Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.709
Filtrar
1.
Molecules ; 29(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38731399

RESUMEN

The antibacterial effects of a selection of volatile fatty acids (acetic, propionic, butyric, valeric, and caproic acids) relevant to anaerobic digestion were investigated at 1, 2 and 4 g/L. The antibacterial effects were characterised by the dynamics of Enterococcus faecalis NCTC 00775, Escherichia coli JCM 1649 and Klebsiella pneumoniae A17. Mesophilic anaerobic incubation to determine the minimum bactericidal concentration (MBC) and median lethal concentration of the VFAs was carried out in Luria Bertani broth at 37 °C for 48 h. Samples collected at times 0, 3, 6, 24 and 48 h were used to monitor bacterial kinetics and pH. VFAs at 4 g/L demonstrated the highest bactericidal effect (p < 0.05), while 1 g/L supported bacterial growth. The VFA cocktail was the most effective, while propionic acid was the least effective. Enterococcus faecalis NCTC 00775 was the most resistant strain with the VFAs MBC of 4 g/L, while Klebsiella pneumoniae A17 was the least resistant with the VFAs MBC of 2 g/L. Allowing a 48 h incubation period led to more log decline in the bacterial numbers compared to earlier times. The VFA cocktail, valeric, and caproic acids at 4 g/L achieved elimination of the three bacteria strains, with over 7 log10 decrease within 48 h.


Asunto(s)
Antibacterianos , Enterococcus faecalis , Ácidos Grasos Volátiles , Klebsiella pneumoniae , Pruebas de Sensibilidad Microbiana , Ácidos Grasos Volátiles/metabolismo , Ácidos Grasos Volátiles/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Enterococcus faecalis/efectos de los fármacos , Enterococcus faecalis/crecimiento & desarrollo , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/crecimiento & desarrollo , Anaerobiosis , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Propionatos/farmacología , Concentración de Iones de Hidrógeno , Ácidos Pentanoicos/farmacología
2.
Int J Mol Sci ; 25(9)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38732038

RESUMEN

The gut microbiota and short chain fatty acids (SCFA) have been associated with immune regulation and autoimmune diseases. Autoimmune kidney diseases arise from a loss of tolerance to antigens, often with unclear triggers. In this review, we explore the role of the gut microbiome and how disease, diet, and therapy can alter the gut microbiota consortium. Perturbations in the gut microbiota may systemically induce the translocation of microbiota-derived inflammatory molecules such as liposaccharide (LPS) and other toxins by penetrating the gut epithelial barrier. Once in the blood stream, these pro-inflammatory mediators activate immune cells, which release pro-inflammatory molecules, many of which are antigens in autoimmune diseases. The ratio of gut bacteria Bacteroidetes/Firmicutes is associated with worse outcomes in multiple autoimmune kidney diseases including lupus nephritis, MPO-ANCA vasculitis, and Goodpasture's syndrome. Therapies that enhance SCFA-producing bacteria in the gut have powerful therapeutic potential. Dietary fiber is fermented by gut bacteria which in turn release SCFAs that protect the gut barrier, as well as modulating immune responses towards a tolerogenic anti-inflammatory state. Herein, we describe where the current field of research is and the strategies to harness the gut microbiome as potential therapy.


Asunto(s)
Enfermedades Autoinmunes , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/inmunología , Enfermedades Autoinmunes/microbiología , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/terapia , Animales , Ácidos Grasos Volátiles/metabolismo , Enfermedades Renales/microbiología , Enfermedades Renales/inmunología , Enfermedades Renales/terapia
3.
J Diabetes Res ; 2024: 1222395, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38725443

RESUMEN

This study is aimed at assessing the impact of soluble dietary fiber inulin on the treatment of diabetes-related chronic inflammation and kidney injury in mice with type 2 diabetes (T2DM). The T2DM model was created by feeding the Institute of Cancer Research (ICR) mice a high-fat diet and intraperitoneally injecting them with streptozotocin (50 mg/kg for 5 consecutive days). The thirty-six ICR mice were divided into three dietary groups: the normal control (NC) group, the T2DM (DM) group, and the DM + inulin diet (INU) group. The INU group mice were given inulin at the dose of 500 mg/kg gavage daily until the end of the 12th week. After 12 weeks, the administration of inulin resulted in decreased serum levels of fasting blood glucose (FBG), low-density lipoprotein cholesterol (LDL-C), blood urea nitrogen (BUN), and creatinine (CRE). The administration of inulin not only ameliorated renal injury but also resulted in a reduction in the mRNA expressions of inflammatory factors in the spleen and serum oxidative stress levels, when compared to the DM group. Additionally, inulin treatment in mice with a T2DM model led to a significant increase in the concentrations of three primary short-chain fatty acids (SCFAs) (acetic acid, propionic acid, and butyric acid), while the concentration of advanced glycation end products (AGEs), a prominent inflammatory factor in diabetes, exhibited a significant decrease. The results of untargeted metabolomics indicate that inulin has the potential to alleviate inflammatory response and kidney damage in diabetic mice. This beneficial effect is attributed to its impact on various metabolic pathways, including glycerophospholipid metabolism, taurine and hypotaurine metabolism, arginine biosynthesis, and tryptophan metabolism. Consequently, oral inulin emerges as a promising treatment option for diabetes and kidney injury.


Asunto(s)
Glucemia , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Inflamación , Inulina , Riñón , Metabolómica , Ratones Endogámicos ICR , Estrés Oxidativo , Animales , Inulina/farmacología , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/metabolismo , Ratones , Masculino , Glucemia/metabolismo , Glucemia/efectos de los fármacos , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Estrés Oxidativo/efectos de los fármacos , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/sangre , Nefropatías Diabéticas/patología , Ácidos Grasos Volátiles/metabolismo , Dieta Alta en Grasa , Nitrógeno de la Urea Sanguínea
4.
J Nanobiotechnology ; 22(1): 241, 2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38735933

RESUMEN

BACKGROUND: Colorectal cancer (CRC) incidence is increasing in recent years due to intestinal flora imbalance, making oral probiotics a hotspot for research. However, numerous studies related to intestinal flora regulation ignore its internal mechanisms without in-depth research. RESULTS: Here, we developed a probiotic microgel delivery system (L.r@(SA-CS)2) through the layer-by-layer encapsulation technology of alginate (SA) and chitosan (CS) to improve gut microbiota dysbiosis and enhance anti-tumor therapeutic effect. Short chain fatty acids (SCFAs) produced by L.r have direct anti-tumor effects. Additionally, it reduces harmful bacteria such as Proteobacteria and Fusobacteriota, and through bacteria mutualophy increases beneficial bacteria such as Bacteroidota and Firmicutes which produce butyric acid. By binding to the G protein-coupled receptor 109A (GPR109A) on the surface of colonic epithelial cells, butyric acid can induce apoptosis in abnormal cells. Due to the low expression of GPR109A in colon cancer cells, MK-6892 (MK) can be used to stimulate GPR109A. With increased production of butyrate, activated GPR109A is able to bind more butyrate, which further promotes apoptosis of cancer cells and triggers an antitumor response. CONCLUSION: It appears that the oral administration of L.r@(SA-CS)2 microgels may provide a treatment option for CRC by modifying the gut microbiota.


Asunto(s)
Ácidos Grasos Volátiles , Microbioma Gastrointestinal , Limosilactobacillus reuteri , Probióticos , Microbioma Gastrointestinal/efectos de los fármacos , Probióticos/farmacología , Humanos , Ácidos Grasos Volátiles/metabolismo , Animales , Limosilactobacillus reuteri/metabolismo , Ratones , Quitosano/química , Alginatos/química , Alginatos/farmacología , Apoptosis/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Administración Oral , Neoplasias Colorrectales/tratamiento farmacológico , Línea Celular Tumoral , Receptores Acoplados a Proteínas G/metabolismo , Microgeles/química , Ratones Endogámicos BALB C , Ácido Butírico/farmacología , Ácido Butírico/metabolismo
5.
Nutrients ; 16(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38732527

RESUMEN

Ulcerative colitis (UC) is characterized by chronic inflammation and ulceration of the intestinal inner lining, resulting in various symptoms. Sea buckthorn berries contain a bioactive compound known as sea buckthorn polysaccharide (SBP). However, the precise mechanisms underlying the impact of SBP on UC remain unclear. In this study, we investigated the effects of pretreatment with SBP on colitis induced by DSS. Our findings demonstrate that SBP pretreatment effectively reduces inflammation, oxidative stress, and intestinal barrier damage associated with colitis. To further elucidate the role of SBP-modulated gut microbiota in UC, we performed fecal microbiota transplantation (FMT) on DSS-treated mice. The microbiota from SBP-treated mice exhibits notable anti-inflammatory and antioxidant effects, improves colonic barrier integrity, and increases the abundance of beneficial bacteria, as well as enhancing SCFA production. Collectively, these results strongly indicate that SBP-mediated amelioration of colitis is attributed to its impact on the gut microbiota, particularly through the promotion of SCFA-producing bacteria and subsequent elevation of SCFA levels. This study provides compelling evidence supporting the efficacy of pre-emptive SBP supplementation in alleviating colitis symptoms by modulating the gut microbiota, thereby offering novel insights into the potential of SBP as a regulator of the gut microbiota for colitis relief.


Asunto(s)
Microbioma Gastrointestinal , Hippophae , Polisacáridos , Animales , Hippophae/química , Polisacáridos/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Ratones , Colitis/tratamiento farmacológico , Colitis/inducido químicamente , Colitis/microbiología , Colitis Ulcerosa/microbiología , Colitis Ulcerosa/tratamiento farmacológico , Modelos Animales de Enfermedad , Masculino , Ratones Endogámicos C57BL , Estrés Oxidativo/efectos de los fármacos , Trasplante de Microbiota Fecal , Colon/efectos de los fármacos , Colon/microbiología , Colon/metabolismo , Sulfato de Dextran , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Frutas/química , Ácidos Grasos Volátiles/metabolismo
6.
Nutrients ; 16(9)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38732569

RESUMEN

Previous studies have identified a role for the gut microbiome and its metabolic products, short-chain fatty acids (SCFAs), in the maintenance of muscle mass and physical function (i.e., the gut-muscle axis), but interventions aimed at positively impacting the gut-muscle axis during aging are sparse. Gut bacteria ferment soluble fiber into SCFAs, and accordingly, to evaluate the impact of a high-soluble-fiber diet (HSFD) on the gut-muscle axis, we fed a whole-food, 3×-higher-soluble fiber-containing diet (relative to standard chow) to aged (98 weeks) C57BL/6J mice for 10 weeks. The HSFD significantly altered gut bacterial community structure and composition, but plasma SCFAs were not different, and a positive impact on muscle-related measures (when normalized to body weight) was not identified. However, when evaluating sex differences between dietary groups, female (but not male) HSFD-fed mice had significant increases for SCFAs, the quadriceps/body weight (BW) ratio, and treadmill work performance (distance run × BW), which suggests that an HSFD can positively impact the gut-muscle axis. In contrast, consistent effects in both male and female HSFD-fed mice included weight and fat loss, which suggests a positive role for an HSFD on the gut-adipose axis in aged mice.


Asunto(s)
Envejecimiento , Fibras de la Dieta , Ácidos Grasos Volátiles , Microbioma Gastrointestinal , Ratones Endogámicos C57BL , Animales , Fibras de la Dieta/administración & dosificación , Microbioma Gastrointestinal/fisiología , Masculino , Femenino , Ácidos Grasos Volátiles/metabolismo , Ratones , Envejecimiento/fisiología , Músculo Esquelético/metabolismo , Peso Corporal , Dieta
7.
Nutrients ; 16(9)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38732577

RESUMEN

BACKGROUND: Cadmium (Cd) is an environmental contaminant that poses risks to human and animal health. Selenium (Se), a beneficial element, alleviates the detrimental consequences of colitis and Cd toxicity. Se is found in food products as both inorganic Se (sodium selenite) and organic Se (typically Se-enriched yeast). Nano-selenium (nano-Se; a novel form of Se produced through the bioreduction of Se species) has recently garnered considerable interest, although its effects against Cd-induced enterotoxicity are poorly understood. The aim of this study was to investigate the impact of nano-selenium on mitigating cadmium toxicity and safeguarding the integrity of the intestinal barrier. METHODS: For a total of two cycles, we subjected 6-week-old C57 mice to chronic colitis by exposing them to Cd and nano-selenium for two weeks, followed by DSS water for one week. RESULTS: The application of nano-selenium mitigated the intensity of colitis and alleviated inflammation in the colon. Nano-selenium enhanced the diversity of the intestinal flora, elevated the concentration of short-chain fatty acids (SCFAs) in feces, and improved the integrity of the intestinal barrier. CONCLUSIONS: In summary, nano-Se may reduce intestinal inflammation by regulating the growth of intestinal microorganisms and protecting the intestinal barrier.


Asunto(s)
Cadmio , Colitis , Microbioma Gastrointestinal , Ratones Endogámicos C57BL , Selenio , Animales , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Selenio/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Ratones , Colon/efectos de los fármacos , Colon/metabolismo , Colon/microbiología , Masculino , Enfermedad Crónica , Modelos Animales de Enfermedad , Nanopartículas , Ácidos Grasos Volátiles/metabolismo , Heces/microbiología , Sulfato de Dextran , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología
8.
Nutrients ; 16(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38732582

RESUMEN

Recent studies have highlighted the lipid-lowering ability of hawthorn ethanol extract (HEE) and the role played by gut flora in the efficacy of HEE. Our study sought to explore the effects of HEE on non-alcoholic fatty liver disease (NAFLD) in normal flora and pseudo germ-free mice. The results showed that HEE effectively diminished hepatic lipid accumulation, ameliorated liver function, reduced inflammatory cytokine levels and blood lipid profiles, and regulated blood glucose levels. HEE facilitated triglyceride breakdown, suppressed fatty acid synthesis, and enhanced intestinal health by modulating the diversity of the gut microbiota and the production of short-chain fatty acids in the gut. In addition, HEE apparently helps to increase the presence of beneficial genera of bacteria, thereby influencing the composition of the gut microbiota, and the absence of gut flora affects the efficacy of HEE. These findings reveal the potential of hawthorn for the prevention and treatment of NAFLD and provide new perspectives on the study of functional plants to improve liver health.


Asunto(s)
Crataegus , Microbioma Gastrointestinal , Metabolismo de los Lípidos , Hígado , Enfermedad del Hígado Graso no Alcohólico , Extractos Vegetales , Microbioma Gastrointestinal/efectos de los fármacos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/microbiología , Extractos Vegetales/farmacología , Animales , Crataegus/química , Hígado/metabolismo , Hígado/efectos de los fármacos , Ratones , Masculino , Metabolismo de los Lípidos/efectos de los fármacos , Ratones Endogámicos C57BL , Etanol , Modelos Animales de Enfermedad , Triglicéridos/sangre , Triglicéridos/metabolismo , Citocinas/metabolismo , Ácidos Grasos Volátiles/metabolismo
9.
J Med Invest ; 71(1.2): 121-128, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38735707

RESUMEN

OBJECTIVES: Partially hydrolyzed guar gum (PHGG) is a soluble dietary fiber;in addition to improving bowel movements, it maintains intestinal health by producing short-chain fatty acids. However, majority of clinical studies on PHGG have been concluded within a month and excluded usual drug therapy. Hence, this study aimed to determine the effects of long-term consumption of PHGG, in combination with drug therapy, on gut bacteria ratios, laboratory values for inflammatory response, and fecal characteristics. METHODS AND RESULTS: The study was performed in patients with irritable bowel syndrome (IBS), Crohn's disease (CD), and ulcerative colitis (UC), by the administration of PHGG for six months while they continued their usual treatment. PHGG treatment caused significant changes in patients with IBS, including an increase in the abundance of short-chain fatty acid-producing bacteria, a significant decrease in Bacteroides abundance, and normalization of the Bristol scale of stool. In patients with UC, non-significant normalization of soft stools and decrease in fecal calprotectin were observed. Adverse events were not observed in any of the groups. CONCLUSION: Thus, it would be beneficial to include PHGG in the usual drug therapies of patients with IBS. J. Med. Invest. 71 : 121-128, February, 2024.


Asunto(s)
Fibras de la Dieta , Galactanos , Microbioma Gastrointestinal , Síndrome del Colon Irritable , Mananos , Gomas de Plantas , Humanos , Microbioma Gastrointestinal/efectos de los fármacos , Síndrome del Colon Irritable/tratamiento farmacológico , Síndrome del Colon Irritable/microbiología , Masculino , Femenino , Fibras de la Dieta/administración & dosificación , Adulto , Persona de Mediana Edad , Mananos/administración & dosificación , Gomas de Plantas/administración & dosificación , Galactanos/administración & dosificación , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Heces/microbiología , Heces/química , Ácidos Grasos Volátiles/análisis , Ácidos Grasos Volátiles/metabolismo
10.
BMC Microbiol ; 24(1): 161, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730357

RESUMEN

Gestational diabetes mellitus (GDM) is characterized by insulin resistance and low-grade inflammation, and most studies have demonstrated gut dysbiosis in GDM pregnancies. Overall, they were manifested as a reduction in microbiome diversity and richness, depleted short chain fatty acid (SCFA)-producing genera and a dominant of Gram-negative pathogens releasing lipopolysaccharide (LPS). The SCFAs functioned as energy substance or signaling molecules to interact with host locally and beyond the gut. LPS contributed to pathophysiology of diseases through activating Toll-like receptor 4 (TLR4) and involved in inflammatory responses. The gut microbiome dysbiosis was not only closely related with GDM, it was also vital to fetal health through vertical transmission. In this review, we summarized gut microbiota signature in GDM pregnancies of each trimester, and presented a brief introduction of microbiome derived SCFAs. We then discussed mechanisms of microbiome-host interactions in the physiopathology of GDM and associated metabolic disorders. Finally, we compared offspring microbiota composition from GDM with that from normal pregnancies, and described the possible mechanism.


Asunto(s)
Diabetes Gestacional , Disbiosis , Ácidos Grasos Volátiles , Microbioma Gastrointestinal , Diabetes Gestacional/microbiología , Diabetes Gestacional/metabolismo , Humanos , Embarazo , Femenino , Disbiosis/microbiología , Ácidos Grasos Volátiles/metabolismo , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Bacterias/aislamiento & purificación , Interacciones Microbiota-Huesped , Lipopolisacáridos/metabolismo
11.
Trop Anim Health Prod ; 56(5): 169, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769230

RESUMEN

Rumen cud transfaunation re-establishes rumen micro environment and improves fermentation in recipient animals affected with digestive disorders. Preserving rumen cud or fluid will increase its availability for the treatment of rumen fermentation disorders, without having to maintain donor animals. Rumen fluid collected from healthy goats, fed standard ration having roughage 70% and concentrate 30%, was lyophilized (prefreezing -80 °C, 48 h; lyophilization -45 °C, 32 h) using 5% glycerol as cryoprotectant. The 16 S metagenome analysis of the lyophilized rumen fluid (LRF) revealed an abundance of Prevotella (33.2%). Selenomonas ruminantium (1.87%) and Megasphaera elsdenii (0.23%) were also present. Twenty-four goats having history of high grain feeding and exhibiting clinical symptoms of rumen fermentation disorders were randomly distributed into either one of the two treatment groups viz., T1 = oral administration of LRF 31 g/animal/day and T2 = oral administration of sodium bicarbonate (SB) 15 g/animal/day. Post intervention LRF and SB, improved animal body condition, feed intake, fecal consistency, elevated the ruminal pH at 48 h, reduced propionate and lactate at 48 h, reduced total volatile fatty acids (TVFA) and ammonia nitrogen at 24 h. Significant reduction in serum blood urea nitrogen (BUN) and urea levels were observed even from 24 h post intervention irrespective of the treatments. LRF significantly improved acetate and decreased propionate production compared to SB. LRF at 7.5% (v/v) can thus be used to counteract ruminal fermentation disorders in goats sequel to high grain ration.


Asunto(s)
Alimentación Animal , Fermentación , Cabras , Rumen , Animales , Cabras/fisiología , Rumen/microbiología , Rumen/metabolismo , Alimentación Animal/análisis , Liofilización , Dieta/veterinaria , Grano Comestible/química , Prevotella , Concentración de Iones de Hidrógeno , Ácidos Grasos Volátiles/metabolismo , Ácidos Grasos Volátiles/análisis , Acidosis/veterinaria , Distribución Aleatoria , Megasphaera , Selenomonas , Masculino
12.
J Agric Food Chem ; 72(20): 11746-11758, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38718253

RESUMEN

A novel strategy combining ferulic acid and glucose was proposed to reduce ß-lactoglobulin (BLG) allergenicity and investigate whether the reduction in allergenicity was associated with gut microbiome and serum metabolism. As a result, the multistructure of BLG changed, and the modified BLG decreased significantly the contents of IgE, IgG, IgG1, and mMCP-1 in serum, improved the diversity and structural composition of gut microbiota, and increased the content of short-chain fatty acids (SCFAs) in allergic mice. Meanwhile, allergic mice induced by BLG affected arachidonic acid, tryptophan, and other metabolic pathways in serum, the modified BLG inhibited the production of metabolites in arachidonic acid metabolism pathway and significantly increased tryptophan metabolites, and this contribution helps in reducing BLG allergenicity. Overall, reduced allergenicity of BLG after ferulic acid was combined with glucose modification by regulating gut microbiota, the metabolic pathways of arachidonic acid and tryptophan. The results may offer new thoughts alleviating the allergy risk of allergenic proteins.


Asunto(s)
Alérgenos , Ácidos Cumáricos , Microbioma Gastrointestinal , Glucosa , Lactoglobulinas , Ácidos Cumáricos/metabolismo , Ácidos Cumáricos/química , Animales , Lactoglobulinas/inmunología , Lactoglobulinas/química , Lactoglobulinas/metabolismo , Ratones , Humanos , Alérgenos/inmunología , Alérgenos/química , Alérgenos/metabolismo , Glucosa/metabolismo , Femenino , Bacterias/inmunología , Bacterias/metabolismo , Bacterias/clasificación , Bacterias/genética , Ratones Endogámicos BALB C , Inmunoglobulina E/inmunología , Inmunoglobulina E/sangre , Ácidos Grasos Volátiles/metabolismo , Bovinos , Inmunoglobulina G/inmunología , Inmunoglobulina G/sangre , Hipersensibilidad a la Leche/inmunología
13.
J Agric Food Chem ; 72(20): 11759-11772, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38738668

RESUMEN

This study aimed to investigate alterations in gut microbiota and metabolites mediated by wheat-resistant starch and its repair of gut barrier dysfunction induced by a high-fat diet (HFD). Structural data revealed that chlorogenic acid (CA)/linoleic acid (LA) functioned through noncovalent interactions to form a more ordered structure and fortify antidigestibility in wheat starch (WS)-CA/LA complexes; the resistant starch (RS) contents of WS-CA, WS-LA, and WS-CA-LA complexes were 23.40 ± 1.56%, 21.25 ± 1.87%, and 35.47 ± 2.16%, respectively. Dietary intervention with WS-CA/LA complexes effectively suppressed detrimental alterations in colon tissue morphology induced by HFD and repaired the gut barrier in ZO-1 and MUC-2 levels. WS-CA/LA complexes could augment gut barrier-promoting microbes including Parabacteroides, Bacteroides, and Muribaculum, accompanied by an increase in short-chain fatty acids (SCFAs) and elevated expression of SCFA receptors. Moreover, WS-CA/LA complexes modulated secondary bile acid metabolism by decreasing taurochenodeoxycholic, cholic, and deoxycholic acids, leading to the activation of bile acid receptors. Collectively, this study offered guiding significance in the manufacture of functional diets for a weak gut barrier.


Asunto(s)
Ácido Clorogénico , Dieta Alta en Grasa , Microbioma Gastrointestinal , Ácido Linoleico , Ratones Endogámicos C57BL , Almidón , Triticum , Ácido Clorogénico/metabolismo , Ácido Clorogénico/farmacología , Ácido Clorogénico/administración & dosificación , Ácido Clorogénico/química , Dieta Alta en Grasa/efectos adversos , Triticum/química , Triticum/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Animales , Masculino , Ratones , Almidón/metabolismo , Almidón/química , Ácido Linoleico/metabolismo , Ácido Linoleico/química , Bacterias/clasificación , Bacterias/metabolismo , Bacterias/genética , Bacterias/efectos de los fármacos , Bacterias/aislamiento & purificación , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Humanos , Ácidos Grasos Volátiles/metabolismo , Almidón Resistente/metabolismo
14.
Anim Sci J ; 95(1): e13955, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38769748

RESUMEN

This study was conducted to assess the effects of fermented rice bran (FRB) with Ligilactobacillus equi on ruminal fermentation using an in vitro system. Oat hay, corn starch, and wheat bran were used as substrate for control. Ten percent of wheat bran was replaced with rice bran (RB), rice bran fermented with distilled water, and rice bran fermented with L. equi for T1, T2, and T3, respectively. The experimental diets were mixed with buffered rumen fluid from wethers under nitrogen gas and incubated for 24 h at 39°C. The fermentation profile and microbial population were analyzed after the incubations. The results revealed that the RB and FRB (with or without L. equi) significantly reduced the gas, methane (CH4), and CH4 per dry matter digested (p < 0.001). Total short-chain fatty acid was also reduced in T1 and T2 in comparison with the control (p < 0.001). Propionate proportion was increased while butyrate proportion was reduced in response to treatment addition in cultures (p < 0.001). Anaerobic fungi and Fibrobacter succinogenes abundance were decreased in treatments (p < 0.001). Overall, CH4 production in vitro can be reduced by RB and FRB supplementation as a result of the reduction of fiber-degrading microorganisms and a decrease in gas production.


Asunto(s)
Fibras de la Dieta , Ácidos Grasos Volátiles , Fermentación , Metano , Oryza , Rumen , Animales , Rumen/microbiología , Rumen/metabolismo , Fibras de la Dieta/metabolismo , Metano/metabolismo , Ácidos Grasos Volátiles/metabolismo , Técnicas In Vitro , Alimentación Animal , Fibrobacter/metabolismo , Propionatos/metabolismo , Butiratos/metabolismo
15.
Microbiome ; 12(1): 90, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750595

RESUMEN

BACKGROUND: Gut microbiome metabolites are important modulators of host health and disease. However, the overall metabolic potential of the gut microbiome and interactions with the host organs have been underexplored. RESULTS: Using stable isotope resolved metabolomics (SIRM) in mice orally gavaged with 13C-inulin (a tracer), we first observed dynamic enrichment of 13C-metabolites in cecum contents in the amino acids and short-chain fatty acid metabolism pathways. 13C labeled metabolites were subsequently profiled comparatively in plasma, liver, brain, and skeletal muscle collected at 6, 12, and 24 h after the tracer administration. Organ-specific and time-dependent 13C metabolite enrichments were observed. Carbons from the gut microbiome were preferably incorporated into choline metabolism and the glutamine-glutamate/GABA cycle in the liver and brain, respectively. A sex difference in 13C-lactate enrichment was observed in skeletal muscle, which highlights the sex effect on the interplay between gut microbiome and host organs. Choline was identified as an interorgan metabolite derived from the gut microbiome and fed the lipogenesis of phosphatidylcholine and lysophosphatidylcholine in host organs. In vitro and in silico studies revealed the de novo synthesis of choline in the human gut microbiome via the ethanolamine pathway, and Enterococcus faecalis was identified as a major choline synthesis species. These results revealed a previously underappreciated role for gut microorganisms in choline biosynthesis. CONCLUSIONS: Multicompartmental SIRM analyses provided new insights into the current understanding of dynamic interorgan metabolite transport between the gut microbiome and host at the whole-body level in mice. Moreover, this study singled out microbiota-derived metabolites that are potentially involved in the gut-liver, gut-brain, and gut-skeletal muscle axes. Video Abstract.


Asunto(s)
Isótopos de Carbono , Microbioma Gastrointestinal , Metabolómica , Músculo Esquelético , Animales , Ratones , Metabolómica/métodos , Isótopos de Carbono/metabolismo , Masculino , Músculo Esquelético/metabolismo , Femenino , Encéfalo/metabolismo , Hígado/metabolismo , Colina/metabolismo , Ratones Endogámicos C57BL , Humanos , Ácidos Grasos Volátiles/metabolismo
16.
Food Funct ; 15(10): 5596-5612, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38722000

RESUMEN

In the presented study, natural rice containing high resistant starch content was used as a raw material to produce rice resistant starch (RRS) through enzymatic hydrolysis with heat-stable α-amylase and glucoamylase. The chemical composition, structural characteristics and in vitro glycemic index (GI) of RRS were evaluated. The effects of RRS at different doses on the body weight, serum biochemical levels, pathological indexes, production of short-chain fatty acids (SCFAs) in the gut and the intestinal microbial composition in T2DM mice were investigated. The results of physiochemical characterization indicated that, relative to rice flour, RRS mainly comprising resistant starch had higher crystallinity (25.85%) and a more stable structure, which contributed to its lower digestibility and decreased GI in vitro. Compared with the model control group, 1 g per kg BW and 2 g per kg BW oral gavage dosages of RRS effectively enhanced the SCFA productivity in the T2DM mouse gut, as well as alleviating T2DM symptoms, involving an increase in body weight, reduction in fasting blood glucose, total cholesterol, triglyceride, low-density lipoprotein cholesterol, alanine transaminase and aspartate aminotransferase, and an increase in serum insulin and high-density lipoprotein cholesterol. Besides, 1 g per kg BW and 2 g per kg BW dosages of RRS mitigated T2DM-induced pancreas damage. Furthermore, up-regulation in the abundance of probiotics (Lactobacillus, Ruminococcus, etc.) and down-regulation in the number of harmful bacteria (Desulfovibrio, Prevotella, etc.) were observed in all RRS-treated groups. In summary, this work suggested that RRS prepared using heat-stable α-amylase and glucoamylase could be a potential functional component for amelioration of T2DM applied in the fields of food and pharmaceutics.


Asunto(s)
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Glucano 1,4-alfa-Glucosidasa , Oryza , Almidón , alfa-Amilasas , Animales , Oryza/química , Ratones , Microbioma Gastrointestinal/efectos de los fármacos , Glucano 1,4-alfa-Glucosidasa/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , alfa-Amilasas/metabolismo , Masculino , Almidón/química , Almidón/metabolismo , Almidón/farmacología , Glucemia/metabolismo , Ácidos Grasos Volátiles/metabolismo , Almidón Resistente/farmacología , Calor , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Humanos
17.
Microbiome ; 12(1): 86, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730492

RESUMEN

BACKGROUND: Parasitic helminths influence the composition of the gut microbiome. However, the microbiomes of individuals living in helminth-endemic regions are understudied. The Orang Asli, an indigenous population in Malaysia with high burdens of the helminth Trichuris trichiura, display microbiotas enriched in Clostridiales, an order of spore-forming obligate anaerobes with immunogenic properties. We previously isolated novel Clostridiales that were enriched in these individuals and found that a subset promoted the Trichuris life cycle. In this study, we aimed to further characterize the functional properties of these bacteria. RESULTS: Clostridiales isolates were profiled for their ability to perform 57 enzymatic reactions and produce short-chain fatty acids (SCFAs) and hydrogen sulfide, revealing that these bacteria were capable of a range of activities associated with metabolism and host response. Consistent with this finding, monocolonization of mice with individual isolates identified bacteria that were potent inducers of regulatory T-cell (Treg) differentiation in the colon. Comparisons between variables revealed by these studies identified enzymatic properties correlated with Treg induction and Trichuris egg hatching. CONCLUSION: We identified Clostridiales species that are sufficient to induce high levels of Tregs. We also identified a set of metabolic activities linked with Treg differentiation and Trichuris egg hatching mediated by these newly isolated bacteria. Altogether, this study provides functional insights into the microbiotas of individuals residing in a helminth-endemic region. Video Abstract.


Asunto(s)
Diferenciación Celular , Clostridiales , Microbioma Gastrointestinal , Linfocitos T Reguladores , Trichuris , Animales , Linfocitos T Reguladores/inmunología , Ratones , Malasia , Clostridiales/aislamiento & purificación , Humanos , Ácidos Grasos Volátiles/metabolismo , Femenino , Tricuriasis/parasitología , Tricuriasis/inmunología , Tricuriasis/microbiología
18.
Sci Total Environ ; 931: 172901, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38697549

RESUMEN

High nitrate pollution in agriculture and industry poses a challenge to emerging methane oxidation coupled denitrification. In this study, an efficient nitrate removal efficiency of 100 % was achieved at an influent loading rate of 400 mg-N/L·d, accompanied by the production of short chain fatty acids (SCFAs) with a maximum value of 80.9 mg/L. Batch tests confirmed that methane was initially converted to acetate, which then served as a carbon source for denitrification. Microbial community characterization revealed the dominance of heterotrophic denitrifiers, including Simplicispira (22.8 %), Stappia (4.9 %), and the high­nitrogen-tolerant heterotrophic denitrifier Diaphorobacter (19.0 %), at the nitrate removal rate of 400 mg-N/L·d. Notably, the low abundance of methanotrophs ranging from 0.24 % to 3.75 % across all operational stages does not fully align with the abundance of pmoA genes, suggesting the presence of other functional microorganisms capable of methane oxidation and SCFAs production. These findings could facilitate highly efficient denitrification driven by methane and contributed to the development of denitrification using methane as an electron donor.


Asunto(s)
Desnitrificación , Ácidos Grasos Volátiles , Metano , Metano/metabolismo , Ácidos Grasos Volátiles/metabolismo , Eliminación de Residuos Líquidos/métodos , Interacciones Microbianas , Nitratos/metabolismo , Reactores Biológicos/microbiología
19.
Sci Total Environ ; 931: 172898, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38697543

RESUMEN

The production of short-chain fatty acids (SCFAs) is constrained by substrate availability and the increased fractional pressure of H2 emitted by acidogenic/fermentative bacteria during anaerobic fermentation of waste activated sludge (WAS). This study introduced a novel approach employing zero-valent iron (ZVI)-activated sulfite pretreatment combined with H2-consuming sulfate-reducing bacteria (SRB) mediation to improve SCFAs, especially acetate production from WAS fermentation. Experimental results showed that the combined ZVI-activated sulfite and incomplete-oxidative SRB (io-SRB) process achieved a peak SCFAs production of 868.11 mg COD/L, with acetate accounting for 80.55 %, which was 7.90- and 2.18-fold higher than that obtained from raw WAS fermentation, respectively. This could be firstly attributed to the SO4- and OH generated by ZVI-activated sulfite, which significantly promoted WAS decomposition, e.g., soluble proteins and carbohydrates increased 14.3- and 10.8-fold, respectively, over those in raw WAS. The biodegradation of dissolved organic matter was subsequently enhanced by the synergistic interaction and H2 transfer between anaerobic fermentation bacteria (AFB) and io-SRB. The positive and negative correlations among AFB, nitrate-reducing bacteria (NRB) and the io-SRB consortia were revealed by molecular ecological network (MEN) and Mantel test. Moreover, the expression of functional genes was also improved, for instance, in relation to acetate formation, the relative abundances of phosphate acetyltransferase and acetate kinase was 0.002 % and 0.005 % higher than that in the control test, respectively. These findings emphasized the importance of sulfate radicals-based oxidation pretreatment and the collaborative relationships of multifunctional microbes on the value-added chemicals and energy recovery from sludge fermentation.


Asunto(s)
Ácidos Grasos Volátiles , Fermentación , Aguas del Alcantarillado , Sulfitos , Eliminación de Residuos Líquidos , Aguas del Alcantarillado/microbiología , Sulfitos/metabolismo , Ácidos Grasos Volátiles/metabolismo , Eliminación de Residuos Líquidos/métodos , Sulfatos/metabolismo , Hidrógeno/metabolismo , Bacterias/metabolismo , Hierro/metabolismo
20.
Chemosphere ; 358: 142270, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38719126

RESUMEN

To reduce the high cost of organic carbon sources in waste resource utilization in the cultivation of microalgae, volatile fatty acids (VFAs) derived from activated sludge were used as the sole carbon source to culture Chlorella sorokiniana under the heterotrophic cultivation. The addition of VFAs in the heterotrophic condition enhanced the total nitrogen (TN) and phosphorus (TP) removal of C. sorokiniana, which proved the advantageous microalgae in using VFAs in the heterotrophic culture after screening in the previous study. To discover the possible mechanism of nitrogen and phosphorus adsorption in heterotrophic conditions by microalgae, the effect of different ratios of VFAs (acetic acid (AA): propionic acid (PA): butyric acid (BA)) on the nutrient removal and growth properties of C. sorokiniana was studied. In the 8:1:1 group, the highest efficiency (77.19%) of VFAs assimilation, the highest biomass (0.80 g L-1) and lipid content (31.35%) were achieved, with the highest TN and TP removal efficiencies of 97.44 % and 91.02 %, respectively. Moreover, an aerobic denitrifying bacterium, Pseudomonas, was determined to be the dominant genus under this heterotrophic condition. This suggested that besides nitrate uptake and utilization by C. sorokiniana under the heterotrophy, the conduct of the denitrification process was also the main reason for obtaining high nitrogen removal efficiency.


Asunto(s)
Chlorella , Ácidos Grasos Volátiles , Procesos Heterotróficos , Microalgas , Nitrógeno , Fósforo , Eliminación de Residuos Líquidos , Aguas Residuales , Chlorella/metabolismo , Chlorella/crecimiento & desarrollo , Ácidos Grasos Volátiles/metabolismo , Nitrógeno/metabolismo , Microalgas/metabolismo , Aguas Residuales/química , Fósforo/metabolismo , Eliminación de Residuos Líquidos/métodos , Aguas del Alcantarillado/microbiología , Biomasa , Desnitrificación , Contaminantes Químicos del Agua/metabolismo , Biodegradación Ambiental
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA