Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.402
Filtrar
1.
PLoS One ; 19(5): e0303341, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38728347

RESUMEN

The field of landscape architecture has placed significant emphasis on low-carbon landscapes due to the increasing challenges posed by global warming and environmental deterioration in recent years. The soil ecological conditions in saline-alkaline areas are characterized by poor quality, resulting in suboptimal growth conditions for trees. This, in turn, hampers their ability to effectively sequester carbon, thereby diminishing the potential benefits of carbon sinks. Additionally, the maintenance of tree landscapes in such areas generates more carbon emissions than does conventional green land, making it difficult to reap the benefits of tree-based carbon. A comprehensive evaluation of trees in green park spaces in saline-alkaline areas is conducted from a low-carbon perspective; by identifying the dominant tree species that are well suited to greening, we can offer a precise scientific foundation for implementing low-carbon greening initiatives in cities situated in saline-alkaline environments. Therefore, as a case study, this study investigates Tianjin Qiaoyuan Park, a typical saline park in the Bohai Bay region. The hierarchical analysis method (AHP) was used to evaluate 50 species of trees and shrubs in the park from a low-carbon perspective. The results show that the evaluation system consists of four criterion layers and 15 indicator factors. The relative weight of the criterion layer followed the order of habitat adaptability (B2) > carbon sequestration capacity (B1) > low-carbon management and conservation (B3) > landscape aesthetics (B4). The indicator layer assigned greater weight values to net assimilation (C1), saline and alkaline adaptability (C3), drought tolerance (C4), irr igation and fertilization needs (C8), growth rate (C2), and adaptability to barrenness (C5). The trees were classified into five distinct categories, with each exhibiting significant variation in terms of the strengths and weaknesses of the indicators. According to the comprehensive score, the trees were categorized into three levels. The Grade I plants exhibited the best carbon efficiency performance, comprising a total of 12 species (e.g. Sabina chinensis, Fraxinus chinensis 'Aurea' and Hibiscus syriacu), and demonstrated superior performance in all aspects. Grade II trees, consisting of 26 species (e.g Pinus tabuliformis, Paulownia fortunei, Ligustrum × vicaryi), had the second-highest comprehensive score. Moreover, Grade III trees, encompassing 12 species (e.g Acer mono, Cedrus deodara, Magnolia denudata), exhibited lower comprehensive scores. The extensive use of Grade I and II tree species is recommended in the implementation of low-carbon greening projects in the Bohai Bay region, while Grade III tree species should be judiciously utilized. The findings of this research can serve as a valuable resource for the scientific identification of tree species that are suitable for urban park green spaces in the Bohai Bay region, which is characterized by predominantly saline and alkaline soil. Additionally, the development of an evaluation system can guide the selection of low-carbon tree species when evaluating other types of saline and alkaline lands.


Asunto(s)
Carbono , Carbono/análisis , Carbono/metabolismo , China , Árboles/crecimiento & desarrollo , Parques Recreativos , Conservación de los Recursos Naturales/métodos , Ecosistema , Suelo/química , Secuestro de Carbono
2.
Sci Rep ; 14(1): 10611, 2024 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-38719887

RESUMEN

Forest growth varies across landscapes due to the intricate relationships between various environmental drivers and forest management. In this study, we analysed the variation of tree growth potential across a landscape scale and its relation to soil moisture. We hypothesised that soil moisture conditions drive landscape-level variation in site quality and that intermediate soil moisture conditions demonstrate the highest potential forest production. We used an age-independent difference model to estimate site quality in terms of maximum achievable tree height by measuring the relative change in Lorey's mean height for a five year period across 337 plots within a 68 km2 boreal landscape. We achieved wall-to-wall estimates of site quality by extrapolating the modelled relationship using repeated airborne laser scanning data collected in connection to the field surveys. We found a clear decrease in site quality under the highest soil moisture conditions. However, intermediate soil moisture conditions did not demonstrate clear site quality differences; this is most likely a result of the nature of the modelled soil moisture conditions and limitations connected to the site quality estimation. There was considerable unexplained variation in the modelled site quality both on the plot and landscape levels. We successfully demonstrated that there is a significant relationship between soil moisture conditions and site quality despite limitations associated with a short study period in a low productive region and the precision of airborne laser scanning measurements of mean height.


Asunto(s)
Suelo , Árboles , Suelo/química , Árboles/crecimiento & desarrollo , Agua , Bosques , Taiga
3.
Sci Rep ; 14(1): 10721, 2024 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-38729962

RESUMEN

Drainage and deforestation of tropical peat swamp forests (PSF) in Southeast Asia cause carbon emissions and biodiversity loss of global concern. Restoration efforts to mitigate these impacts usually involve peatland rewetting by blocking canals. However, there have been no studies to date of the optimal rewetting approach that will reduce carbon emission whilst also promoting PSF regeneration. Here we present results of a large-scale restoration trial in Sumatra (Indonesia), monitored for 7.5 years. Water levels in a former plantation were raised over an area of 4800 ha by constructing 257 compacted peat dams in canals. We find peat surface subsidence rates in the rewetted restoration area and adjoining PSF to be halved where water tables were raised from ~ - 0.6 m to ~ - 0.3 m, demonstrating the success of rewetting in reducing carbon emission. A total of 57 native PSF tree species were found to spontaneously grow in the most rewetted conditions and in high densities, indicating that forest regrowth is underway. Based on our findings we propose that an effective PSF restoration strategy should follow stepwise rewetting to achieve substantial carbon emission reduction alongside unassisted regrowth of PSF, thereby enabling the peat, forest and canal vegetation to establish a new nature-based ecosystem balance.


Asunto(s)
Conservación de los Recursos Naturales , Bosques , Suelo , Humedales , Conservación de los Recursos Naturales/métodos , Clima Tropical , Indonesia , Árboles/crecimiento & desarrollo , Biodiversidad
4.
Glob Chang Biol ; 30(5): e17317, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38747199

RESUMEN

Each year, an average of 45 tropical cyclones affect coastal areas and potentially impact forests. The proportion of the most intense cyclones has increased over the past four decades and is predicted to continue to do so. Yet, it remains uncertain how topographical exposure and tree characteristics can mediate the damage caused by increasing wind speed. Here, we compiled empirical data on the damage caused by 11 cyclones occurring over the past 40 years, from 74 forest plots representing tropical regions worldwide, encompassing field data for 22,176 trees and 815 species. We reconstructed the wind structure of those tropical cyclones to estimate the maximum sustained wind speed (MSW) and wind direction at the studied plots. Then, we used a causal inference framework combined with Bayesian generalised linear mixed models to understand and quantify the causal effects of MSW, topographical exposure to wind (EXP), tree size (DBH) and species wood density (ρ) on the proportion of damaged trees at the community level, and on the probability of snapping or uprooting at the tree level. The probability of snapping or uprooting at the tree level and, hence, the proportion of damaged trees at the community level, increased with increasing MSW, and with increasing EXP accentuating the damaging effects of cyclones, in particular at higher wind speeds. Higher ρ decreased the probability of snapping and to a lesser extent of uprooting. Larger trees tended to have lower probabilities of snapping but increased probabilities of uprooting. Importantly, the effect of ρ decreasing the probabilities of snapping was more marked for smaller than larger trees and was further accentuated at higher MSW. Our work emphasises how local topography, tree size and species wood density together mediate cyclone damage to tropical forests, facilitating better predictions of the impacts of such disturbances in an increasingly windier world.


Asunto(s)
Tormentas Ciclónicas , Bosques , Árboles , Clima Tropical , Viento , Árboles/crecimiento & desarrollo , Teorema de Bayes
5.
Sci Rep ; 14(1): 10948, 2024 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740964

