registry (UMIN000032263).


Asunto(s)
Endotelio Vascular , Homeostasis , Peroxidasa , Polifenoles , , Humanos , Método Doble Ciego , Masculino , Femenino , Adulto , Té/química , Homeostasis/efectos de los fármacos , Persona de Mediana Edad , Endotelio Vascular/efectos de los fármacos , Polifenoles/farmacología , Polifenoles/administración & dosificación , Peroxidasa/metabolismo , Semillas/química , Extractos Vegetales/farmacología , Extractos Vegetales/administración & dosificación , Inflamación , Ácidos Cafeicos/farmacología , Medicina Tradicional China/métodos
7.
Front Biosci (Landmark Ed) ; 29(6): 213, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38940031

RESUMEN

BACKGROUND: This study investigated the impact of salvianolic acids, derived from Danshen, on melanoma cell growth. Specifically, we assessed the ability of salvianolic acid A (Sal A) to modulate melanoma cell proliferation. METHODS: We used human melanoma A2058 and A375 cell lines to investigate the effects of Sal A on cell proliferation and death by measuring bromodeoxyuridine incorporation and lactate dehydrogenase release. We assessed cell viability and cycle progression using water soluble tetrazolium salt-1 (WST-1) mitochondrial staining and propidium iodide. Additionally, we used a phospho-kinase array to investigate intracellular kinase phosphorylation, specifically measuring the influence of Sal A on checkpoint kinase-2 (Chk-2) via western blot analysis. RESULTS: Sal A inhibited the growth of A2058 and A375 cells dose-responsively and induced cell cycle arrest at the G2/M phase. Notably, Sal A selectively induces Chk-2 phosphorylation without affecting Chk-1, thereby degrading Chk-2-regulated genes Cdc25A and Cdc2. However, Sal A does not affect the Chk1-Cdc25C pathway. CONCLUSIONS: Salvianolic acids, especially Sal A, effectively hinder melanoma cell growth by inducing Chk-2 phosphorylation and disrupting G2/M checkpoint regulation.


Asunto(s)
Ácidos Cafeicos , Proliferación Celular , Quinasa de Punto de Control 2 , Lactatos , Melanoma , Fosfatasas cdc25 , Humanos , Quinasa de Punto de Control 2/metabolismo , Quinasa de Punto de Control 2/genética , Fosfatasas cdc25/metabolismo , Fosfatasas cdc25/genética , Melanoma/tratamiento farmacológico , Melanoma/metabolismo , Melanoma/genética , Melanoma/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Lactatos/farmacología , Lactatos/metabolismo , Ácidos Cafeicos/farmacología , Transducción de Señal/efectos de los fármacos , Fosforilación/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos
8.
Sci Rep ; 14(1): 14546, 2024 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-38914695

RESUMEN

Caffeic acid phenethyl ester (CAPE) and its derivatives exhibit considerable effects against hepatocellular carcinoma (HCC), with unquestioned safety. Here we investigated CAPE derivative 1' (CAPE 1') monotherapy to HCC, compared with sorafenib. HCC Bel-7402 cells were treated with CAPE 1', the IC50 was detected using CCK-8 analysis, and acute toxicity testing (5 g/kg) was performed to evaluate safety. In vivo, tumor growth after CAPE 1' treatment was evaluated using an subcutaneous tumor xenograft model. Five groups were examined, with group 1 given vehicle solution, groups 2, 3, and 4 given CAPE 1' (20, 50, and 100 mg/kg/day, respectively), and group 5 given sorafenib (30 mg/kg/day). Tumor volume growth and tumor volume-to-weight ratio were calculated and statistically analyzed. An estimated IC50 was 5.6 µM. Acute toxicity tests revealed no animal death or visible adverse effects with dosage up to 5 g/kg. Compared to negative controls, CAPE 1' treatment led to significantly slower increases of tumor volume and tumor volume-to-weight. CAPE 1' and sorafenib exerted similar inhibitory effects on HCC tumors. CAPE 1' was non-inferior to sorafenib for HCC treatment, both in vitro and in vivo. It has great potential as a promising drug for HCC, based on effectiveness and safety profile.


