Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.059
Filtrar
1.
Anim Sci J ; 95(1): e13978, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38978175

RESUMEN

Genomic prediction was conducted using 2494 Japanese Black cattle from Hiroshima Prefecture and both single-nucleotide polymorphism information and phenotype data on monounsaturated fatty acid (MUFA) and oleic acid (C18:1) analyzed with gas chromatography. We compared the prediction accuracy for four models (A, additive genetic effects; AD, as for A with dominance genetic effects; ADR, as for AD with the runs of homozygosity (ROH) effects calculated by ROH-based relationship matrix; and ADF, as for AD with the ROH-based inbreeding coefficient of the linear regression). Bayesian methods were used to estimate variance components. The narrow-sense heritability estimates for MUFA and C18:1 were 0.52-0.53 and 0.57, respectively; the corresponding proportions of dominance genetic variance were 0.04-0.07 and 0.04-0.05, and the proportion of ROH variance was 0.02. The deviance information criterion values showed slight differences among the models, and the models provided similar prediction accuracy.


Asunto(s)
Teorema de Bayes , Polimorfismo de Nucleótido Simple , Animales , Bovinos/genética , Bovinos/metabolismo , Carácter Cuantitativo Heredable , Ácidos Grasos Monoinsaturados/análisis , Ácidos Grasos Monoinsaturados/metabolismo , Fenotipo , Ácido Oléico/análisis , Homocigoto , Genómica , Modelos Genéticos , Ácidos Grasos/análisis , Ácidos Grasos/metabolismo
2.
Sci Rep ; 14(1): 16980, 2024 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-39043795

RESUMEN

Musk is an important animal product, but the musk secretion mechanism of forest musk deer (Moschus berezovskii) is still unclear. The musk synthesis process in forest musk deer is extremely complex, and many raw materials are directly or indirectly derived from forest musk deer blood. In this study, metabolomics was used to analyze the blood of forest musk deer in secretory and non-secretory phases for the first time, aim at explaining the secretion mechanism from the perspective of blood metabolism. We found that P450-related, choline-related, axonal regeneration and other pathways and related metabolites were significantly enriched during the musk secretion of forest musk deer. These pathways and metabolites related to P450 and choline in blood may have important implications for the mechanism of musk secretion in forest musk deer, because blood components were closely related to musk components and could provide raw materials for musk synthesis in musk gland cells.


Asunto(s)
Ciervos , Ácidos Grasos Monoinsaturados , Metaboloma , Animales , Ciervos/sangre , Ciervos/metabolismo , Ácidos Grasos Monoinsaturados/sangre , Ácidos Grasos Monoinsaturados/metabolismo , Metabolómica/métodos , Bosques
3.
Plant Sci ; 347: 112184, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38996874

RESUMEN

Nervonic acid (C24:1) is a very-long-chain fatty acid that plays an imperative role in human brain development and other health benefits. In plants, 3-ketoacyl-CoA synthase (KCS) is the key rate-limiting enzyme for C24:1 biosynthesis. Xanthoceras sorbifolium is a valuable oil-producing economic woody species with abundant C24:1 in seed oils, but the key KCS gene responsible for C24:1 accumulation remains unknown. In this work, a correlation analysis between the transcript profiles of KCS and dynamic change of C24:1 content in developing seeds of X. sorbifolium were conducted to screen out three members of KCS, namely XsKCS4, XsKCS7 and XsKCS8, potentially involved in C24:1 biosynthesis. Of which, the XsKCS7 was highly expressed in developing seeds, while XsKCS4 and XsKCS8 displayed the highest expression in fruits and flowers, respectively. Overexpression of XsKCS4, XsKCS7 and XsKCS8 in yeast Saccharomyces cerevisiae and plant Arabidopsis thaliana indicated that only XsKCS7 possessed the ability to facilitate the biosynthesis of C24:1. These findings collectively suggested that XsKCS7 played a crucial role in specific regulation of C24:1 biosynthesis in X. sorbifolium seeds.


Asunto(s)
Ácidos Grasos Monoinsaturados , Proteínas de Plantas , Sapindaceae , Semillas , Semillas/genética , Semillas/metabolismo , Semillas/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sapindaceae/genética , Sapindaceae/metabolismo , Sapindaceae/enzimología , Sapindaceae/crecimiento & desarrollo , Ácidos Grasos Monoinsaturados/metabolismo , 3-Oxoacil-(Proteína Transportadora de Acil) Sintasa/metabolismo , 3-Oxoacil-(Proteína Transportadora de Acil) Sintasa/genética , Regulación de la Expresión Génica de las Plantas , Arabidopsis/genética , Arabidopsis/enzimología , Arabidopsis/metabolismo , Plantas Modificadas Genéticamente/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
4.
Int Immunopharmacol ; 139: 112671, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39003929

RESUMEN

OBJECTIVE: Although some studies suggested that metabolic abnormalities may contribute to the development of pulmonary fibrosis, there are no studies that have reported a clear causal relationship between them, and the aim of this study was to explore the causal relationship between plasma metabolites and pulmonary fibrosis using Mendelian randomization (MR) combined with metabolomics analysis. METHODS: Firstly, we explored the causal relationship between 1400 metabolites and pulmonary fibrosis using MR analysis, and detected plasma metabolites in mice with pulmonary fibrosis using metabolomics technology, thus validating the results of MR analysis. In addition, we again used MR to explore the causal relationship between the results of the differential metabolite KEGG in metabolomics and pulmonary fibrosis. RESULTS: A total of 52 metabolites were screened for association with pulmonary fibrosis in the MR analysis of 1400 plasma metabolites with pulmonary fibrosis, based on P < 0.05 for the IVW method, with consistent OR directions for all methods. Four of them were validated in the plasma of mice with pulmonary fibrosis, namely carnitine c18:2 levels (negative correlation), Glutamine degradant levels (positive correlation), Propionylcarnitine (c3) levels (negative correlation), carnitine to palmitoylcarnitine (c16) ratio (negative correlation). In addition, KEGG analysis of plasma differential metabolites revealed that the signaling pathway of biosynthetic of unsaturated fatty acids was most affected in mice with pulmonary fibrosis, and MR analysis showed that imbalance in the ratio of monounsaturated fatty acids was significantly associated with pulmonary fibrosis. CONCLUSIONS: Our study suggests that abnormal fatty acid levels due to reduced levels of carnitine-like metabolites, and an imbalance in the ratio of monounsaturated, promote the development of pulmonary fibrosis. This study reveals the marker metabolites and metabolic pathways affecting the development of pulmonary fibrosis to provide a basis for the development of new drugs for the treatment of pulmonary fibrosis.


Asunto(s)
Ácidos Grasos Monoinsaturados , Metabolómica , Ratones Endogámicos C57BL , Fibrosis Pulmonar , Animales , Fibrosis Pulmonar/metabolismo , Ácidos Grasos Monoinsaturados/metabolismo , Ácidos Grasos Monoinsaturados/sangre , Ratones , Masculino , Análisis de la Aleatorización Mendeliana , Humanos , Carnitina/metabolismo , Carnitina/sangre , Carnitina/análogos & derivados , Modelos Animales de Enfermedad , Pulmón/metabolismo , Pulmón/patología , Ácidos Grasos/metabolismo , Bleomicina
5.
Mol Cell Endocrinol ; 592: 112317, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38901632

RESUMEN

BACKGROUND: Ovarian somatic cells support the maturation and fertility of oocytes. Metabolic desaturation of fatty acids in these cells has a positive paracrine impact on the maturation of oocytes. We hypothesized that the enzyme stearoyl-CoA desaturase 1 (SCD1) in granulosa cells regulates the lipid cargo of exosomes secreted from these cells by maintaining the balance between saturated and unsaturated lipids. We investigated the effect of SCD1 on exosome lipid content in a cumulus-granulosa cell model under physiologically relevant in vitro conditions. METHODS: Non-luteinized human COV434 granulosa cells were subjected to treatment with an inhibitor of SCD1 (SCDinhib) alone, in combination with oleic acid, or under control conditions. Subsequently, the exosomes were isolated and characterized via nanoparticle tracking analysis, transmission electron microscopy, and Western blotting. We used liquid chromatography mass spectrometry to investigate the lipidomic profiles. We used quantitative PCR with TaqMan primers to assess the expression of genes involved in lipogenesis and control of cell cycle progression. RESULTS: A trend toward exosome production was observed with a shift toward smaller exosome sizes in cells treated with SCD1inhib. This trend reached statistical significance when SCDinhib was combined with oleic acid supplementation. SCD1 inhibition led to the accumulation of saturated omega-6 lipids in exosomes. The latter effect was reversed by oleic acid supplementation, which also improved exosome production and suppressed the expression of fatty acid synthase and Cyclin D2. CONCLUSION: These findings underscore the critical role of de novo fatty acid desaturation in the regulation of the export of specific lipids through exosomes, with potential implications for controlling intercellular communication within the ovary.


Asunto(s)
Exosomas , Ácidos Grasos Monoinsaturados , Células de la Granulosa , Estearoil-CoA Desaturasa , Humanos , Femenino , Células de la Granulosa/metabolismo , Células de la Granulosa/efectos de los fármacos , Exosomas/metabolismo , Exosomas/efectos de los fármacos , Exosomas/ultraestructura , Estearoil-CoA Desaturasa/metabolismo , Estearoil-CoA Desaturasa/genética , Ácidos Grasos Monoinsaturados/farmacología , Ácidos Grasos Monoinsaturados/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Ácido Oléico/farmacología , Ácido Oléico/metabolismo , Transporte Biológico/efectos de los fármacos
6.
Molecules ; 29(11)2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38893378

RESUMEN

Metabolic reprogramming mediates antibiotic efficacy. However, metabolic adaptation of microbes evolving from antibiotic sensitivity to resistance remains undefined. Therefore, untargeted metabolomics was conducted to unveil relevant metabolic reprogramming and potential intervention targets involved in gentamicin resistance. In total, 61 metabolites and 52 metabolic pathways were significantly altered in gentamicin-resistant E. coli. Notably, the metabolic reprogramming was characterized by decreases in most metabolites involved in carbohydrate and amino acid metabolism, and accumulation of building blocks for nucleotide synthesis in gentamicin-resistant E. coli. Meanwhile, fatty acid metabolism and glycerolipid metabolism were also significantly altered in gentamicin-resistant E. coli. Additionally, glycerol, glycerol-3-phosphate, palmitoleate, and oleate were separately defined as the potential biomarkers for identifying gentamicin resistance in E. coli. Moreover, palmitoleate and oleate could attenuate or even abolished killing effects of gentamicin on E. coli, and separately increased the minimum inhibitory concentration of gentamicin against E. coli by 2 and 4 times. Furthermore, palmitoleate and oleate separately decreased intracellular gentamicin contents, and abolished gentamicin-induced accumulation of reactive oxygen species, indicating involvement of gentamicin metabolism and redox homeostasis in palmitoleate/oleate-promoted gentamicin resistance in E. coli. This study identifies the metabolic reprogramming, potential biomarkers and intervention targets related to gentamicin resistance in bacteria.


Asunto(s)
Antibacterianos , Farmacorresistencia Bacteriana , Escherichia coli , Ácidos Grasos Monoinsaturados , Gentamicinas , Ácido Oléico , Gentamicinas/farmacología , Gentamicinas/metabolismo , Escherichia coli/metabolismo , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Ácido Oléico/metabolismo , Ácido Oléico/farmacología , Farmacorresistencia Bacteriana/efectos de los fármacos , Antibacterianos/farmacología , Ácidos Grasos Monoinsaturados/metabolismo , Ácidos Grasos Monoinsaturados/farmacología , Pruebas de Sensibilidad Microbiana , Metabolómica/métodos , Redes y Vías Metabólicas/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Regulación hacia Arriba/efectos de los fármacos
7.
Microb Biotechnol ; 17(6): e14488, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38850269

RESUMEN

The transition towards a sustainable bioeconomy requires the development of highly efficient bioprocesses that enable the production of bulk materials at a competitive price. This is particularly crucial for driving the commercialization of polyhydroxyalkanoates (PHAs) as biobased and biodegradable plastic substitutes. Among these, the copolymer poly(hydroxybutyrate-co-hydroxyhexanoate) (P(HB-co-HHx)) shows excellent material properties that can be tuned by regulating its monomer composition. In this study, we developed a high-cell-density fed-batch strategy using mixtures of fructose and canola oil to modulate the molar composition of P(HB-co-HHx) produced by Ralstonia eutropha Re2058/pCB113 at 1-L laboratory scale up to 150-L pilot scale. With cell densities >100 g L-1 containing 70-80 wt% of PHA with tunable HHx contents in the range of 9.0-14.6 mol% and productivities of up to 1.5 g L-1 h-1, we demonstrate the tailor-made production of P(HB-co-HHx) at an industrially relevant scale. Ultimately, this strategy enables the production of PHA bioplastics with defined material properties on the kilogram scale, which is often required for testing and adapting manufacturing processes to target diverse applications.


Asunto(s)
Cupriavidus necator , Fructosa , Cupriavidus necator/metabolismo , Cupriavidus necator/genética , Fructosa/metabolismo , Ingeniería Metabólica/métodos , Caproatos/metabolismo , Ácidos Grasos Monoinsaturados/metabolismo , Aceite de Brassica napus/metabolismo , Aceite de Brassica napus/química , Recuento de Células , Polihidroxibutiratos
8.
Biomolecules ; 14(6)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38927010

RESUMEN

Nuclear hormone receptors exist in dynamic equilibrium between transcriptionally active and inactive complexes dependent on interactions with ligands, proteins, and chromatin. The present studies examined the hypothesis that endogenous ligands activate peroxisome proliferator-activated receptor-ß/δ (PPARß/δ) in keratinocytes. The phorbol ester treatment or HRAS infection of primary keratinocytes increased fatty acids that were associated with enhanced PPARß/δ activity. Fatty acids caused PPARß/δ-dependent increases in chromatin occupancy and the expression of angiopoietin-like protein 4 (Angptl4) mRNA. Analyses demonstrated that stearoyl Co-A desaturase 1 (Scd1) mediates an increase in intracellular monounsaturated fatty acids in keratinocytes that act as PPARß/δ ligands. The activation of PPARß/δ with palmitoleic or oleic acid causes arrest at the G2/M phase of the cell cycle of HRAS-expressing keratinocytes that is not found in similarly treated HRAS-expressing Pparb/d-null keratinocytes. HRAS-expressing Scd1-null mouse keratinocytes exhibit enhanced cell proliferation, an effect that is mitigated by treatment with palmitoleic or oleic acid. Consistent with these findings, the ligand activation of PPARß/δ with GW0742 or oleic acid prevented UVB-induced non-melanoma skin carcinogenesis, an effect that required PPARß/δ. The results from these studies demonstrate that PPARß/δ has endogenous roles in keratinocytes and can be activated by lipids found in diet and cellular components.


Asunto(s)
Queratinocitos , PPAR delta , PPAR-beta , Estearoil-CoA Desaturasa , Queratinocitos/metabolismo , Queratinocitos/efectos de los fármacos , PPAR-beta/metabolismo , PPAR-beta/genética , Animales , Ratones , Estearoil-CoA Desaturasa/metabolismo , Estearoil-CoA Desaturasa/genética , PPAR delta/metabolismo , PPAR delta/genética , Ácidos Grasos/metabolismo , Proteína 4 Similar a la Angiopoyetina/metabolismo , Proteína 4 Similar a la Angiopoyetina/genética , Humanos , Ácido Oléico/farmacología , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Ácidos Grasos Monoinsaturados/farmacología , Ácidos Grasos Monoinsaturados/metabolismo , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología
9.
Biomolecules ; 14(6)2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38927110

RESUMEN

This work describes a novel route for phospholipid fatty acid remodeling involving the monounsaturated fatty acid palmitoleic acid. When administered to human monocytes, palmitoleic acid rapidly incorporates into membrane phospholipids, notably into phosphatidylcholine (PC). In resting cells, palmitoleic acid remains within the phospholipid pools where it was initially incorporated, showing no further movement. However, stimulation of the human monocytes with either receptor-directed (opsonized zymosan) or soluble (calcium ionophore A23187) agonists results in the rapid transfer of palmitoleic acid moieties from PC to phosphatidylinositol (PI). This is due to the activation of a coenzyme A-dependent remodeling route involving two different phospholipase A2 enzymes that act on different substrates to generate free palmitoleic acid and lysoPI acceptors. The stimulated enrichment of specific PI molecular species with palmitoleic acid unveils a hitherto-unrecognized pathway for lipid turnover in human monocytes which may play a role in regulating lipid signaling during innate immune activation.


Asunto(s)
Ácidos Grasos Monoinsaturados , Monocitos , Fosfatidilcolinas , Fosfatidilinositoles , Humanos , Monocitos/metabolismo , Monocitos/efectos de los fármacos , Ácidos Grasos Monoinsaturados/metabolismo , Ácidos Grasos Monoinsaturados/farmacología , Fosfatidilcolinas/metabolismo , Fosfatidilinositoles/metabolismo
10.
mSphere ; 9(7): e0025724, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38920406

RESUMEN

Myriocin is an inhibitor of de novo synthesis of sphingolipids and ceramides. In this research, we showed myriocin could significantly reduce Mtb burden and histopathological inflammation in mice. However, the underlying mechanism remains unclear. RNA-seq analysis revealed a significant increase in gene expression of PLIN2/CD36/CERT1 after myriocin treatment. The reduced bactericidal burden was only reversed after silencing the lipid droplets (LDs) surface protein PLIN2. This suggests that myriocin enhances the ability of macrophages to clear Mtb depending on the PLIN2 gene, which is part of the PPARγ pathway. Indeed, we observed a significant increase in the number of LDs following myriocin treatment.IMPORTANCEMycobacterium tuberculosis has the ability to reprogram host cell lipid metabolism and alter the antimicrobial functions of infected macrophages. The sphingolipids, such as ceramides, are the primary host lipids utilized by the bacteria, making the sphingomyelinase/ceramide system critical in Mtb infections. Surprisingly, the antimicrobial effect of myriocin was found to be independent of its role in reducing ceramides, but instead, it depends on the lipid droplets surface protein PLIN2. Our findings provide a novel mechanism for how myriocin enhances Mtb clearance in macrophages.


Asunto(s)
Ácidos Grasos Monoinsaturados , Macrófagos , Mycobacterium tuberculosis , Perilipina-2 , Animales , Macrófagos/microbiología , Macrófagos/efectos de los fármacos , Ratones , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genética , Perilipina-2/genética , Perilipina-2/metabolismo , Ácidos Grasos Monoinsaturados/farmacología , Ácidos Grasos Monoinsaturados/metabolismo , Tuberculosis/microbiología , Tuberculosis/tratamiento farmacológico , Tuberculosis/inmunología , Ratones Endogámicos C57BL , Gotas Lipídicas/metabolismo , Gotas Lipídicas/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Femenino
11.
Cell Rep ; 43(5): 114223, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38748879

RESUMEN

Quorum sensing (QS) is a cell-to-cell communication mechanism mediated by small diffusible signaling molecules. Previous studies showed that RpfR controls Burkholderia cenocepacia virulence as a cis-2-dodecenoic acid (BDSF) QS signal receptor. Here, we report that the fatty acyl-CoA ligase DsfR (BCAM2136), which efficiently catalyzes in vitro synthesis of lauryl-CoA and oleoyl-CoA from lauric acid and oleic acid, respectively, acts as a global transcriptional regulator to control B. cenocepacia virulence by sensing BDSF. We show that BDSF binds to DsfR with high affinity and enhances the binding of DsfR to the promoter DNA regions of target genes. Furthermore, we demonstrate that the homolog of DsfR in B. lata, RS02960, binds to the target gene promoter, and perception of BDSF enhances the binding activity of RS02960. Together, these results provide insights into the evolved unusual functions of DsfR that control bacterial virulence as a response regulator of QS signal.


Asunto(s)
Proteínas Bacterianas , Burkholderia cenocepacia , Coenzima A Ligasas , Regulación Bacteriana de la Expresión Génica , Regiones Promotoras Genéticas , Percepción de Quorum , Percepción de Quorum/genética , Burkholderia cenocepacia/patogenicidad , Burkholderia cenocepacia/genética , Burkholderia cenocepacia/metabolismo , Virulencia , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Coenzima A Ligasas/metabolismo , Coenzima A Ligasas/genética , Animales , Transducción de Señal , Ácidos Grasos Monoinsaturados/metabolismo , Ratones , Unión Proteica , Ácidos Láuricos/metabolismo
12.
J Exp Clin Cancer Res ; 43(1): 133, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38698462

RESUMEN

BACKGROUND: Targeting ferroptosis has been identified as a promising approach for the development of cancer therapies. Monounsaturated fatty acid (MUFA) is a type of lipid that plays a crucial role in inhibiting ferroptosis. Ficolin 3 (FCN3) is a component of the complement system, serving as a recognition molecule against pathogens in the lectin pathway. Recent studies have reported that FCN3 demonstrates inhibitory effects on the progression of certain tumors. However, whether FCN3 can modulate lipid metabolism and ferroptosis remains largely unknown. METHODS: Cell viability, BODIPY-C11 staining, and MDA assay were carried out to detect ferroptosis. Primary hepatocellular carcinoma (HCC) and xenograft models were utilized to investigate the effect of FCN3 on the development of HCC in vivo. A metabonomic analysis was conducted to assess alterations in intracellular and HCC intrahepatic lipid levels. RESULTS: Our study elucidates a substantial decrease in the expression of FCN3, a component of the complement system, leads to MUFA accumulation in human HCC specimens and thereby significantly promotes ferroptosis resistance. Overexpression of FCN3 efficiently sensitizes HCC cells to ferroptosis, resulting in the inhibition of the oncogenesis and progression of both primary HCC and subcutaneous HCC xenograft. Mechanistically, FCN3 directly binds to the insulin receptor ß (IR-ß) and its pro-form (pro-IR), inhibiting pro-IR cleavage and IR-ß phosphorylation, ultimately resulting in IR-ß inactivation. This inactivation of IR-ß suppresses the expression of sterol regulatory element binding protein-1c (SREBP1c), which subsequently suppresses the transcription of genes related to de novo lipogenesis (DNL) and lipid desaturation, and consequently downregulates intracellular MUFA levels. CONCLUSIONS: These findings uncover a novel regulatory mechanism by which FCN3 enhances the sensitivity of HCC cells to ferroptosis, indicating that targeting FCN3-induced ferroptosis is a promising strategy for HCC treatment.


Asunto(s)
Carcinoma Hepatocelular , Ferroptosis , Neoplasias Hepáticas , Animales , Femenino , Humanos , Masculino , Ratones , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/genética , Línea Celular Tumoral , Modelos Animales de Enfermedad , Regulación hacia Abajo , Ácidos Grasos Monoinsaturados/metabolismo , Ácidos Grasos Monoinsaturados/farmacología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Integr Zool ; 19(5): 955-974, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38644525

RESUMEN

Musk secreted by male forest musk deer (Moschus berezovskii) musk glands is an invaluable component of medicine and perfume. Musk secretion depends on musk gland maturation; however, the mechanism of its development remains elusive. Herein, using single cell multiome ATAC + gene expression coupled with several bioinformatic analyses, a dynamic transcriptional cell atlas of musk gland development was revealed, and key genes and transcription factors affecting its development were determined. Twelve cell types, including two different types of acinar cells (Clusters 0 and 10) were identified. Single-nucleus RNA and single-nucleus ATAC sequencing analyses revealed that seven core target genes associated with musk secretion (Hsd17b2, Acacb, Lss, Vapa, Aldh16a1, Aldh7a1, and Sqle) were regulated by 12 core transcription factors (FOXO1, CUX2, RORA, RUNX1, KLF6, MGA, NFIC, FOXO3, ETV5, NR3C1, HSF4, and MITF) during the development of Cluster 0 acinar cells. Kyoto Encyclopedia of Genes and Genomes enrichment showed significant changes in the pathways associated with musk secretion during acinar cell development. Gene set variation analysis also revealed that certain pathways associated with musk secretion were enriched in 6-year-old acinar cells. A gene co-expression network was constructed during acinar cell development to provide a precise understanding of the connections between transcription factors, genes, and pathways. Finally, intercellular communication analysis showed that intercellular communication is involved in musk gland development. This study provides crucial insights into the changes and key factors underlying musk gland development, which serve as valuable resources for studying musk secretion mechanisms and promoting the protection of this endangered species.


Asunto(s)
Ciervos , Transcriptoma , Animales , Ciervos/genética , Masculino , Ácidos Grasos Monoinsaturados/metabolismo , Cromatina/metabolismo
14.
Mar Pollut Bull ; 202: 116353, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38598929

RESUMEN

Galaxolide (HHCB) and tonalide (AHTN) are dominant musks added to personal care products. However, the accumulate and trophic transfer of SMs through the marine food chain are unclear. In this study, organisms were collected from three bays in Bohai Sea to investigate the bioaccumulation, trophic transfer, and health risk of SMs. The HHCB and AHTN concentrations in the muscles range from 2.75 to 365.40 µg/g lw and 1.04-4.94 µg/g lw, respectively. The median HHCB concentrations in muscles were the highest in Bohai Bay, followed by Laizhou Bay and Liaodong Bay, consistent with the HHCB concentrations in sediments. The different fish tissues from Bohai Bay were analyzed, and the HHCB and AHTN concentrations followed the heart > liver > gill > muscles. The trophic magnification factors (TMF) were lower than 1 and the health risk assessment showed no adverse health effects. The results provide insights into the bioaccumulation and trophic transfer behavior of SMs in marine environments.


Asunto(s)
Monitoreo del Ambiente , Peces , Cadena Alimentaria , Contaminantes Químicos del Agua , Medición de Riesgo , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/metabolismo , Animales , Peces/metabolismo , China , Bioacumulación , Benzopiranos , Ácidos Grasos Monoinsaturados/análisis , Ácidos Grasos Monoinsaturados/metabolismo , Tetrahidronaftalenos/análisis , Bahías
15.
Mol Metab ; 83: 101916, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38492843

RESUMEN

OBJECTIVE: Exposure of adipocytes to 'cool' temperatures often found in the periphery of the body induces expression of Stearoyl-CoA Desaturase-1 (Scd1), an enzyme that converts saturated fatty acids to monounsaturated fatty acids. The goal of this study is to further investigate the roles of Scd in adipocytes. METHOD: In this study, we employed Scd1 knockout cells and mouse models, along with pharmacological Scd1 inhibition to dissect the enzyme's function in adipocyte physiology. RESULTS: Our study reveals that production of monounsaturated lipids by Scd1 is necessary for fusion of autophagosomes to lysosomes and that with a Scd1-deficiency, autophagosomes accumulate. In addition, Scd1-deficiency impairs lysosomal and autolysosomal acidification resulting in vacuole accumulation and eventual cell death. Blocking autophagosome formation or supplementation with monounsaturated fatty acids maintains vitality of Scd1-deficient adipocytes. CONCLUSION: This study demonstrates the indispensable role of Scd1 in adipocyte survival, with its inhibition in vivo triggering autophagy-dependent cell death and its depletion in vivo leading to the loss of bone marrow adipocytes.


Asunto(s)
Adipocitos , Autofagia , Ácidos Grasos Monoinsaturados , Ratones Noqueados , Estearoil-CoA Desaturasa , Estearoil-CoA Desaturasa/metabolismo , Estearoil-CoA Desaturasa/genética , Animales , Ratones , Adipocitos/metabolismo , Ácidos Grasos Monoinsaturados/metabolismo , Ácidos Grasos Monoinsaturados/farmacología , Ratones Endogámicos C57BL , Lisosomas/metabolismo , Supervivencia Celular , Células 3T3-L1 , Masculino , Metabolismo de los Lípidos , Autofagosomas/metabolismo
16.
J Chem Ecol ; 50(5-6): 214-221, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38396141

RESUMEN

The bee louse Braula spp. had until recently a distribution coincident with its host the honey bee. The adult fly usually attaches to a worker honey bee and steals food from its mouth. However, not all worker bees carry Braula spp. and the mechanism used by Braula spp. to select hosts is not well understood. Using choice remounting bioassays and chemical analyses, we determined host selection and the cues used by B. coeca, a species associated with the African honey bee Apis mellifera scutellata. Braula coeca successfully remounted bees from which they were initially removed and preferred their mandibular gland pheromones (MDG) over those of bees not carrying them. The bee lice did not show any preference for the cuticular hydrocarbons of both types of workers. Chemical analyses of the MDG extracts, revealed quantitative differences between the two categories of workers, with workers carrying B. coeca having more of the queen substance (9-oxo-2(E)-decenoic acid) and worker substance (10-hydroxy-2(E)-decenoic). Braula coeca showed a dose response to the queen substance, indicating its ability to use host derived kairomones as cues that allowed it to benefit from trophallactic dominance by individuals that have a higher probability of being fed by other workers.


Asunto(s)
Feromonas , Animales , Abejas/parasitología , Abejas/fisiología , Feromonas/metabolismo , Feromonas/química , Dípteros/fisiología , Hidrocarburos/metabolismo , Hidrocarburos/química , Interacciones Huésped-Parásitos , Conducta Animal/efectos de los fármacos , Ácidos Grasos Monoinsaturados/metabolismo
17.
J Agric Food Chem ; 72(2): 1190-1202, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38175798

RESUMEN

10-Hydroxy-2-decenoic acid (10-HDA) is an important component of royal jelly, known for its antimicrobial, anti-inflammatory, blood pressure-lowering, and antiradiation effects. Currently, 10-HDA biosynthesis is limited by the substrate selectivity of acyl-coenzyme A dehydrogenase, which restricts the technique to a two-step process. This study aimed to develop an efficient and simplified method for synthesizing 10-HDA. In this study, ACOX from Candida tropicalis 1798, which catalyzes 10-hydroxydecanoyl coenzyme A desaturation for 10-HDA synthesis, was isolated and heterologously coexpressed with FadE, Macs, YdiI, and CYP in Escherichia coli/SK after knocking out FadB, FadJ, and FadR genes. The engineered E. coli/AKS strain achieved a 49.8% conversion of decanoic acid to 10-HDA. CYP expression was improved through ultraviolet mutagenesis and high-throughput screening, increased substrate conversion to 75.6%, and the synthesis of 10-HDA was increased to 0.628 g/L in 10 h. This is the highest conversion rate and product concentration achieved in the shortest time to date. This study provides a simple and efficient method for 10-HDA biosynthesis and offers an effective method for developing strains with high product yields.


Asunto(s)
Escherichia coli , Ácidos Grasos Monoinsaturados , Escherichia coli/genética , Escherichia coli/metabolismo , Ácidos Grasos Monoinsaturados/metabolismo , Ácidos Grasos/metabolismo , Antiinflamatorios
18.
Biochem Biophys Res Commun ; 696: 149493, 2024 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-38219486

RESUMEN

Brown fat adipose tissue (BAT) is a therapeutic potential target to improve obesity, diabetes and cold acclimation in mammals. During the long-term cold exposure, the hyperplastic sympathetic network is crucial for BAT the maintain the highly thermogenic status. It has been proved that the sympathetic nervous drives the thermogenic activity of BAT via the release of norepinephrine. However, it is still unclear that how the thermogenic BAT affects the remodeling of the hyperplastic sympathetic network, especially during the long-term cold exposure. Here, we showed that following long-term cold exposure, SCD1-mediated monounsaturated fatty acid biosynthesis pathway was enriched, and the ratios of monounsaturated/saturated fatty acids were significantly up-regulated in BAT. And SCD1-deficiency in BAT decreased the capacity of cold acclimation, and suppressed long-term cold mediated BAT thermogenic activation. Furthermore, by using thermoneutral exposure and sympathetic nerve excision models, we disclosed that SCD1-deficiency in BAT affected the thermogenic activity, depended on sympathetic nerve. In mechanism, SCD1-deficiency resulted in the unbalanced ratio of palmitic acid (PA)/palmitoleic acid (PO), with obviously higher level of PA and lower level of PO. And PO supplement efficiently reversed the inhibitory role of SCD1-deficiency on BAT thermogenesis and the hyperplastic sympathetic network. Thus, our data provided insight into the role of SCD1-mediated monounsaturated fatty acids metabolism to the interaction between thermogenic activity BAT and hyperplastic sympathetic networks, and illustrated the critical role of monounsaturated fatty acids biosynthetic pathway in cold acclimation during the long-term cold exposure.


Asunto(s)
Tejido Adiposo Pardo , Termogénesis , Animales , Tejido Adiposo Pardo/metabolismo , Termogénesis/fisiología , Sistema Nervioso Simpático , Obesidad/metabolismo , Ácidos Grasos Monoinsaturados/metabolismo , Frío , Mamíferos
19.
Metab Eng ; 80: 193-206, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37827446

RESUMEN

Insufficient biosynthesis efficiency during the lipogenic phase can be a major obstacle to engineering oleaginous yeasts to overproduce very long-chain fatty acids (VLCFAs). Taking nervonic acid (NA, C24:1) as an example, we overcame the bottleneck to overproduce NA in an engineered Rhodosporidium toruloides by improving the biosynthesis of VLCFAs during the lipogenic phase. First, evaluating the catalytic preferences of three plant-derived ketoacyl-CoA synthases (KCSs) rationally guided reconstructing an efficient NA biosynthetic pathway in R. toruloides. More importantly, a genome-wide transcriptional analysis endowed clues to strengthen the fatty acid elongation (FAE) module and identify/use lipogenic phase-activated promoter, collectively addressing the stagnation of NA accumulation during the lipogenic phase. The best-designed strain exhibited a high NA content (as the major component in total fatty acid [TFA], 46.3%) and produced a titer of 44.2 g/L in a 5 L bioreactor. The strategy developed here provides an engineering framework to establish the microbial process of producing valuable VLCFAs in oleaginous yeasts.


Asunto(s)
Ingeniería Metabólica , Levaduras , Levaduras/genética , Ácidos Grasos Monoinsaturados/metabolismo , Ácidos Grasos/genética , Ácidos Grasos/metabolismo
20.
Cell Metab ; 35(11): 2060-2076.e9, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37852255

RESUMEN

A high-fat diet (HFD) promotes metastasis through increased uptake of saturated fatty acids (SFAs). The fatty acid transporter CD36 has been implicated in this process, but a detailed understanding of CD36 function is lacking. During matrix detachment, endoplasmic reticulum (ER) stress reduces SCD1 protein, resulting in increased lipid saturation. Subsequently, CD36 is induced in a p38- and AMPK-dependent manner to promote preferential uptake of monounsaturated fatty acids (MUFAs), thereby maintaining a balance between SFAs and MUFAs. In attached cells, CD36 palmitoylation is required for MUFA uptake and protection from palmitate-induced lipotoxicity. In breast cancer mouse models, CD36-deficiency induced ER stress while diminishing the pro-metastatic effect of HFD, and only a palmitoylation-proficient CD36 rescued this effect. Finally, AMPK-deficient tumors have reduced CD36 expression and are metastatically impaired, but ectopic CD36 expression restores their metastatic potential. Our results suggest that, rather than facilitating HFD-driven tumorigenesis, CD36 plays a supportive role by preventing SFA-induced lipotoxicity.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Ácidos Grasos Monoinsaturados , Animales , Ratones , Ácidos Grasos Monoinsaturados/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Ácidos Grasos/metabolismo , Transporte Biológico , Homeostasis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...