RESUMEN

While the forests on Mount Taishan are predominantly man-made, there is a notable vertical variation in vegetation. This study employs the method of cloud model, quantifying uncertainty (fuzziness and randomness) of things. Utilizing digital elevation model (DEM) and vegetation distribution data, we constructed elevation cloud models for Mount Taishan's deciduous broad-leaved, temperate coniferous, and mixed coniferous-broadleaved forests. Using three numerical features of the cloud model-Expectation (EX), Entropy (EN), and Hyper-entropy (HE)-we quantitatively analyzed the macro regularity and local heterogeneity of Mount Taishan's forests vertical distribution from the perspective of uncertainty theory. The results indicate: (1) The EX of the core zone elevation of deciduous broad-leaved forest is 716.65 m, temperate coniferous forest is 1053.51 m, and mixed coniferous-broadleaved forest is 1384.09 m. The variation range of the core zone distribution height is smaller in the mixed coniferous-broadleaved forest (EN: 53.74 m) compared to deciduous broad-leaved forest (EN: 99.63 m) and temperate coniferous forest (EN: 121.70 m). (2) The fuzziness and randomness of the distribution height of the lower extension zones of deciduous broad-leaved forest and temperate coniferous forest (EN: 75.15 m, 184.56 m; HE: 24.09 m, 63.54 m) are greater than those of the upper extension zones (EN: 44.75 m, 42.49 m; HE: 14.48 m, 13.23 m). (3) The distribution fuzziness and randomness within temperate coniferous forests exceed those of deciduous broad-leaved forests. Within the core zones, the uncertainty regarding the vertical distribution of vegetation across different aspects remains consistent, which retains the characteristic of man-made forests. However, in transition areas, there is significant disparity, reflecting the adaptive relationship between vegetation and its environment to some extent. In the upper and lower extension zones of deciduous broad-leaved forests, the EX values for the vertical distribution height of mixed coniferous and broad-leaved forests differ significantly from those of deciduous broad-leaved forests (the difference is 22.82-39.15 m), yet closely resemble those of temperate coniferous forests (the difference is 4.79-7.94 m). This suggests a trend wherein deciduous broad-leaved tree species exhibit a proclivity to encroach upon coniferous forest habitats. The elevation cloud model of vertical vegetation zones provides a novel perspective and method for the detailed analysis of Mount Taishan's vegetation vertical differentiation.


Asunto(s)
Bosques , China , Modelos Teóricos , Árboles/crecimiento & desarrollo , Tracheophyta/crecimiento & desarrollo , Ecosistema
6.
Glob Chang Biol ; 30(5): e17304, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38711381

RESUMEN

Subtropical forests, recognized for their intricate vertical canopy stratification, exhibit high resistance to extreme drought. However, the response of leaf phenology to drought in the species-rich understory remains poorly understood. In this study, we constructed a digital camera system, amassing over 360,000 images through a 70% throughfall exclusion experiment, to explore the drought response of understory leaf phenology. The results revealed a significant advancement in understory leaf senescence phenology under drought, with 11.75 and 15.76 days for the start and end of the leaf-falling event, respectively. Pre-season temperature primarily regulated leaf development phenology, whereas soil water dominated the variability in leaf senescence phenology. Under drought conditions, temperature sensitivities for the end of leaf emergence decreased from -13.72 to -11.06 days °C-1, with insignificance observed for the start of leaf emergence. Consequently, drought treatment shortened both the length of the growing season (15.69 days) and the peak growth season (9.80 days) for understory plants. Moreover, this study identified diverse responses among intraspecies and interspecies to drought, particularly during the leaf development phase. These findings underscore the pivotal role of water availability in shaping understory phenology patterns, especially in subtropical forests.


Asunto(s)
Sequías , Hojas de la Planta , Estaciones del Año , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Temperatura , Bosques , Agua/metabolismo , Árboles/crecimiento & desarrollo , Árboles/fisiología , Suelo , Clima Tropical , China
7.
Physiol Plant ; 176(3): e14326, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38708565

RESUMEN

Plants face a trade-off between hydraulic safety and growth, leading to a range of water-use strategies in different species. However, little is known about such strategies in tropical trees and whether different water-use traits can acclimate to warming. We studied five water-use traits in 20 tropical tree species grown at three different altitudes in Rwanda (RwandaTREE): stomatal conductance (gs), leaf minimum conductance (gmin), plant hydraulic conductance (Kplant), leaf osmotic potential (ψo) and net defoliation during drought. We also explored the links between these traits and growth and mortality data. Late successional (LS) species had low Kplant, gs and gmin and, thus, low water loss, while low ψo helped improve leaf water status during drought. Early successional (ES) species, on the contrary, used more water during both moist and dry conditions and exhibited pronounced drought defoliation. The ES strategy was associated with lower mortality and more pronounced growth enhancement at the warmer sites compared to LS species. While Kplant and gmin showed downward acclimation in warmer climates, ψo did not acclimate and gs measured at prevailing temperature did not change. Due to distinctly different water use strategies between successional groups, ES species may be better equipped for a warmer climate as long as defoliation can bridge drought periods.