Asunto(s)
Antineoplásicos , Ácidos Cafeicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Alcohol Feniletílico , Sorafenib , Ensayos Antitumor por Modelo de Xenoinjerto , Sorafenib/farmacología , Sorafenib/uso terapéutico , Ácidos Cafeicos/farmacología , Ácidos Cafeicos/uso terapéutico , Alcohol Feniletílico/análogos & derivados , Alcohol Feniletílico/farmacología , Alcohol Feniletílico/uso terapéutico , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Animales , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Línea Celular Tumoral , Ratones , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Proliferación Celular/efectos de los fármacos , Ratones Desnudos , Ratones Endogámicos BALB C , Masculino
9.
Sci Rep ; 14(1): 14624, 2024 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918541

RESUMEN

Colon cancer ranks as the third most prevalent form of cancer globally, with chemotherapy remaining the primary treatment modality. To mitigate drug resistance and minimize adverse effects associated with chemotherapy, selection of appropriate adjuvants assumes paramount importance. Caffeic acid phenethyl ester (CAPE), a naturally occurring compound derived from propolis, exhibits a diverse array of biological activities. We observed that the addition of CAPE significantly augmented the drug sensitivity of colon cancer cells to oxaliplatin. In SW480 and HCT116 cells, oxaliplatin combined with 10 µM CAPE reduced the IC50 of oxaliplatin from 14.24 ± 1.03 and 84.16 ± 3.02 µM to 2.11 ± 0.15 and 3.92 ± 0.17 µM, respectively. We then used proteomics to detect differentially expressed proteins in CAPE-treated SW480 cells and found that the main proteins showing changes in expression after CAPE treatment were p62 (SQSTM1) and LC3B (MAP1LC3B). Gene ontology analysis revealed that CAPE exerted antitumor and chemotherapy-sensitization effects through the autophagy pathway. We subsequently verified the differentially expressed proteins using immunoblotting. Simultaneously, the autophagy inhibitor bafilomycin A1 and the mCherry-EGFP-LC3 reporter gene were used as controls to detect the effect of CAPE on autophagy levels. Collectively, the results indicate that CAPE may exert antitumor and chemotherapy-sensitizing effects by inhibiting autophagy, offering novel insights for the development of potential chemosensitizing agents.


Asunto(s)
Autofagia , Ácidos Cafeicos , Neoplasias del Colon , Oxaliplatino , Alcohol Feniletílico , Humanos , Alcohol Feniletílico/análogos & derivados , Alcohol Feniletílico/farmacología , Autofagia/efectos de los fármacos , Oxaliplatino/farmacología , Ácidos Cafeicos/farmacología , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Línea Celular Tumoral , Antineoplásicos/farmacología , Células HCT116 , Sinergismo Farmacológico , Resistencia a Antineoplásicos/efectos de los fármacos
10.
Fitoterapia ; 176: 106024, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763410

RESUMEN

The uncontrolled hyperglycemia that characterizes diabetes mellitus (DM) causes several complications in the organism. DM is among the major causes of deaths, and the limited efficacy of current treatments push the search for novel drug candidates, also among natural compounds. We focused our attention on caffeoylmalic acid, a phenolic derivative extracted from Urtica dioica, a plant investigated for its potential against type 2 DM. This compound was tested for its antidiabetic activity in vitro through a glucose uptake assay, in vivo in a mouse DM model and through molecular docking towards α-amylase and α-glucosidase. The effects on glucose blood level, liver enzymes, insulin and creatinine levels as well as on lipid and blood parameters, considered biochemical markers of diabetes, were also evaluated. The results showed an antidiabetic activity in vitro and in vivo, as the compound stimulates glucose absorbtion and reduces blood glucose levels. Moreover, it ameliorates lipid profile, liver and blood parameters, with moderate effect on insulin secretion. Taken together, these findings pave the way for the compounds from this class of caffeoylmalic acid as potential antidiabetic compounds.


