Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.195
Filtrar
1.
J Chem Inf Model ; 64(12): 4661-4672, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38860710

RESUMEN

DNA-encoded library technology grants access to nearly infinite opportunities to explore the chemical structure space for drug discovery. Successful navigation depends on the design and synthesis of libraries with appropriate physicochemical properties (PCPs) and structural diversity while aligning with practical considerations. To this end, we analyze combinatorial library design constraints including the number of chemistry cycles, bond construction strategies, and building block (BB) class selection in pursuit of ideal library designs. We compare two-cycle library designs (amino acid + carboxylic acid, primary amine + carboxylic acid) in the context of PCPs and chemical space coverage, given different BB selection strategies and constraints. We find that broad availability of amines and acids is essential for enabling the widest exploration of chemical space. Surprisingly, cost is not a driving factor, and virtually, the same chemical space can be explored with "budget" BBs.


Asunto(s)
ADN , Bibliotecas de Moléculas Pequeñas , ADN/química , Bibliotecas de Moléculas Pequeñas/química , Descubrimiento de Drogas/métodos , Técnicas Químicas Combinatorias , Diseño de Fármacos , Aminas/química , Ácidos Carboxílicos/química , Biblioteca de Genes
2.
J Med Chem ; 67(12): 10211-10232, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38871484

RESUMEN

Papain-like protease (PLpro) is a promising therapeutic target for its pivotal role in the life cycle of SARS-CoV-2. A series of 1,2,4-oxadiazole derivatives was designed and synthesized via a ring formation strategy based on SARS-CoV-2 PLpro-GRL0617 complex structure. Systematic structure-activity relationship studies revealed that introducing oxadiazole and aryl carboxylic acid moieties to GRL0617 enhanced the enzymatic inhibition activity, affinity, and deubiquitination capacity toward PLpro. 1,2,4-Oxadiazole compounds 13f and 26r, which had PLpro inhibition activity (IC50 = 1.8 and 1.0 µM) and antiviral activity against SARS-CoV-2 (EC50 = 5.4 and 4.3 µM), exhibited good metabolic stability (t1/2 > 93.2 min) and higher plasma exposure (AUC0-t = 17,380.08 and 24,289.76 ng·h/mL) in mice. Especially, compound 26r with moderate oral bioavailability of 39.1% and potent antiviral activity is worthy of further studies in vivo. Our findings provide a new insight for the discovery of antiviral agents targeting PLpro.


Asunto(s)
Antivirales , Diseño de Fármacos , Oxadiazoles , SARS-CoV-2 , Oxadiazoles/química , Oxadiazoles/farmacología , Oxadiazoles/síntesis química , Oxadiazoles/farmacocinética , Animales , Antivirales/farmacología , Antivirales/síntesis química , Antivirales/química , Antivirales/farmacocinética , Relación Estructura-Actividad , SARS-CoV-2/efectos de los fármacos , Ratones , Humanos , Ácidos Carboxílicos/química , Ácidos Carboxílicos/farmacología , Ácidos Carboxílicos/síntesis química , Simulación del Acoplamiento Molecular , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/síntesis química , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacocinética , Tratamiento Farmacológico de COVID-19 , Proteasas Similares a la Papaína de Coronavirus/antagonistas & inhibidores , Proteasas Similares a la Papaína de Coronavirus/metabolismo
3.
J Sep Sci ; 47(11): e2400181, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38863110

RESUMEN

Topotecan (TPT) is used in the treatment of retinoblastoma, the most common malignant intraocular tumor in children. TPT undergoes pH-dependent hydrolysis of the lactone ring to the ring-opened carboxylate form, with the lactone form showing antitumor activity. A selective, and highly sensitive ultra-high-performance liquid chromatography-tandem mass spectrometry method was developed for the determination of both forms of TPT in one mobile phase composition in plasma and vitreous humor matrices. The method showed an excellent linear range of 0.375-120 ng/mL for the lactone. For the carboxylate, the linear range was from 0.75 to 120 ng/mL. The matrix effect and the recovery for the lactone ranged from 98.5% to 106.0% in both matrices, for the carboxylate form, it ranged from 94.9% to 101.2%. The dynamics of the transition between TPT lactone and TPT carboxylate were evaluated at different pH environments. The stability of TPT forms was assessed in plasma and vitreous humor at 8 and 37°C and a very fast conversion of lactone to carboxylate form occurred at 37°C in both matrices. The method developed facilitates the investigation of TPT pharmacodynamics and the release kinetics in the development of the innovative local drug delivery systems.


Asunto(s)
Lactonas , Espectrometría de Masas en Tándem , Topotecan , Cuerpo Vítreo , Cromatografía Líquida de Alta Presión , Lactonas/química , Lactonas/análisis , Cuerpo Vítreo/química , Topotecan/química , Topotecan/análisis , Humanos , Ácidos Carboxílicos/química , Ácidos Carboxílicos/análisis , Estructura Molecular
4.
J Org Chem ; 89(12): 9110-9117, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38857432

RESUMEN

Inhibition of human ornithine aminotransferase interferes with glutamine and proline metabolism in hepatocellular carcinoma, depriving tumors of essential nutrients. A proposed mechanism-based inhibitor containing a bicyclo[3.1.1]heptanol warhead is reported herein. The proposed inactivation mechanism involves a novel α-iminol rearrangement. The synthesis of the proposed inhibitor features an asymmetric intramolecular Mannich reaction, utilizing a chiral sulfinamide. This study presents a novel approach toward the synthesis of functionalized bicyclo[3.1.1]heptanes and highlights an underutilized method to access enantiopure exocyclic amines.


Asunto(s)
Ácidos Carboxílicos , Estereoisomerismo , Ácidos Carboxílicos/química , Estructura Molecular , Compuestos Bicíclicos con Puentes/química , Compuestos Bicíclicos con Puentes/síntesis química , Humanos
5.
Chemosphere ; 361: 142556, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38851499

RESUMEN

In this study, the Fe(III)/WS2/peroxymonosulfate (PMS) system was found to remove up to 97% of cyclohexanecarboxylic acid (CHA) within 10 min. CHA is a model compound for naphthenic acids (NAs), which are prevalent in petroleum industrial wastewater. The addition of WS2 effectively activated the Fe(III)/PMS system, significantly enhancing its ability to produce reactive oxidative species (ROS) for the oxidation of CHA. Further experimental results and characterization analyses demonstrated that the metallic element W(IV) in WS2 could provide electrons for the direct reduction of Fe(III) to Fe(II), thus rapidly activating PMS and initiating a chain redox process to produce ROS (SO4•-, •OH, and 1O2). Repeated tests and practical exploratory experiments indicated that WS2 exhibited excellent catalytic performance, reusability and anti-interference capacity, achieving efficient degradation of commercial NAs mixtures. Therefore, applying WS2 to catalyze the Fe(III)/PMS system can overcome speed limitations and facilitate simple, economical engineering applications.


Asunto(s)
Oxidación-Reducción , Peróxidos , Tungsteno , Peróxidos/química , Tungsteno/química , Catálisis , Ácidos Carboxílicos/química , Contaminantes Químicos del Agua/química , Sulfuros/química , Compuestos Férricos/química , Aguas Residuales/química , Petróleo , Hierro/química , Especies Reactivas de Oxígeno/química
6.
Waste Manag ; 184: 37-51, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38795539

RESUMEN

Nanobubble water promotes the degradation of difficult-to-degrade organic matter, improves the activity of electron transfer systems during anaerobic digestion, and optimizes the composition of anaerobic microbial communities. Therefore, this study proposes the use of nanobubble water to improve the yield of medium chain carboxylic acids produced from cow manure by chain elongation. The experiment was divided into two stages: the first stage involved the acidification of cow manure to produce volatile acidic fatty acids as electron acceptors, and the second phase involved the addition of lactic acid as an electron donor for the chain elongation. Three experimental groups were established, and air, H2, and N2 nanobubble water were added in the second stage. Equal amounts of deionized water were added in the control group. The results showed that nanobubble water supplemented with air significantly increased the caproic acid concentration to 15.10 g/L, which was 55.03 % greater than that of the control group. The relative abundances of Bacillus and Caproiciproducens, which are involved in chain elongation, and Syntrophomonas, which is involved in electron transfer, increased. The unique ability of air nanobubble water supplemented to break down the cellulose matrix resulted in further decomposition of the recalcitrant material in cow manure. This effect subsequently increased the number of microorganisms associated with lignocellulose degradation, increasing carbohydrate metabolism and ATP-binding cassette transporter protein activity and enhancing fatty acid cycling pathways during chain elongation. Ultimately, this approach enabled the efficient production of medium chain carboxylic acids.


Asunto(s)
Biodegradación Ambiental , Estiércol , Ácidos Carboxílicos/química , Anaerobiosis , Animales , Bovinos , Nanoestructuras , Agua/química , Aire , Nitrógeno/química , Hidrógeno/química , Transporte de Electrón , Ácidos Grasos Volátiles/química , Clostridiales
7.
Food Chem ; 454: 139717, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38810441

RESUMEN

Even if the acids composition and their role in coffee still need to be clarified, acidity is one of the main sought-after features in coffee and it is becoming one of the main quality markers. Hence, the aim of this paper was to evaluate the main parameters influencing coffee acidity with a focus on carboxylic acids. To the best of our knowledge, this is the first study regarding filter coffee prepared from specialty and mainstream coffee, differently roasted and through eight diverse extraction methods. Coffee cup chemical composition in terms of organic and chlorogenic acids, caffein and physicochemical parameters were correlated with perceived sourness and mouthfeel to better understand the influence of extracted compounds on the final beverage acidity. Statistical tools revealed that a major impact of chlorogenic acids emerged in pH and titratable acidity, while the sensorial sourness appeared more correlated with organic acids concentration. Thus, these findings suggests that organic acids could be potential predictors of beverage perceived acidity.


Asunto(s)
Coffea , Café , Gusto , Café/química , Humanos , Coffea/química , Concentración de Iones de Hidrógeno , Femenino , Masculino , Ácido Clorogénico/análisis , Ácido Clorogénico/química , Adulto , Adulto Joven , Ácidos Carboxílicos/análisis , Ácidos Carboxílicos/química , Persona de Mediana Edad
8.
Org Lett ; 26(21): 4497-4501, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38768369

RESUMEN

Despite numerous optimizations in peptide synthesis, the formation of aspartimide remains a significant side reaction that needs to be addressed. Herein, we introduce an approach that utilizes hydrazide as a carboxylic-acid-protecting group to reduce the formation of aspartimide. The aspartic acid hydrazide effectively suppressed the formation of aspartimide, even under microwave conditions, and was readily converted to native aspartic acid using CuSO4 in an aqueous medium.


Asunto(s)
Ácido Aspártico , Ácidos Carboxílicos , Péptidos , Técnicas de Síntesis en Fase Sólida , Ácidos Carboxílicos/química , Péptidos/química , Péptidos/síntesis química , Péptidos/farmacología , Estructura Molecular , Ácido Aspártico/química , Ácido Aspártico/análogos & derivados , Microondas , Hidrazinas/química
9.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38731940

RESUMEN

Amyloid fibroproliferation leads to organ damage and is associated with a number of neurodegenerative diseases affecting populations worldwide. There are several ways to protect against fibril formation, including inhibition. A variety of organic compounds based on molecular recognition of amino acids within the protein have been proposed for the design of such inhibitors. However, the role of macrocyclic compounds, i.e., thiacalix[4]arenes, in inhibiting fibrillation is still almost unknown. In the present work, the use of water-soluble thiacalix[4]arene derivatives for the inhibition of hen egg-white lysozyme (HEWL) amyloid fibrillation is proposed for the first time. The binding of HEWL by the synthesized thiacalix[4]arenes (logKa = 5.05-5.13, 1:1 stoichiometry) leads to the formation of stable supramolecular systems capable of stabilizing the protein structure and protecting against fibrillation by 29-45%. The macrocycle conformation has little effect on protein binding strength, and the native HEWL secondary structure does not change via interaction. The synthesized compounds are non-toxic to the A549 cell line in the range of 0.5-250 µg/mL. The results obtained may be useful for further investigation of the anti-amyloidogenic role of thiacalix[4]arenes, and also open up future prospects for the creation of new ways to prevent neurodegenerative diseases.


Asunto(s)
Ácidos Carboxílicos , Muramidasa , Muramidasa/química , Humanos , Ácidos Carboxílicos/química , Ácidos Carboxílicos/farmacología , Animales , Células A549 , Amiloide/química , Amiloide/metabolismo , Amiloide/antagonistas & inhibidores , Unión Proteica , Fenoles/química , Fenoles/farmacología , Calixarenos/química , Calixarenos/farmacología , Sulfuros
10.
Eur J Med Chem ; 271: 116443, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38691887

RESUMEN

Xanthine oxidase (XO) is a key enzyme for the production of uric acid in the human body. XO inhibitors (XOIs) are clinically used for the treatment of hyperuricemia and gout, as they can effectively inhibit the production of uric acid. Previous studies indicated that both indole and isoxazole derivatives have good inhibitory effects against XO. Here, we designed and synthesized a novel series of N-5-(1H-indol-5-yl)isoxazole-3-carboxylic acids according to bioisosteric replacement and hybridization strategies. Among the obtained target compounds, compound 6c showed the best inhibitory activity against XO with an IC50 value of 0.13 µM, which was 22-fold higher than that of the classical antigout drug allopurinol (IC50 = 2.93 µM). Structure-activity relationship analysis indicated that the hydrophobic group on the nitrogen atom of the indole ring is essential for the inhibitory potencies of target compounds against XO. Enzyme kinetic studies proved that compound 6c acted as a mixed-type XOI. Molecular docking studies showed that the target compound 6c could not only retain the key interactions similar to febuxostat at the XO binding site but also generate some new interactions, such as two hydrogen bonds between the oxygen atom of the isoxazole ring and the amino acid residues Ser876 and Thr1010. These results indicated that 5-(1H-indol-5-yl)isoxazole-3-carboxylic acid might be an efficacious scaffold for designing novel XOIs and compound 6c has the potential to be used as a lead for further the development of novel anti-gout candidates.


Asunto(s)
Ácidos Carboxílicos , Diseño de Fármacos , Inhibidores Enzimáticos , Isoxazoles , Xantina Oxidasa , Xantina Oxidasa/antagonistas & inhibidores , Xantina Oxidasa/metabolismo , Relación Estructura-Actividad , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Isoxazoles/química , Isoxazoles/farmacología , Isoxazoles/síntesis química , Ácidos Carboxílicos/farmacología , Ácidos Carboxílicos/química , Ácidos Carboxílicos/síntesis química , Estructura Molecular , Humanos , Simulación del Acoplamiento Molecular , Indoles/farmacología , Indoles/química , Indoles/síntesis química , Relación Dosis-Respuesta a Droga
11.
Chemosphere ; 359: 142311, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38735500

RESUMEN

Plastic is widely used in agricultural applications, but its waste has an adverse environmental impact and a long-term detrimental effect. The development of biodegradable plastics for agricultural use is increasing to mitigate plastic waste. The most commonly used biodegradable plastic is poly(butylene adipate co-terephthalate)/poly(lactic acid) (PBAT/PLA) polymer. In this study, an analytical procedure based on dispersive liquid-liquid microextraction (DLLME) followed by gas chromatography-mass spectrometry (GC-MS) in combination with chemometrics has been optimized to assess the degradation level of PBAT/PLA films by monitoring their characteristic degradation products. Carboxylic acids (benzoic, phthalic, adipic, heptanoic, and octadecanoic acids) and 1,4-butanediol have been found to be potential markers of PBAT/PLA degradation. The DLLME-GC-MS analytical approach has been applied for the first time to assess the degradation efficiency of several microorganisms used as degradation accelerators of PBAT/PLA based on the assigned potential markers. This analytical strategy has shown higher sensitivity and precision than standard techniques, such as elemental analysis, allowing us to detect low degradation levels.


Asunto(s)
Biodegradación Ambiental , Cromatografía de Gases y Espectrometría de Masas , Poliésteres , Poliésteres/química , Microextracción en Fase Líquida/métodos , Plásticos Biodegradables/química , Polímeros/química , Ácidos Carboxílicos/química
12.
Talanta ; 276: 126249, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38743970

RESUMEN

The adoption of biophotonic sensing technologies holds significant promise for application in health care and biomedical industries in all aspects of human life. Then, this piece of writing employs the powerful effective medium theory and FDTD simulation to anticipate the most favorable state and plasmonic attributes of a magnificent nanocomposite, comprising carboxylate functionalized carbon nanotubes and chitosan (CS). Furthermore, it thoroughly explores the exhibited surface plasmon resonance behaviors of this composite versus the quantity of CS variation. Subsequently, enlightening simulations are conducted on the nanocomposite with a delicate layer and a modified golden structure integrating as a composite. The intricate simulations eventually unveil an optimal combination to pave the way for crafting an exceptional specific biosensor that far surpasses its counterpart as a mere Au thin layer in terms of excellence. The proposed biosensor demonstrated linear behavior across a wide range from 0.01 µM to 150 µM and achieved a detection limit of 10 nM, with a sensitivity of 134◦RIU-1.


Asunto(s)
Amlodipino , Quitosano , Nanotubos de Carbono , Resonancia por Plasmón de Superficie , Quitosano/química , Nanotubos de Carbono/química , Resonancia por Plasmón de Superficie/métodos , Amlodipino/análisis , Amlodipino/química , Ácidos Carboxílicos/química , Técnicas Biosensibles/métodos , Límite de Detección , Humanos
13.
Food Res Int ; 186: 114372, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729730

RESUMEN

The oxidation and degradation of fats lead to a decrease in the nutritional value of food and pose safety concerns. Saturated fatty acids also hold a significant position in the field of lipid oxidation. In this study, the oxidation products of methyl palmitate were investigated by using gas chromatography mass spectrometry (GC-MS). Seven monohydroperoxides and 72 secondary oxidation products were detected. Combined with density functional theory (DFT) calculations, the formation mechanisms of oxidation products can be summarized into four stages. The initial stage involved the formation of monohydroperoxides and alkanes, followed by the subsequent stage involving methyl x-oxo(hydroxy)hexadecanoates. The third stage involved the formation of methyl ketones, carboxylic acids, and aldehydes, while the final stage involved lactones. Meanwhile, methyl ketones were the most abundant oxidation product, approximately 25 times more abundant than aldehydes; the calculated results agreed well with the experimental results. The establishment of a comprehensive thermal oxidation mechanism for palmitic acid provided a new foundation for future lipid oxidation analyses.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas , Calor , Oxidación-Reducción , Aldehídos/química , Aldehídos/análisis , Palmitatos/química , Ácido Palmítico/química , Cetonas/química , Ácidos Carboxílicos/química
14.
Inorg Chem ; 63(21): 9801-9808, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38743640

RESUMEN

Enzyme immobilization within metal-organic frameworks (MOFs) is a promising solution to avoid denaturation and thereby utilize the desirable properties of enzymes outside of their native environments. The biomimetic mineralization strategy employs biomacromolecules as nucleation agents to promote the crystallization of MOFs in water at room temperature, thus overcoming pore size limitations presented by traditional postassembly encapsulation. Most biomimetic crystallization studies reported to date have employed zeolitic imidazole frameworks (ZIFs). Herein, we expand the library of MOFs suitable for biomimetic mineralization to include zinc(II) MOFs incorporating functionalized terephthalic acid linkers and study the catalytic performance of the enzyme@MOFs. Amine functionalization of terephthalic acids is shown to accelerate the formation of crystalline MOFs enabling new enzyme@MOFs to be synthesized. The structure and morphology of the enzyme@MOFs were characterized by PXRD, FTIR, and SEM-EDX, and the catalytic potential was evaluated. Increasing the linker length while retaining the amino moiety gave rise to a family of linkers; however, MOFs generated with the 2,2'-aminoterephthalic acid linker displayed the best catalytic performance. Our data also illustrate that the pH of the reaction mixture affects the crystal structure of the MOF and that this structural transformation impacts the catalytic performance of the enzyme@MOF.


Asunto(s)
Ácidos Carboxílicos , Cristalización , Estructuras Metalorgánicas , Temperatura , Agua , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/síntesis química , Ácidos Carboxílicos/química , Agua/química , Ácidos Ftálicos/química , Materiales Biomiméticos/química , Materiales Biomiméticos/síntesis química , Estructura Molecular , Zinc/química , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Aminas/química , Catálisis
15.
Molecules ; 29(10)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38792182

RESUMEN

This review presents an overview of the biological applications of coordinative compounds based on unsaturated carboxylates accompanied by other ligands, usually N-based heterocyclic species. The interest in these compounds arises from the valuable antimicrobial and antitumor activities evidenced by some species, as well as from their ability to generate metal-containing polymers suitable for various medical purposes. Therefore, we describe the recently discovered aspects related to the synthesis, structure, and biological activity of a wide range of unsaturated carboxylate-containing species and metal ions, originating mostly from 3d series. The unsaturated carboxylates encountered in coordinative compounds are acrylate, methacrylate, fumarate, maleate, cinnamate, ferulate, coumarate, and itaconate. Regarding the properties of the investigated compounds, it is worth mentioning the good ability of some to inhibit the development of resistant strains or microbial biofilms on inert surfaces or, even more, exert antitumor activity against resistant cells. The ability of some species to intercalate into DNA strands as well as to scavenge ROS species is also addressed.


Asunto(s)
Antineoplásicos , Ácidos Carboxílicos , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Ácidos Carboxílicos/química , Ácidos Carboxílicos/farmacología , Antiinfecciosos/farmacología , Antiinfecciosos/química , Biopelículas/efectos de los fármacos , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Animales
16.
Biomed Mater ; 19(4)2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38688293

RESUMEN

Collagen type I is a material widely used for 3D cell culture and tissue engineering. Different architectures, such as gels, sponges, membranes, and nanofibers, can be fabricated with it. In collagen hydrogels, the formation of fibrils and fibers depends on various parameters, such as the source of collagen, pH, temperature, concentration, age, etc. In this work, we study the fibrillogenesis process in collagen type I hydrogels with different types of microbeads embedded, using optical techniques such as turbidity assay and confocal reflectance microscopy. We observe that microbeads embedded in the collagen matrix hydrogels modify the fibrillogenesis. Our results show that carboxylated fluorescent microbeads accelerate 3.6 times the gelation, while silica microbeads slow down the formation of collagen fibrils by a factor of 1.9, both compared to pure collagen hydrogels. Our observations suggest that carboxylate microbeads act as nucleation sites and the early collagen fibrils bind to the microbeads.


Asunto(s)
Colágeno Tipo I , Hidrogeles , Microesferas , Hidrogeles/química , Colágeno Tipo I/química , Animales , Colágeno/química , Ingeniería de Tejidos/métodos , Concentración de Iones de Hidrógeno , Materiales Biocompatibles/química , Dióxido de Silicio/química , Microscopía Confocal , Temperatura , Ácidos Carboxílicos/química , Ensayo de Materiales
17.
ACS Chem Biol ; 19(5): 1066-1081, 2024 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-38630468

RESUMEN

Human ornithine aminotransferase (hOAT), a pyridoxal 5'-phosphate (PLP)-dependent enzyme, has been shown to play an essential role in the metabolic reprogramming and progression of hepatocellular carcinoma (HCC). HCC accounts for approximately 75% of primary liver cancers and is within the top three causes of cancer death worldwide. As a result of treatment limitations, the overall 5-year survival rate for all patients with HCC is under 20%. The prevalence of HCC necessitates continued development of novel and effective treatment methods. In recent years, the therapeutic potential of selective inactivation of hOAT has been demonstrated for the treatment of HCC. Inspired by previous increased selectivity for hOAT by the expansion of the cyclopentene ring scaffold to a cyclohexene, we designed, synthesized, and evaluated a series of novel fluorinated cyclohexene analogues and identified (R)-3-amino-5,5-difluorocyclohex-1-ene-1-carboxylic acid as a time-dependent inhibitor of hOAT. Structural and mechanistic studies have elucidated the mechanism of inactivation of hOAT by 5, resulting in a PLP-inactivator adduct tightly bound to the active site of the enzyme. Intact protein mass spectrometry, 19F NMR spectroscopy, transient state kinetic studies, and X-ray crystallography were used to determine the structure of the final adduct and elucidate the mechanisms of inactivation. Interestingly, despite the highly electrophilic intermediate species conferred by fluorine and structural evidence of solvent accessibility in the hOAT active site, Lys292 and water did not participate in nucleophilic addition during the inactivation mechanism of hOAT by 5. Instead, rapid aromatization to yield the final adduct was favored.


Asunto(s)
Diseño de Fármacos , Inhibidores Enzimáticos , Ornitina-Oxo-Ácido Transaminasa , Humanos , Ornitina-Oxo-Ácido Transaminasa/metabolismo , Ornitina-Oxo-Ácido Transaminasa/química , Ornitina-Oxo-Ácido Transaminasa/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/síntesis química , Ácidos Carboxílicos/química , Ácidos Carboxílicos/síntesis química , Ácidos Carboxílicos/farmacología , Ciclohexenos/química , Ciclohexenos/síntesis química , Ciclohexenos/farmacología , Ciclohexenos/metabolismo , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Cristalografía por Rayos X , Modelos Moleculares
18.
Int J Biol Macromol ; 269(Pt 2): 131771, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38688792

RESUMEN

Xyloglucan (XG), as a natural biopolymer, possesses a sound biocompatibility and an impressive biodegradability, which are usually featured with abundant hydroxyl groups available for the bioconjugation with a bioactive moiety, suggesting a promising or unique value possibly applied in the field of biomedicine. In this study, XG was extracted from Tamarind seeds and subjected to four regioselective oxidation methods to introduce carboxyl groups onto the XG molecules for a bioconjugation with collagen. Galactose oxidase and reducing end aldehyde group oxidation mainly resulted in a low carboxylate content at ∼0.34 mmol/g, whereas the primary and secondary hydroxyl group oxidations would lead to a high carboxyl content at ∼0.84 mmol/g. The number-average molar mass (Mn) and weight-average molar mass (Mw) of XG were 8.8 × 105 g/mol and 1.1 × 106 g/mol, respectively. The oxidized XGs were then subjected to a further biofunctionalization with the collagen through EDC/NHS coupling, which exhibited a degree of conjugation rate, ranged from 50 % to 72 %. The collagen-conjugated at the C6 position of XGs exhibited the highest cell viability recorded at 168 % in promoting cell growth and proliferation after 72 h of culture, surpassing that of pure collagen recorded at 138 %, which may indeed suggest a promising value in a biomedical application.


Asunto(s)
Colágeno , Glucanos , Oxidación-Reducción , Xilanos , Ácidos Carboxílicos/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Colágeno/química , Glucanos/química , Tamarindus/química , Xilanos/química , Animales , Ratones , Células 3T3 NIH
19.
J Chem Theory Comput ; 20(9): 4045-4053, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38648670

RESUMEN

pH-responsive nanoparticles are ideal vehicles for drug delivery and are widely used in cell imaging in targeted therapy of cancer, which usually has a weakly acidic microenvironment. In this work, we constructed a titratable molecular model for nanoparticles grafted with ligands of pH-sensitive carboxylic acids and investigated the interactions between the nanoparticles and the lipid bilayer in varying pH environments. We mainly examined the effect of the grafting density of the pH-sensitive ligands of the nanoparticles on the interactions of the nanoparticles with the lipid bilayer. The results show that the nanoparticles can penetrate the lipid bilayer only when the pH value is lower than a critical value, which can be readily modulated to the specific pH value of the tumor microenvironment by changing the ligand grafting density. This work provides some insights into modulating the interactions between the pH-sensitive nanoparticles and cellular membranes to realize targeted drug delivery to tumors based on their specific pH environment.


Asunto(s)
Membrana Dobles de Lípidos , Nanopartículas , Membrana Dobles de Lípidos/química , Nanopartículas/química , Concentración de Iones de Hidrógeno , Neoplasias/tratamiento farmacológico , Humanos , Simulación de Dinámica Molecular , Ácidos Carboxílicos/química , Ligandos , Microambiente Tumoral
20.
Pol J Microbiol ; 73(2): 167-176, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38678478

RESUMEN

Sub-high temperature Daqu, a traditional solid fermenting agent used in Chinese strong-aroma Baijiu production, is abundant in diverse microorganisms, including bacteria, yeasts, molds, and actinomycetes. Among these, yeasts are pivotal for ethanol production and flavor formation. However, counting yeasts in Daqu is challenging due to interference from molds and bacteria. Antibiotics are employed to inhibit bacterial growth, but there is no practical way to suppress molds without affecting the growth of yeasts. In this study, short-chain carboxylates (C1-C6) were added to the culture medium at various pH conditions to investigate their effects on the growth of molds and yeasts. The results demonstrated distinct inhibitory effects of the short-chain carboxylates, depending on both pH and concentration. Several tested short-chain carboxylates effectively suppressed mold growth on agar plates while leaving yeast growth unaffected. This suggests a simple and feasible method for enhancing the efficiency of yeast isolation and counting in Daqu. Such an approach is valuable for studying yeasts in diverse and complex habitats.


Asunto(s)
Ácidos Carboxílicos , Levaduras , Levaduras/crecimiento & desarrollo , Ácidos Carboxílicos/química , Medios de Cultivo/química , Fermentación , Concentración de Iones de Hidrógeno , Bebidas Alcohólicas/microbiología , Recuento de Colonia Microbiana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...