Asunto(s)
Cambio Climático , Sequías , Hojas de la Planta , Árboles , Clima Tropical , Agua , Agua/metabolismo , Agua/fisiología , Árboles/fisiología , Árboles/crecimiento & desarrollo , Hojas de la Planta/fisiología , Estomas de Plantas/fisiología , Aclimatación/fisiología , Transpiración de Plantas/fisiología , Temperatura
8.
Glob Chang Biol ; 30(5): e17307, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38709196

RESUMEN

Climate change effects on tree reproduction are poorly understood, even though the resilience of populations relies on sufficient regeneration to balance increasing rates of mortality. Forest-forming tree species often mast, i.e. reproduce through synchronised year-to-year variation in seed production, which improves pollination and reduces seed predation. Recent observations in European beech show, however, that current climate change can dampen interannual variation and synchrony of seed production and that this masting breakdown drastically reduces the viability of seed crops. Importantly, it is unclear under which conditions masting breakdown occurs and how widespread breakdown is in this pan-European species. Here, we analysed 50 long-term datasets of population-level seed production, sampled across the distribution of European beech, and identified increasing summer temperatures as the general driver of masting breakdown. Specifically, increases in site-specific mean maximum temperatures during June and July were observed across most of the species range, while the interannual variability of population-level seed production (CVp) decreased. The declines in CVp were greatest, where temperatures increased most rapidly. Additionally, the occurrence of crop failures and low seed years has decreased during the last four decades, signalling altered starvation effects of masting on seed predators. Notably, CVp did not vary among sites according to site mean summer temperature. Instead, masting breakdown occurs in response to warming local temperatures (i.e. increasing relative temperatures), such that the risk is not restricted to populations growing in warm average conditions. As lowered CVp can reduce viable seed production despite the overall increase in seed count, our results warn that a covert mechanism is underway that may hinder the regeneration potential of European beech under climate change, with great potential to alter forest functioning and community dynamics.


Asunto(s)
Cambio Climático , Fagus , Estaciones del Año , Temperatura , Fagus/crecimiento & desarrollo , Fagus/fisiología , Europa (Continente) , Semillas/crecimiento & desarrollo , Semillas/fisiología , Reproducción , Árboles/crecimiento & desarrollo , Árboles/fisiología , Polinización
9.
Plant Physiol Biochem ; 210: 108574, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38564979

RESUMEN

Intercropping has been recommended as a beneficial cropping practice for improving soil characteristic and tea quality. However, there is limited research on the effects of intercropping fruit trees on soil chemical properties, soil aggregate structure, and tea quality components. In this study, intercropping fruit trees, specifically loquats and citrus, had a significant impact on the total available nutrients, AMN, and AP in soil. During spring and autumn seasons, the soil large-macroaggregates (>2 mm) proportion increased by 5.93% and 19.03%, as well as 29.23% and 19.14%, respectively, when intercropping loquats and citrus. Similarly, intercropping waxberry resulted in a highest small-macroaggregates (0.25 mm-2 mm) proportion at 54.89% and 77.32%. Soil aggregate stability parameters of the R0.25, MWD, and GMD were generally considered better soil aggregate stability indicators, and significantly improved in intercropping systems. Intercropping waxberry with higher values for those aggregate stability parameters and lower D values, showed a better soil aggregate distribution, while intercropping loquats and citrus at higher levels of AMN and AP in different soil aggregate sizes. As the soil aggregate sizes increased, the AMN and AP contents gradually decreased. Furthermore, the enhanced levels of amino acids were observed under loquat, waxberry, and citrus intercropping in spring, which increased by 27.98%, 27.35%, and 26.21%, respectively. The contents of tea polyphenol and caffeine were lower under loquat and citrus intercropping in spring. These findings indicated that intercropping fruit trees, specifically loquat and citrus, have immense potential in promoting the green and sustainable development of tea plantations.


Asunto(s)
Suelo , Suelo/química , Citrus/crecimiento & desarrollo , Camellia sinensis/crecimiento & desarrollo , Árboles/crecimiento & desarrollo , , Frutas/crecimiento & desarrollo , Agricultura/métodos , Producción de Cultivos/métodos
10.
Nature ; 629(8011): 370-375, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38600390

RESUMEN

Roads are expanding at the fastest pace in human history. This is the case especially in biodiversity-rich tropical nations, where roads can result in forest loss and fragmentation, wildfires, illicit land invasions and negative societal effects1-5. Many roads are being constructed illegally or informally and do not appear on any existing road map6-10; the toll of such 'ghost roads' on ecosystems is poorly understood. Here we use around 7,000 h of effort by trained volunteers to map ghost roads across the tropical Asia-Pacific region, sampling 1.42 million plots, each 1 km2 in area. Our intensive sampling revealed a total of 1.37 million km of roads in our plots-from 3.0 to 6.6 times more roads than were found in leading datasets of roads globally. Across our study area, road building almost always preceded local forest loss, and road density was by far the strongest correlate11 of deforestation out of 38 potential biophysical and socioeconomic covariates. The relationship between road density and forest loss was nonlinear, with deforestation peaking soon after roads penetrate a landscape and then declining as roads multiply and remaining accessible forests largely disappear. Notably, after controlling for lower road density inside protected areas, we found that protected areas had only modest additional effects on preventing forest loss, implying that their most vital conservation function is limiting roads and road-related environmental disruption. Collectively, our findings suggest that burgeoning, poorly studied ghost roads are among the gravest of all direct threats to tropical forests.


Asunto(s)
Automóviles , Conservación de los Recursos Naturales , Agricultura Forestal , Bosques , Árboles , Clima Tropical , Asia , Conservación de los Recursos Naturales/estadística & datos numéricos , Conservación de los Recursos Naturales/tendencias , Árboles/crecimiento & desarrollo , Conjuntos de Datos como Asunto , Agricultura Forestal/métodos , Agricultura Forestal/estadística & datos numéricos , Agricultura Forestal/tendencias
11.
Sci Total Environ ; 927: 172350, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38608907

RESUMEN

Extensive deforestation has been a major reason for the loss of forest connectivity, impeding species range shifts under current climate change. Over the past decades, the Chinese government launched a series of afforestation and reforestation projects to increase forest cover, yet whether the new forests can compensate for the loss of connectivity due to deforestation-and where future tree planting would be most effective-remains largely unknown. Here, we evaluate changes in climate connectivity across China's forests between 2015 and 2019. We find that China's large-scale tree planting alleviated the negative impacts of forest loss on climate connectivity, improving the extent and probability of climate connectivity by 0-0.2 °C and 0-0.03, respectively. The improvements were particularly obvious for species with short dispersal distances (i.e., 3 km and 10 km). Nevertheless, only ~55 % of the trees planted in this period could serve as stepping stones for species movement. This indicates that focusing solely on the quantitative target of forest coverage without considering the connectivity of forests may miss opportunities in tree planting to facilitate climate-induced range shifts. More attention should be paid to the spatial arrangement of tree plantations and their potential as stepping stones. We then identify priority areas for future tree planting to create effective stepping stones. Our study highlights the potential of large-scale tree planting to facilitate range shifts. Future tree-planting efforts should incorporate the need for species range shifts to achieve more biodiversity conservation benefits under climate change.