Asunto(s)
Glucemia , Hipoglucemiantes , Simulación del Acoplamiento Molecular , Urtica dioica , Animales , Hipoglucemiantes/farmacología , Hipoglucemiantes/aislamiento & purificación , Ratones , Urtica dioica/química , Masculino , Glucemia/efectos de los fármacos , Estructura Molecular , Diabetes Mellitus Experimental/tratamiento farmacológico , Malatos/farmacología , Fitoquímicos/farmacología , Fitoquímicos/aislamiento & purificación , Insulina/sangre , Ácidos Cafeicos/farmacología , Ácidos Cafeicos/aislamiento & purificación
11.
Eur J Pharmacol ; 976: 176696, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38821160

RESUMEN

Cichoric acid (CA), a widely utilized polyphenolic compound in medicine, has garnered significant attention due to its potential health benefits. Sepsis-induced acute kidney disease (AKI) is related with an elevated risk of end-stage kidney disease (ESKD). However, it remains unclear whether CA provides protection against septic AKI. The aim of this study is to investigated the protective effect and possible mechanisms of CA against LPS-induced septic AKI. Sepsis-induced AKI was induced in mice through intraperitoneal injection of lipopolysaccharide (LPS), and RAW264.7 macrophages were incubated with LPS. LPS exposure significantly increased the levels of M1 macrophage biomarkers while reducing the levels of M2 macrophage indicators. This was accompanied by the release of inflammatory factors, superoxide anion production, mitochondrial dysfunction, activation of succinate dehydrogenase (SDH), and subsequent succinate formation. Conversely, pretreatment with CA mitigated these abnormalities. CA attenuated hypoxia-inducible factor-1α (HIF-1α)-induced glycolysis by lifting the NAD+/NADH ratio in macrophages. Additionally, CA disrupted the K (lysine) acetyltransferase 2A (KAT2A)/α-tubulin complex, thereby reducing α-tubulin acetylation and subsequently inactivating the NLRP3 inflammasome. Importantly, administration of CA ameliorated LPS-induced renal pathological damage, apoptosis, inflammation, oxidative stress, and disturbances in mitochondrial function in mice. Overall, CA restrained HIF-1α-mediated glycolysis via inactivation of SDH, leading to NLRP3 inflammasome inactivation and the amelioration of sepsis-induced AKI.


Asunto(s)
Lesión Renal Aguda , Ácidos Cafeicos , Lipopolisacáridos , Macrófagos , Proteína con Dominio Pirina 3 de la Familia NLR , Sepsis , Succinatos , Animales , Sepsis/complicaciones , Sepsis/tratamiento farmacológico , Ratones , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/etiología , Lesión Renal Aguda/patología , Masculino , Succinatos/farmacología , Succinatos/uso terapéutico , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ácidos Cafeicos/farmacología , Ácidos Cafeicos/uso terapéutico , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Células RAW 264.7 , Estrés Oxidativo/efectos de los fármacos , Inflamasomas/metabolismo , Ratones Endogámicos C57BL , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Glucólisis/efectos de los fármacos , Apoptosis/efectos de los fármacos , Riñón/patología , Riñón/efectos de los fármacos , Riñón/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Activación de Macrófagos/efectos de los fármacos
12.
Sci Rep ; 14(1): 11931, 2024 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-38789509

RESUMEN

Oxidative stress induced endothelial dysfunction plays a particularly important role in promoting the development of cardiovascular diseases (CVDs). Salvianolic acid A (SalA) is a water-soluble component of traditional Chinese medicine Salvia miltiorrhiza Bunge with anti-oxidant potency. This study aims to explore the regulatory effect of SalA on oxidative injury using an in vitro model of H2O2-induced injury in human umbilical vein endothelial cells (HUVECs). In the study, we determined cell viability, the activities of Lactate dehydrogenase (LDH) and Superoxide dismutase (SOD), cell proliferation rate and intracellular reactive oxygen species (ROS). Flow cytometry was used to detect cell apoptosis. Western-blotting was used to evaluate the expression of cell senescence, apoptosis, autophagy and pyroptosis protein factors. The expression level of miRNA was determined by qRT-PCR. Compared with H2O2-induced HUVECs, SalA promoted cell viability and cell proliferation rate; decreased LDH and ROS levels; and increased SOD activity. SalA also significantly attenuated endothelial senescence, inhibited cell apoptosis, reversed the increase of LC3 II/I ratio and NLRP3 accumulation. Furthermore, miR-204-5p was regulated by SalA. Importantly, miR-204-5p inhibitor had similar effect to that of SalA on H2O2-induced HUVECs. Our results indicated that SalA could alleviate H2O2-induced oxidative injury by downregulating miR-204-5p in HUVECs.


Asunto(s)
Apoptosis , Supervivencia Celular , Células Endoteliales de la Vena Umbilical Humana , Peróxido de Hidrógeno , Lactatos , MicroARNs , Estrés Oxidativo , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Peróxido de Hidrógeno/toxicidad , Peróxido de Hidrógeno/farmacología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Estrés Oxidativo/efectos de los fármacos , Lactatos/farmacología , Lactatos/metabolismo , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ácidos Cafeicos/farmacología , Proliferación Celular/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Autofagia/efectos de los fármacos , Senescencia Celular/efectos de los fármacos , Antioxidantes/farmacología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética
13.
Ren Fail ; 46(1): 2350235, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38721924

RESUMEN

Increasing evidence suggests that peritoneal fibrosis induced by peritoneal dialysis (PD) is linked to oxidative stress. However, there are currently no effective interventions for peritoneal fibrosis. In the present study, we explored whether adding caffeic acid phenethyl ester (CAPE) to peritoneal dialysis fluid (PDF) improved peritoneal fibrosis caused by PD and explored the molecular mechanism. We established a peritoneal fibrosis model in Sprague-Dawley rats through intraperitoneal injection of PDF and lipopolysaccharide (LPS). Rats in the PD group showed increased peritoneal thickness, submesothelial collagen deposition, and the expression of TGFß1 and α-SMA. Adding CAPE to PDF significantly inhibited PD-induced submesothelial thickening, reduced TGFß1 and α-SMA expression, alleviated peritoneal fibrosis, and improved the peritoneal ultrafiltration function. In vitro, peritoneal mesothelial cells (PMCs) treated with PDF showed inhibition of the AMPK/SIRT1 pathway, mitochondrial membrane potential depolarization, overproduction of mitochondrial reactive oxygen species (ROS), decreased ATP synthesis, and induction of mesothelial-mesenchymal transition (MMT). CAPE activated the AMPK/SIRT1 pathway, thereby inhibiting mitochondrial membrane potential depolarization, reducing mitochondrial ROS generation, and maintaining ATP synthesis. However, the beneficial effects of CAPE were counteracted by an AMPK inhibitor and siSIRT1. Our results suggest that CAPE maintains mitochondrial homeostasis by upregulating the AMPK/SIRT1 pathway, which alleviates oxidative stress and MMT, thereby mitigating the damage to the peritoneal structure and function caused by PD. These findings suggest that adding CAPE to PDF may prevent and treat peritoneal fibrosis.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Ácidos Cafeicos , Diálisis Peritoneal , Fibrosis Peritoneal , Alcohol Feniletílico , Sirtuina 1 , Animales , Ratas , Proteínas Quinasas Activadas por AMP/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/metabolismo , Ácidos Cafeicos/farmacología , Ácidos Cafeicos/uso terapéutico , Soluciones para Diálisis , Modelos Animales de Enfermedad , Homeostasis/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Estrés Oxidativo/efectos de los fármacos , Diálisis Peritoneal/efectos adversos , Fibrosis Peritoneal/etiología , Fibrosis Peritoneal/metabolismo , Fibrosis Peritoneal/prevención & control , Peritoneo/patología , Peritoneo/efectos de los fármacos , Peritoneo/metabolismo , Alcohol Feniletílico/análogos & derivados , Alcohol Feniletílico/farmacología , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Sirtuina 1/efectos de los fármacos , Sirtuina 1/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo
14.
Ecotoxicol Environ Saf ; 279: 116497, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38805827

RESUMEN

Methamphetamine (METH) is a highly abused substance on a global scale and has the capacity to elicit toxicity within the central nervous system. The neurotoxicity induced by METH encompasses neuronal degeneration and cellular demise within the substantia nigra-striatum and hippocampus. Caffeic acid phenethyl ester (CAPE), a constituent of propolis, is a diminutive compound that demonstrates antioxidative and anti-inflammatory characteristics. Numerous investigations have demonstrated the safeguarding effects of CAPE in various neurodegenerative ailments. Our hypothesis posits that CAPE may exert a neuroprotective influence on METH-induced neurotoxicity via specific mechanisms. In order to validate the hypothesis, a series of experimental techniques including behavioral tests, immunofluorescence labeling, RNA sequencing, and western blotting were employed to investigate the neurotoxic effects of METH and the potential protective effects of CAPE. The results of our study demonstrate that CAPE effectively ameliorates cognitive memory deficits and anxiety symptoms induced by METH in mice. Furthermore, CAPE has been observed to attenuate the upregulation of neurotoxicity-associated proteins that are induced by METH exposure and also reduced the loss of hippocampal neurons in mice. Moreover, transcriptomics analysis was conducted to determine alterations in gene expression within the hippocampus of mice. Subsequently, bioinformatics analysis was employed to investigate the divergent outcomes and identify potential key genes. Interferon-stimulated gene 15 (ISG15) was successfully identified and confirmed through RT-qPCR, western blotting, and immunofluorescence techniques. Our research findings unequivocally demonstrated the neuroprotective effect of CAPE against METH-induced neurotoxicity, with ISG15 may have an important role in the underlying protective mechanism. These results offer novel perspectives on the treatment of METH-induced neurotoxicity.


Asunto(s)
Ácidos Cafeicos , Metanfetamina , Fármacos Neuroprotectores , Síndromes de Neurotoxicidad , Alcohol Feniletílico , Animales , Ácidos Cafeicos/farmacología , Alcohol Feniletílico/análogos & derivados , Alcohol Feniletílico/farmacología , Metanfetamina/toxicidad , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Ratones , Masculino , Síndromes de Neurotoxicidad/prevención & control , Síndromes de Neurotoxicidad/tratamiento farmacológico , Hipocampo/efectos de los fármacos , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos
15.
Anticancer Res ; 44(6): 2587-2595, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38821580

RESUMEN

BACKGROUND/AIM: Apoptosis resistance in cancer cells adapted to acidic microenvironments poses a challenge for effective treatment. This study investigated the potential use of caffeic acid as an adjunct therapy to overcome drug resistance in colorectal cancer cells under acidic conditions. MATERIALS AND METHODS: Long-term exposure to low-pH conditions induced resistance in HCT116 colorectal cancer cells. The effects of caffeic acid on proliferation, clonogenicity, and apoptosis induction were assessed alone and in combination with oxaliplatin and 5-Fluorouracil. The signaling pathways involved in drug resistance were examined by assessing the activities of PI3K/Akt and ERK1/2. RESULTS: Caffeic acid inhibited the proliferation and clonogenicity of acid-adapted cancer cells, and enhanced apoptosis when combined with anticancer drugs. Mechanistically, caffeic acid attenuated the hyperactivation of the PI3K/Akt and ERK1/2 signaling pathways associated with drug resistance. CONCLUSION: Caffeic acid is a promising therapeutic agent for targeting resistant cancer cells in acidic microenvironments. Its ability to inhibit proliferation, sensitize cells to apoptosis, and modulate signaling pathways highlights its potential for overcoming drug resistance in cancer therapy.


Asunto(s)
Apoptosis , Ácidos Cafeicos , Proliferación Celular , Neoplasias del Colon , Resistencia a Antineoplásicos , Fluorouracilo , Humanos , Ácidos Cafeicos/farmacología , Apoptosis/efectos de los fármacos , Células HCT116 , Proliferación Celular/efectos de los fármacos , Fluorouracilo/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/patología , Neoplasias del Colon/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Antineoplásicos/farmacología , Oxaliplatino/farmacología , Transducción de Señal/efectos de los fármacos , Concentración de Iones de Hidrógeno , Sinergismo Farmacológico , Fosfatidilinositol 3-Quinasas/metabolismo , Compuestos Organoplatinos/farmacología , Microambiente Tumoral/efectos de los fármacos
16.
Anticancer Res ; 44(6): 2407-2415, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38821617

RESUMEN

BACKGROUND/AIM: Caffeic acid phenethyl ester (CAPE) exerts anticancer effects against several cancer types, including breast cancer. Pulsed electromagnetic field (PEMF) improves the efficiency of some chemotherapeutic drugs. In this study, we examined the effects of PEMF stimulation on the anticancer activity of CAPE in MCF-7 breast cancer cells and the underlying signal transduction pathways. MATERIALS AND METHODS: MCF-7 cells were seeded and incubated for 24 h. Each of the drugs (5-fluorouracil, paclitaxel, gefitinib, or CAPE) was added to the cells on day 0. Then, cells were immediately stimulated with a 60-min PEMF session thrice a day (with 4-h interval between sessions) for 1-3 days. Cell death and viability were assessed by flow cytometry and trypan blue dye exclusion assay. Molecular mechanisms involved in cell death were confirmed by western blot assay. RESULTS: Compared with treatment with CAPE alone, co-treatment with CAPE and PEMF more strongly reduced the viability of MCF-7 cells, further increased the percentage of the sub-G1 population, poly (ADP-ribose) polymerase (PARP) cleavage, activation of apoptotic caspases, up-regulation of pro-apoptotic proteins, such as Fas cell surface death receptor (FAS) and BCL2 associated X, apoptosis regulator (BAX), and reduced the expression of anti-apoptotic proteins, such as BCL-2 apoptosis regulator (BCL-2), MCL-1 apoptosis regulator, BCL-2 family member (MCL-1), and survivin. PEMF stimulation also increased CAPE-induced phosphorylation of p53, and inhibition of p53 partially restored the PEMF-reduced viability of CAPE-treated MCF-7 cells. CONCLUSION: PEMF stimulation enhanced CAPE-induced cell death by activating p53, which regulates the expression of apoptosis-related molecules, subsequently activating the caspase-dependent apoptotic pathway in MCF-7 cells, suggesting that PEMF can be utilized as an adjuvant to enhance the effect of CAPE on breast cancer cells.


Asunto(s)
Apoptosis , Neoplasias de la Mama , Ácidos Cafeicos , Campos Electromagnéticos , Alcohol Feniletílico , Humanos , Ácidos Cafeicos/farmacología , Alcohol Feniletílico/análogos & derivados , Alcohol Feniletílico/farmacología , Neoplasias de la Mama/patología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Células MCF-7 , Femenino , Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Transducción de Señal/efectos de los fármacos
17.
Sci Rep ; 14(1): 12427, 2024 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816543

RESUMEN

Intracerebral hemorrhage (ICH) is a common cerebral vascular disease with high incidence, disability, and mortality. Ferroptosis is a regulated type of iron-dependent, non-apoptotic programmed cell death. There is increasing evidence that ferroptosis may lead to neuronal damage mediated by hemorrhagic stroke mediated neuronal damage. Salvianolic acid A (SAA) is a natural bioactive polyphenol compound extracted from salvia miltiorrhiza, which has anti-inflammatory, antioxidant, and antifibrosis activities. SAA is reported to be an iron chelator that inhibits lipid peroxidation and provides neuroprotective effects. However, whether SAA improves neuronal ferroptosis mediated by hemorrhagic stroke remains unclear. The study aims to evaluate the therapeutic effect of SAA on Ferroptosis mediated by Intracerebral hemorrhage and explore its potential mechanisms. We constructed in vivo and in vitro models of intracerebral hemorrhage in rats. Multiple methods were used to analyze the inhibitory effect of SAA on ferroptosis in both in vivo and in vitro models of intracerebral hemorrhage in rats. Then, network pharmacology is used to identify potential targets and mechanisms for SAA treatment of ICH. The SAA target ICH network combines SAA and ICH targets with protein-protein interactions (PPIs). Find the specific mechanism of SAA acting on ferroptosis through molecular docking and functional enrichment analysis. In rats, SAA (10 mg/kg in vivo and 50 µM in vitro, p < 0.05) alleviated dyskinesia and brain injury in the ICH model by inhibiting ferroptosis (p < 0.05). The molecular docking results and functional enrichment analyses suggested that AKT (V-akt murine thymoma viral oncogene homolog) could mediate the effect of SAA. NRF2 (Nuclear factor erythroid 2-related factor 2) was a potential target of SAA. Our further experiments showed that salvianolic acid A enhanced the Akt /GSK-3ß/Nrf2 signaling pathway activation in vivo and in vitro. At the same time, SAA significantly expanded the expression of GPX4, XCT proteins, and the nuclear expression of Nrf2, while the AKT inhibitor SH-6 and the Nrf2 inhibitor ML385 could reduce them to some extent. Therefore, SAA effectively ameliorated ICH-mediated neuronal ferroptosis. Meanwhile, one of the critical mechanisms of SAA inhibiting ferroptosis was activating the Akt/GSK-3ß/Nrf2 signaling pathway.


Asunto(s)
Ácidos Cafeicos , Hemorragia Cerebral , Ferroptosis , Lactatos , Fármacos Neuroprotectores , Animales , Ferroptosis/efectos de los fármacos , Hemorragia Cerebral/tratamiento farmacológico , Hemorragia Cerebral/metabolismo , Ácidos Cafeicos/farmacología , Ácidos Cafeicos/química , Ratas , Lactatos/farmacología , Lactatos/química , Lactatos/uso terapéutico , Masculino , Fármacos Neuroprotectores/farmacología , Ratas Sprague-Dawley , Factor 2 Relacionado con NF-E2/metabolismo , Simulación del Acoplamiento Molecular , Modelos Animales de Enfermedad , Transducción de Señal/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo
18.
Int J Pharm ; 658: 124199, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38703928

RESUMEN

Dendrimers have emerged as an important group of nanoparticles to transport drugs, DNA, or RNA into target cells in cancer and other diseases. Various functional modifications can be imposed on dendrimers to increase the efficacy and specificity in delivering their cargo to the target cells and decrease their toxicity. In the present work, we evaluated the potential of carbosilane polyphenolic dendrimers modified with caffeic acid (CA) and polyethylene glycol (PEG) to deliver proapoptotic Mcl-1 and Bcl-2 siRNAs to A549 cancer cells. Dendrimers formed stable complexes with siRNAs as assessed by transmission electron microscopy and gel electrophoresis. Modification of dendrimers with PEG reduced the size and the zeta potential of dendrimer/siRNA complexes. The presence of PEG caused a red shift of the CD spectrum, and this effect was the more pronounced, the higher the dendrimer/siRNA ratio was. The nanocomplexes were internalized by A549. All studied dendrimer/siRNA formulations inhibited tumor cell migration and adhesion and caused an increase in the population of early apoptotic cells. Among four tested dendrimers, the polyphenolic compound containing two caffeic acid moieties complexed with siRNA demonstrated the lowest polydispersity index and showed an excellent transfection profile. In conclusion, this dendrimer are a promising candidate for the delivery of siRNA into cancer cells in further in vivo studies.


Asunto(s)
Apoptosis , Dendrímeros , Polietilenglicoles , Polifenoles , ARN Interferente Pequeño , Humanos , Dendrímeros/química , Dendrímeros/administración & dosificación , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/química , Células A549 , Apoptosis/efectos de los fármacos , Polifenoles/química , Polifenoles/farmacología , Polifenoles/administración & dosificación , Polietilenglicoles/química , Proteínas Proto-Oncogénicas c-bcl-2/genética , Ácidos Cafeicos/química , Ácidos Cafeicos/farmacología , Ácidos Cafeicos/administración & dosificación , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Movimiento Celular/efectos de los fármacos , Portadores de Fármacos/química , Silanos/química , Transfección/métodos , Línea Celular Tumoral
19.
Spectrochim Acta A Mol Biomol Spectrosc ; 317: 124403, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38710138

RESUMEN

In order to make novel breakthroughs in molecular salt studies of BCS class-IV antifungal medication bifonazole (BIF), a salification-driven strategy towards ameliorating attributes and aiding augment efficiency is raised. This strategy fully harnesses structural characters together attributes and benefits of caffeic acid (CAF) to concurrently enhance dissolvability and permeability of BIF by introducing the two ingredients into the identical molecular salt lattice through the salification reaction, which, coupled with the aroused potential activity of CAF significantly amplifies the antifungal efficacy of BIF. Guided by this route, the first BIF-organic molecular salt, BIF-CAF, is directionally designed and synthesized with satisfactorily structural characterizations and integrated theoretical and experimental explorations on the pharmaceutical properties. Single-crystal X-ray diffraction resolving confirms that there is a lipid-water amphiphilic sandwich structure constructed by robust charge-assistant hydrogen bonds in the salt crystal, endowing the molecular salt with the potential to enhance both dissolvability and permeability relative to the parent drug, which is validated by experimental evaluations. Remarkably, the comprehensive DFT-based theoretical investigations covering frontier molecular orbital, molecular electrostatic potential, Hirshfeld surface analysis, reduced density gradient, topology, sphericity and planarity analysis strongly support these observations, thereby allowing some positive relationships between macroscopic properties and microstructures of the molecular salt can be made. Intriguingly, the optimal properties, together with the stimulated activity of CAF markedly augment in vitro antifungal ability of the molecular salt, with magnifying inhibition zones and reducing minimum inhibitory concentrations. These findings fill in the gaps on researches of BIF-organic molecular salt, and adequately exemplify the feasibility and validity by integrating theoretical and experimental approaches to resolve BIF's problems via the salification-driven tactic.


Asunto(s)
Antifúngicos , Ácidos Cafeicos , Imidazoles , Antifúngicos/farmacología , Antifúngicos/química , Imidazoles/química , Imidazoles/farmacología , Ácidos Cafeicos/química , Ácidos Cafeicos/farmacología , Sales (Química)/química , Teoría Cuántica , Modelos Moleculares , Pruebas de Sensibilidad Microbiana , Cristalografía por Rayos X , Enlace de Hidrógeno , Electricidad Estática
20.
ACS Appl Mater Interfaces ; 16(19): 24351-24371, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38690969

RESUMEN

Chronic nonhealing wounds are serious complications of diabetes with a high morbidity, and they can lead to disability or death. Conventional drug therapy is ineffective for diabetic wound healing because of the complex environment of diabetic wounds and the depth of drug penetration. Here, we developed a self-healing, dual-layer, drug-carrying microneedle (SDDMN) for diabetic wound healing. This SDDMN can realize transdermal drug delivery and broad-spectrum sterilization without drug resistance and meets the multiple needs of the diabetic wound healing process. Quaternary ammonium chitosan cografted with dihydrocaffeic acid (Da) and l-arginine and oxidized hyaluronic acid-dopamine are the main parts of the self-healing hydrogel patch. Methacrylated poly(vinyl alcohol) (methacrylated PVA) and phenylboronic acid (PBA) were used as the main part of the MN, and gallium porphyrin modified with 3-amino-1,2 propanediol (POGa) and insulin were encapsulated at its tip. Under hyperglycaemic conditions, the PBA moiety in the MN reversibly formed a glucose-boronic acid complex that promoted the rapid release of POGa and insulin. POGa is disguised as hemoglobin through a Trojan-horse strategy, which is then taken up by bacteria, allowing it to target bacteria and infected lesions. Based on the synergistic properties of these components, SDDMN-POGa patches exhibited an excellent biocompatibility, slow drug release, and antimicrobial properties. Thus, these patches provide a potential therapeutic approach for the treatment of diabetic wounds.


Asunto(s)
Ácidos Borónicos , Diabetes Mellitus Experimental , Glucosa , Cicatrización de Heridas , Cicatrización de Heridas/efectos de los fármacos , Animales , Ácidos Borónicos/química , Glucosa/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Agujas , Insulina/administración & dosificación , Ratones , Quitosano/química , Alcohol Polivinílico/química , Ratas , Ácido Hialurónico/química , Masculino , Ácidos Cafeicos/química , Ácidos Cafeicos/farmacología , Sistemas de Liberación de Medicamentos , Ratas Sprague-Dawley , Humanos , Hidrogeles/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...