Asunto(s)
Cambio Climático , Conservación de los Recursos Naturales , Bosques , Árboles , China , Conservación de los Recursos Naturales/métodos , Árboles/crecimiento & desarrollo , Agricultura Forestal/métodos
12.
Ying Yong Sheng Tai Xue Bao ; 35(3): 577-586, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38646744

RESUMEN

The analytical equation based on Monin-Obukhov (M-O) similarity theory (i.e., wind profile equation) has been adopted since 1970s for using in the prediction of wind vertical profile over flat terrains, which is mature and accurate. However, its applicability over complex terrains remains unknown. This applicability signifies the accuracy of the estimations of aerodynamic parameters for the boundary layer of non-flat terrain, such as zero-displacement height (d) and aerodynamic roughness length (z0), which will determine the accuracy of frequency correction and source area analysis in calculating carbon, water, and trace gas fluxes based on vorticity covariance method. Therefore, the validation of wind profile model in non-flat terrain is the first step to test whether the flux model needs improvement. We measured three-dimensional wind speed data by using the Ker Towers (three towers in a watershed) at Qingyuan Forest CERN in the Mountainous Region of east Liaoning Province, and compared them with data from Panjin Agricultural Station in the Liaohe Plain, to evaluate the applicability of a generalized wind profile model based on the Monin-Obukhov similarity theory on non-flat terrain. The results showed that the generalized wind profile model could not predict wind speeds accurately of three flux towers separately located in different sites, indicating that wind profile model was not suitable for predicting wind speeds in complex terrains. In the leaf-off and leaf-on periods, the coefficient of determination (R2) between observed and predicted wind speeds ranged from 0.12 to 0.30. Compared to measured values, the standard error of the predicted wind speeds was high up to 2 m·s-1. The predicted wind speeds were high as twice as field-measured wind speed, indicating substantial overestimation. Nevertheless, this model correctly predicted wind speeds in flat agricultural landscape in Panjin Agricultural Station. The R2 between observed wind speeds and predicted wind speed ranged from 0.90 to 0.93. The standard error between observed and predicted values was only 0.5 m·s-1. Results of the F-test showed that the root-mean-square error of the observed and predicted wind speeds in each secondary forest complex terrain was much greater than that in flat agricultural landscape. Terrain was the primary factor affecting the applicability of wind profile model, followed by seasonality (leaf or leafless canopy). The wind profile model was not applicable to the boundary-layer flows over forest canopies in complex terrains, because the d was underestimated or both the d and z0 were underestimated, resulting in inaccurate estimation of aerodynamic height.


Asunto(s)
Bosques , Modelos Teóricos , Viento , China , Árboles/crecimiento & desarrollo , Monitoreo del Ambiente/métodos , Ecosistema , Altitud
13.
Ying Yong Sheng Tai Xue Bao ; 35(3): 739-748, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38646762

RESUMEN

Biological soil crust (biocrust) is widely distributed on the Loess Plateau and plays multiple roles in regulating ecosystem stability and multifunctionality. Few reports are available on the distribution characteristics of biocrust in this region, which limits the assessment of its ecological functions. Based on 388 sampling points in different precipitation zones on the Loess Plateau from 2009 to 2020, we analyzed the coverage, composition, and influencing factors of biocrust across different durations since land abandonment, precipitation levels, topography (slope aspect and position), and utilization of abandoned slopelands (shrubland, forest, and grassland). On this base, with the assistance of machine learning and spatial modeling methods, we generated a distribution map of biocrust and its composition at a resolution of 250 m × 250 m, and analyzed the spatial distribution of biocrust on the Loess Plateau. The results showed that the average biocrust coverage in the woodlands and grasslands was 47.3%, of which cyanobacterial crust accounted for 25.5%, moss crust 19.7%, and lichen crust 2.1%. There were significant temporal and spatial variations. Temporally, the coverage of biocrust in specific regions fluctuated with the extension of the abandoned durations and coverage of cyanobacterial crust, while moss crust showed a reverse pattern. In addition, the coverage of biocrust in the wet season was slightly higher than that in the dry season within a year. Spatially, the coverage of biocrusts on the sandy lands area on the Loess Plateau was higher and dominated by cyanobacterial crusts, while the coverage was lower in the hilly and gully area. Precipitation and utilization of abandoned land were the major factors driving biocrust coverage and composition, while slope direction and position did not show obvious effect. In addition, soil organic carbon content, pH, and texture were related to the distribution of biocrust. This study uncovered the spatial and temporal variability of biocrust distribution, which might provide important data support for the research and management of biocrust in the Loess Plateau region.


Asunto(s)
Ecosistema , Bosques , Líquenes , Suelo , Análisis Espacio-Temporal , China , Suelo/química , Líquenes/crecimiento & desarrollo , Pradera , Cianobacterias/crecimiento & desarrollo , Microbiología del Suelo , Altitud , Monitoreo del Ambiente , Briófitas/crecimiento & desarrollo , Árboles/crecimiento & desarrollo
14.
Ying Yong Sheng Tai Xue Bao ; 35(3): 687-694, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38646756

RESUMEN

Understanding land structure change and stability in the process of oasisization is particularly important for the desertification control in sandy land. Based on land use data of eight periods from 1980 to 2020, we extracted the spatial distribution information of oasis land in Mu Us Sandy Land, and analyzed the spatio-temporal variations of land transformation patterns and stability of oasis land with overlay analysis and grid analysis. The results showed that desertification in the Mu Us Sandy Land had reversed, with a significant process of oasis. The area of forest and grassland increased from 10.2% in 1980 to 73.7% in 2020, while the area of oasisization land increased from 32500 km2 in 1980 to 33900 km2 in 2020. The area of extremely severe, severe, and moderate desertification significantly decreased, while the area of non-desertification and mild desertification obviously increased. The four patterns of oasisization land transformation, including stability, fluctuation, expansion, and retreat, which accounted for 78.7%, 12.2%, 6.2%, and 2.9% of the oasisization land area in 2020, respectively. The oasisization land with low change intensity (the cumulative change intensity less than 0.12) in the Mu Us Sandy Land accounted for 82.7% of the total oasisization area, and the oasisization land in the sandy land was generally stable. Zoning management strategies should be applied according to the stability of sand belt and transformation pattern of oasisization land to achieve the goal of efficient system management and improvement, including eliminating sand hazards at desertification expansion areas with strong wind and sand activities, consolidating sand resources at oasisization areas where ecologically fragile desertification was frequent, and sustainably managing and utilizing sand resources at stable expansion of oases in forest- and grass-rich oasisization areas.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , China , Árboles/crecimiento & desarrollo , Dióxido de Silicio , Bosques , Pradera , Arena , Poaceae/crecimiento & desarrollo
16.
New Phytol ; 242(5): 1957-1964, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38494441

RESUMEN

Forecasting the biological impacts of climate change requires understanding how species respond to warmer temperatures through interannual flexible variation vs through adaptation to local conditions. Yet, we often lack this information entirely or find conflicting evidence across studies, which is the case for spring phenology. We synthesized common garden studies across Europe and North America that reported spring event dates for a mix of angiosperm and gymnosperm tree species in the northern hemisphere, capturing data from 384 North American and 101 European provenances (i.e. populations) with observations from 1962 to 2019, alongside autumn event data when provided. Across continents, we found no evidence of provenance effects in spring phenology, but strong clines with latitude and mean annual temperature in autumn. These effects, however, appeared to diverge by continent and species type (gymnosperm vs angiosperm), with particularly pronounced clines in North America in autumn events. Our results suggest flexible, likely plastic responses, in spring phenology with warming, and potential limits - at least in the short term - due to provenance effects for autumn phenology. They also highlight that, after over 250 yr of common garden studies on tree phenology, we still lack a holistic predictive model of clines across species and phenological events.


Asunto(s)
Estaciones del Año , América del Norte , Europa (Continente) , Temperatura , Cambio Climático , Árboles/fisiología , Árboles/crecimiento & desarrollo , Geografía
17.
Nat Ecol Evol ; 8(5): 912-923, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38467712

RESUMEN

Vegetation greening has been suggested to be a dominant trend over recent decades, but severe pulses of tree mortality in forests after droughts and heatwaves have also been extensively reported. These observations raise the question of to what extent the observed severe pulses of tree mortality induced by climate could affect overall vegetation greenness across spatial grains and temporal extents. To address this issue, here we analyse three satellite-based datasets of detrended growing-season normalized difference vegetation index (NDVIGS) with spatial resolutions ranging from 30 m to 8 km for 1,303 field-documented sites experiencing severe drought- or heat-induced tree-mortality events around the globe. We find that severe tree-mortality events have distinctive but localized imprints on vegetation greenness over annual timescales, which are obscured by broad-scale and long-term greening. Specifically, although anomalies in NDVIGS (ΔNDVI) are negative during tree-mortality years, this reduction diminishes at coarser spatial resolutions (that is, 250 m and 8 km). Notably, tree-mortality-induced reductions in NDVIGS (|ΔNDVI|) at 30-m resolution are negatively related to native plant species richness and forest height, whereas topographic heterogeneity is the major factor affecting ΔNDVI differences across various spatial grain sizes. Over time periods of a decade or longer, greening consistently dominates all spatial resolutions. The findings underscore the fundamental importance of spatio-temporal scales for cohesively understanding the effects of climate change on forest productivity and tree mortality under both gradual and abrupt changes.


Asunto(s)
Cambio Climático , Bosques , Árboles , Árboles/crecimiento & desarrollo , Sequías
18.
Int J Biometeorol ; 68(5): 871-882, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38311643

RESUMEN

Phenological research in temperate-deciduous forests typically focuses on upper canopy trees, due to their overwhelming influence on ecosystem productivity and function. However, considering that shrubs leaf out earlier and remain green longer than trees, they play a pivotal role in ecosystem productivity, particularly at growing season extremes. Furthermore, an extended growing season of non-native shrubs provides a competitive advantage over natives. Here, we report spring phenology, budburst, leaf-out, and full-leaf unfolded (2017-2021) of a range of co-occurring species of tree (ash, American basswood, red oak, white oak, and boxelder) and shrub (native species: chokecherry, pagoda dogwood, nannyberry, American wild currant and Eastern wahoo, and non-native species: buckthorn, honeysuckle, European privet, and European highbush cranberry) in an urban woodland fragment in Wisconsin, USA, to determine how phenology differed between plant groups. Our findings show that all three spring phenophases of shrubs were 3 weeks earlier (p < 0.05) than trees. However, differences between shrubs groups were only significant for the later phenophase; full-leaf unfolded, which was 6 days earlier (p < 0.05) for native shrubs. The duration of the spring phenological season was 2 weeks longer (p < 0.05) for shrubs than trees. These preliminary findings demonstrate that native shrubs, at this site, start full-leaf development earlier than non-native species suggesting that species composition must be considered when generalizing whether phenologies differ between vegetation groups. A longer time series would be necessary to determine future implications on ecosystem phenology and productivity and how this might impact forests in the future, in terms of species composition, carbon sequestration, and overall ecosystem dynamics.


Asunto(s)
Estaciones del Año , Árboles , Árboles/crecimiento & desarrollo , Wisconsin , Hojas de la Planta/crecimiento & desarrollo , Especies Introducidas , Bosques , Ciudades
20.
Environ Res ; 249: 118417, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38316385

RESUMEN

The impact of drought on terrestrial ecosystems is increasing, and the spatiotemporal heterogeneity of drought changes exacerbates the difficulty of determining ecosystem responses, especially in arid regions far from oceans. Tree rings have been widely used to understand how forest ecosystems respond to drought. However, the link between local hydroclimate variations related to tree rings and large-scale climate changes is not clear in the Qilian Mountains. Here, we used the tree ring width index to analyze the trend of Picea crassifolia growth and its relationship with climate in the middle Qilian Mountains. The results showed that the radial growth trend of Picea crassifolia is synchronized in the middle Qilian Mountains by calculating the Gleichläufigkeit index (GLK). Our analyses indicated that tree radial growth is positively correlated with drought during the growing season. Tree growth responds stably to drought (scPDSI and SPEI) and precipitation but unstably to temperature during 1950-2019. We further traced the meteorological factors that cause regional drought changes associated with radial growth. An increased total precipitation and decreased evaporation contribute to drought alleviation, favoring an increased tree radial growth. The increased total precipitation is mainly due to increased large-scale precipitation, which is related to water vapor transport changes. This study attempts to explore the influence of large-scale meteorology on regional drought change and its related tree radial growth response, which helps us to better understand the changes in forest ecosystems under climate change.


Asunto(s)
Cambio Climático , Sequías , Árboles , Árboles/crecimiento & desarrollo , Lluvia , Picea/crecimiento & desarrollo , China , Clima Desértico , Bosques
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA