Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 555
Filtrar
1.
Mol Metab ; 85: 101960, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763494

RESUMEN

OBJECTIVE: Although glucagon-like peptide 1 (GLP-1) is known to regulate feeding, the central mechanisms contributing to this function remain enigmatic. Here, we aim to test the role of neurons expressing GLP-1 receptors (GLP-1R) in the dorsolateral septum (dLS; dLSGLP-1R) that project to the lateral hypothalamic area (LHA) on food intake and determine the relationship with feeding regulation. METHODS: Using chemogenetic manipulations, we assessed how activation or inhibition of dLSGLP-1R neurons affected food intake in Glp1r-ires-Cre mice. Then, we used channelrhodopsin-assisted circuit mapping, chemogenetics, and electrophysiological recordings to identify and assess the role of the pathway from dLSGLP-1R →LHA projections in regulating food intake. RESULTS: Chemogenetic inhibition of dLSGLP-1R neurons increases food intake. LHA is a major downstream target of dLSGLP-1R neurons. The dLSGLP-1R→LHA projections are GABAergic, and chemogenetic inhibition of this pathway also promotes food intake. While chemogenetic activation of dLSGLP-1R→LHA projections modestly decreases food intake, optogenetic stimulation of the dLSGLP-1R→LHA projection terminals in the LHA rapidly suppresses feeding behavior. Finally, we demonstrate that the GLP-1R agonist, Exendin 4 enhances dLSGLP-1R →LHA GABA release. CONCLUSIONS: Together, these results demonstrate that dLS-GLP-1R neurons and the inhibitory pathway to LHA can regulate feeding behavior, which might serve as a potential therapeutic target for the treatment of eating disorders or obesity.


Asunto(s)
Receptor del Péptido 1 Similar al Glucagón , Área Hipotalámica Lateral , Neuronas , Animales , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Ratones , Neuronas/metabolismo , Neuronas/fisiología , Masculino , Área Hipotalámica Lateral/metabolismo , Área Hipotalámica Lateral/fisiología , Ingestión de Alimentos/fisiología , Péptido 1 Similar al Glucagón/metabolismo , Conducta Alimentaria/fisiología , Ratones Endogámicos C57BL
2.
Mol Cell Neurosci ; 129: 103934, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38701995

RESUMEN

Parkinson's Disease (PD) patients experience sleeping disorders in addition to the disease-defining symptomology of movement dysfunctions. The prevalence of PD is sex-based and presence of sleeping disorders in PD also shows sex bias with a stronger phenotype in males. In addition to loss of dopamine-containing neurons in the striatum, arousal-related, orexin-containing neurons in the lateral hypothalamus (LH) are lost in PD, which could contribute to state-related disorders. As orexin has been shown to be involved in sleeping disorders and to have neuroprotective effects, we asked whether orexin could protect sleep-related LH neurons from damage putatively from the protein α-synuclein (α-syn), which is found at high levels in the PD brain and that we have shown is associated with putatively excitotoxic rises in intracellular calcium in brainstem sleep-controlling nuclei, especially in males. Accordingly, we monitored intracellular calcium transients induced by α-syn and whether concurrent exposure to orexin affected those transients in LH cells of the mouse brain slice using calcium imaging. Further, we used an assay of cell death to determine whether LH cell viability was influenced when α-syn and orexin were co-applied when compared to exposure to α-syn alone. We found that excitatory calcium events induced by α-syn were reduced in amplitude and frequency when orexin was co-applied, and when data were evaluated by sex, this effect was found to be greater in females. In addition, α-syn exposure was associated with cell death that was higher in males, and interestingly, reduced cell death was noted when orexin was present, which did not show a sex bias. We interpret our findings to indicate that orexin is protective to α-syn-mediated damage to hypothalamic neurons, and the actions of orexin on α-syn-induced cellular effects differ between sexes, which could underlie sex-based differences in sleeping disorders in PD.


Asunto(s)
Calcio , Muerte Celular , Área Hipotalámica Lateral , Neuronas , Orexinas , alfa-Sinucleína , Animales , Orexinas/metabolismo , Orexinas/farmacología , Masculino , Ratones , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Femenino , Área Hipotalámica Lateral/metabolismo , Área Hipotalámica Lateral/efectos de los fármacos , alfa-Sinucleína/metabolismo , Muerte Celular/efectos de los fármacos , Calcio/metabolismo , Ratones Endogámicos C57BL , Caracteres Sexuales
3.
Sci Rep ; 14(1): 11283, 2024 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760416

RESUMEN

Several lines of evidence demonstrate that the brain histaminergic system is fundamental for cognitive processes and the expression of memories. Here, we investigated the effect of acute silencing or activation of histaminergic neurons in the hypothalamic tuberomamillary nucleus (TMNHA neurons) in vivo in both sexes in an attempt to provide direct and causal evidence of the necessary role of these neurons in recognition memory formation and retrieval. To this end, we compared the performance of mice in two non-aversive and non-rewarded memory tests, the social and object recognition memory tasks, which are known to recruit different brain circuitries. To directly establish the impact of inactivation or activation of TMNHA neurons, we examined the effect of specific chemogenetic manipulations during the formation (acquisition/consolidation) or retrieval of recognition memories. We consistently found that acute chemogenetic silencing of TMNHA neurons disrupts the formation or retrieval of both social and object recognition memory in males and females. Conversely, acute chemogenetic activation of TMNHA neurons during training or retrieval extended social memory in both sexes and object memory in a sex-specific fashion. These results suggest that the formation or retrieval of recognition memory requires the tonic activity of histaminergic neurons and strengthen the concept that boosting the brain histaminergic system can promote the retrieval of apparently lost memories.


Asunto(s)
Neuronas , Reconocimiento en Psicología , Animales , Femenino , Masculino , Neuronas/metabolismo , Neuronas/fisiología , Ratones , Reconocimiento en Psicología/fisiología , Histamina/metabolismo , Ratones Endogámicos C57BL , Área Hipotalámica Lateral/metabolismo , Área Hipotalámica Lateral/fisiología , Recuerdo Mental/fisiología
4.
PLoS One ; 19(4): e0300544, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38656972

RESUMEN

Obesity is a major global health epidemic that has adverse effects on both the people affected as well as the cost to society. Several anti-obesity drugs that target GLP-1 receptors have recently come to the market. Here, we describe the effects of tesofensine, a novel anti-obesity drug that acts as a triple monoamine neurotransmitter reuptake inhibitor. Using various techniques, we investigated its effects on weight loss and underlying neuronal mechanisms in mice and rats. These include behavioral tasks, DeepLabCut videotaped analysis, electrophysiological ensemble recordings, optogenetic activation, and chemogenetic silencing of GABAergic neurons in the Lateral Hypothalamus (LH). We found that tesofensine induces a greater weight loss in obese rats than lean rats, while differentially modulating the neuronal ensembles and population activity in LH. In Vgat-ChR2 and Vgat-IRES-cre transgenic mice, we found for the first time that tesofensine inhibited a subset of LH GABAergic neurons, reducing their ability to promote feeding behavior, and chemogenetically silencing them enhanced tesofensine's food-suppressing effects. Unlike phentermine, a dopaminergic appetite suppressant, tesofensine causes few, if any, head-weaving stereotypy at therapeutic doses. Most importantly, we found that tesofensine prolonged the weight loss induced by 5-HTP, a serotonin precursor, and blocked the body weight rebound that often occurs after weight loss. Behavioral studies on rats with the tastant sucrose indicated that tesofensine's appetite suppressant effects are independent of taste aversion and do not directly affect the perception of sweetness or palatability of sucrose. In summary, our data provide new insights into the effects of tesofensine on weight loss and the underlying neuronal mechanisms, suggesting that tesofensine may be an effective treatment for obesity and that it may be a valuable adjunct to other appetite suppressants to prevent body weight rebound.


Asunto(s)
Fármacos Antiobesidad , Compuestos Bicíclicos Heterocíclicos con Puentes , Neuronas GABAérgicas , Obesidad , Animales , Neuronas GABAérgicas/efectos de los fármacos , Neuronas GABAérgicas/metabolismo , Ratas , Ratones , Fármacos Antiobesidad/farmacología , Masculino , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Conducta Alimentaria/efectos de los fármacos , Área Hipotalámica Lateral/efectos de los fármacos , Área Hipotalámica Lateral/metabolismo , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Ratones Transgénicos , Pérdida de Peso/efectos de los fármacos , Ratas Sprague-Dawley
5.
Neuron ; 112(11): 1795-1814.e10, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38518778

RESUMEN

Although bile acids play a notable role in depression, the pathological significance of the bile acid TGR5 membrane-type receptor in this disorder remains elusive. Using depression models of chronic social defeat stress and chronic restraint stress in male mice, we found that TGR5 in the lateral hypothalamic area (LHA) predominantly decreased in GABAergic neurons, the excitability of which increased in depressive-like mice. Upregulation of TGR5 or inhibition of GABAergic excitability in LHA markedly alleviated depressive-like behavior, whereas down-regulation of TGR5 or enhancement of GABAergic excitability facilitated stress-induced depressive-like behavior. TGR5 also bidirectionally regulated excitability of LHA GABAergic neurons via extracellular regulated protein kinases-dependent Kv4.2 channels. Notably, LHA GABAergic neurons specifically innervated dorsal CA3 (dCA3) CaMKIIα neurons for mediation of depressive-like behavior. LHA GABAergic TGR5 exerted antidepressant-like effects by disinhibiting dCA3 CaMKIIα neurons projecting to the dorsolateral septum (DLS). These findings advance our understanding of TGR5 and the LHAGABA→dCA3CaMKIIα→DLSGABA circuit for the development of potential therapeutic strategies in depression.


Asunto(s)
Depresión , Neuronas GABAérgicas , Área Hipotalámica Lateral , Receptores Acoplados a Proteínas G , Animales , Masculino , Ratones , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Depresión/metabolismo , Modelos Animales de Enfermedad , Neuronas GABAérgicas/metabolismo , Neuronas GABAérgicas/fisiología , Área Hipotalámica Lateral/metabolismo , Ratones Endogámicos C57BL , Vías Nerviosas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Núcleos Septales/metabolismo , Derrota Social , Estrés Psicológico/metabolismo
6.
Transl Psychiatry ; 14(1): 149, 2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38493173

RESUMEN

Chronic stress-induced anxiodepression is a common health problem, however its potential neurocircuitry mechanism remains unclear. We used behavioral, patch-clamp electrophysiology, chemogenetic, and optogenetic approaches to clarify the response of the lateral hypothalamus (LH) and the medial prefrontal cortex (mPFC) to stress, confirmed the structural connections between the LH and mPFC, and investigated the role of the LH-mPFC pathway in chronic stress-induced anxiodepression symptoms. Unpredictable chronic mild stress (UCMS) caused anxiodepression-like behaviors, including anxiety, anhedonia, and despair behaviors. We discovered that the activity of the LH and mPFC was both increased after restraint stress (RS), a stressor of UCMS. Then we found that the orexinergic neurons in the LH predominantly project to the glutamatergic neurons in the mPFC, and the excitability of these neurons were increased after UCMS. In addition, overactivated LH orexinergic terminals in the mPFC induced anhedonia but not anxiety and despair behaviors in naive mice. Moreover, chemogenetically inhibited LH-mPFC orexinergic projection neurons and blocked the orexin receptors in the mPFC alleviated anhedonia but not anxiety and despair behaviors in UCMS-treated mice. Our study identified a new neurocircuit from LH orexinergic neurons to mPFC and revealed its role in regulating anhedonia in response to stress. Overactivation of LHOrx-mPFC pathway selectively mediated chronic stress-induced anhedonia. In normal mice, the LHOrx-mPFC pathway exhibits relatively low activity. However, after chronic stress, the activity of orexinergic neuron in LH is overactivated, leading to an increased release of orexin into the mPFC. This heightened orexin concentration results in increased excitability of the mPFC through OX1R and OX2R, consequently triggering anhedonia.


Asunto(s)
Anhedonia , Área Hipotalámica Lateral , Ratones , Animales , Área Hipotalámica Lateral/metabolismo , Orexinas/metabolismo , Ansiedad , Corteza Prefrontal/metabolismo
7.
Biotech Histochem ; 99(3): 125-133, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38533595

RESUMEN

The adipocyte-derived hormone, leptin, plays a key role in the maintenance of energy homeostasis. Leptin binds to the long form of its receptor, which is predominantly expressed in various hypothalamic regions, including the lateral hypothalamic area (LH) and supraoptic nucleus (SO). Several studies have suggested that leptin directly activates neuronal nitric oxide synthase, leading to increased nitric oxide production. We used histochemistry for nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) as a marker for nitric oxide synthase activity and assessed the effect of leptin on nitrergic neurons in the LH and SO of rats. We found that intraperitoneal administration of leptin led to a significant increase in the number of NADPH-d-positive neurons in the LH and SO. In addition, the intensity (optical density) of NADPH-d staining in LH and SO neurons was significantly elevated in rats that received leptin compared with saline-treated rats. These findings suggest that nitrergic neurons in the LH and SO may be implicated in mediating the central effects of leptin.


Asunto(s)
Área Hipotalámica Lateral , Leptina , Neuronas Nitrérgicas , Núcleo Supraóptico , Animales , Leptina/farmacología , Leptina/metabolismo , Masculino , Área Hipotalámica Lateral/efectos de los fármacos , Área Hipotalámica Lateral/metabolismo , Ratas , Núcleo Supraóptico/efectos de los fármacos , Núcleo Supraóptico/metabolismo , Neuronas Nitrérgicas/efectos de los fármacos , Neuronas Nitrérgicas/metabolismo , NADPH Deshidrogenasa/metabolismo , Ratas Wistar , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Ratas Sprague-Dawley
8.
Endocrinology ; 165(5)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38368624

RESUMEN

Glucoprivic feeding is one of several counterregulatory responses (CRRs) that facilitates restoration of euglycemia following acute glucose deficit (glucoprivation). Our previous work established that glucoprivic feeding requires ventrolateral medullary (VLM) catecholamine (CA) neurons that coexpress neuropeptide Y (NPY). However, the connections by which VLM CA/NPY neurons trigger increased feeding are uncertain. We have previously shown that glucoprivation, induced by an anti-glycolygic agent 2-deoxy-D-glucose (2DG), activates perifornical lateral hypothalamus (PeFLH) neurons and that expression of NPY in the VLM CA/NPY neurons is required for glucoprivic feeding. We therefore hypothesized that glucoprivic feeding and possibly other CRRs require NPY-sensitive PeFLH neurons. To test this, we used the ribosomal toxin conjugate NPY-saporin (NPY-SAP) to selectively lesion NPY receptor-expressing neurons in the PeFLH of male rats. We found that NPY-SAP destroyed a significant number of PeFLH neurons, including those expressing orexin, but not those expressing melanin-concentrating hormone. The PeFLH NPY-SAP lesions attenuated 2DG-induced feeding but did not affect 2DG-induced increase in locomotor activity, sympathoadrenal hyperglycemia, or corticosterone release. The 2DG-induced feeding response was also significantly attenuated in NPY-SAP-treated female rats. Interestingly, PeFLH NPY-SAP lesioned male rats had reduced body weights and decreased dark cycle feeding, but this effect was not seen in female rats. We conclude that a NPY projection to the PeFLH is necessary for glucoprivic feeding, but not locomotor activity, hyperglycemia, or corticosterone release, in both male and female rats.


Asunto(s)
Conducta Alimentaria , Hipotálamo , Neuronas , Neuropéptido Y , Ratas Sprague-Dawley , Animales , Femenino , Masculino , Ratas , Desoxiglucosa/farmacología , Ingestión de Alimentos/efectos de los fármacos , Ingestión de Alimentos/fisiología , Conducta Alimentaria/efectos de los fármacos , Glucosa/metabolismo , Área Hipotalámica Lateral/metabolismo , Área Hipotalámica Lateral/efectos de los fármacos , Hormonas Hipotalámicas/metabolismo , Hipotálamo/metabolismo , Hipotálamo/efectos de los fármacos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Melaninas/metabolismo , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Neuropéptido Y/metabolismo , Neuropéptido Y/farmacología , Neuropéptidos/metabolismo , Orexinas/metabolismo , Hormonas Hipofisarias/metabolismo , Receptores de Neuropéptido Y/metabolismo , Receptores de Neuropéptido Y/genética , Proteínas Inactivadoras de Ribosomas Tipo 1/farmacología , Saporinas/farmacología
9.
Pflugers Arch ; 476(3): 351-364, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38228895

RESUMEN

Despite the importance of physiological responses to stress in a short-term, chronically these adjustments may be harmful and lead to diseases, including cardiovascular diseases. The lateral hypothalamus (LH) has been reported to be involved in expression of physiological and behavioral responses to stress, but the local neurochemical mechanisms involved are not completely described. The corticotropin-releasing factor (CRF) neurotransmission is a prominent brain neurochemical system implicated in the physiological and behavioral changes induced by aversive threats. Furthermore, chronic exposure to aversive situations affects the CRF neurotransmission in brain regions involved in stress responses. Therefore, in this study, we evaluated the influence of CRF neurotransmission in the LH on changes in cardiovascular function and baroreflex activity induced by chronic variable stress (CVS). We identified that CVS enhanced baseline arterial pressure and impaired baroreflex function, which were followed by increased expression of CRF2, but not CRF1, receptor expression within the LH. Local microinjection of either CRF1 or CRF2 receptor antagonist within the LH inhibited the baroreflex impairment caused by CVS, but without affecting the mild hypertension. Taken together, the findings documented in this study suggest that LH CRF neurotransmission participates in the baroreflex impairment related to chronic stress exposure.


Asunto(s)
Hormona Liberadora de Corticotropina , Área Hipotalámica Lateral , Ratas , Animales , Hormona Liberadora de Corticotropina/metabolismo , Hormona Liberadora de Corticotropina/farmacología , Área Hipotalámica Lateral/metabolismo , Barorreflejo , Encéfalo/metabolismo , Transmisión Sináptica
10.
Metabolism ; 150: 155696, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37804881

RESUMEN

BACKGROUND: Growing evidence demonstrates the role of the striatal dopamine system in the regulation of glucose metabolism. Treatment with dopamine antagonists is associated with insulin resistance and hyperglycemia, while dopamine agonists are used in treatment of type 2 diabetes. The mechanism underlying striatal dopamine effects in glucose metabolism, however is not fully understood. Here, we provide mechanistic insights into the role of nucleus accumbens shell (sNAc) dopaminergic signaling in systemic glucose metabolism. METHODS: Endogenous glucose production (EGP), blood glucose and mRNA expression in the lateral hypothalamic area (LHA) in male Wistar rats were measured following infusion of vanoxerine (VNX, dopamine reuptake inhibitor) in the sNAc. Thereafter, we analyzed projections from sNAc Drd1-expressing neurons to LHA using D1-Cre male Long-Evans rats, Cre-dependent viral tracers and fluorescence immunohistochemistry. Brain slice electrophysiology in adult mice was used to study spontaneous excitatory postsynaptic currents of sNAc Drd1-expressing neurons following VNX application. Finally, we assessed whether GABAergic LHA activity and hepatic vagal innervation were required for the effect of sNAc-VNX on glucose metabolism by combining infusion of sNAc-VNX with LHA-bicuculline, performing vagal recordings and combining infusion of sNAc-VNX with hepatic vagal denervation. RESULTS: VNX infusion in the sNAc strongly decreased endogenous glucose production, prevented glucose increases over time, reduced Slc17A6 and Hcrt mRNA in LHA, and increased vagal activity. Furthermore, sNAc Drd1-expressing neurons increased spontaneous firing following VNX application, and viral tracing of sNAc Drd1-expressing neurons revealed direct projections to LHA with on average 67 % of orexin cells directly targeted by sNAc Drd1-expressing neurons. Importantly, the sNAc-VNX-induced effect on glucose metabolism was dependent on GABAergic signaling in the LHA and on intact hepatic vagal innervation. CONCLUSIONS: We show that sNAc dopaminergic signaling modulates hepatic glucose metabolism through GABAergic inputs to glutamatergic LHA cells and hepatic vagal innervation. This demonstrates that striatal control of glucose metabolism involves a dopaminergic sNAc-LHA-liver axis and provides a potential explanation for the effects of dopamine agonists and antagonists on glucose metabolism.


Asunto(s)
Diabetes Mellitus Tipo 2 , Área Hipotalámica Lateral , Ratas , Masculino , Ratones , Animales , Área Hipotalámica Lateral/metabolismo , Núcleo Accumbens/metabolismo , Dopamina/metabolismo , Roedores/metabolismo , Agonistas de Dopamina/metabolismo , Agonistas de Dopamina/farmacología , Diabetes Mellitus Tipo 2/metabolismo , Ratas Wistar , Ratas Long-Evans , Glucosa/metabolismo , Hígado/metabolismo , ARN Mensajero/metabolismo
11.
J Neurosci ; 43(50): 8690-8699, 2023 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-37932105

RESUMEN

Avoidance stress coping, defined as persistent internal and/or external avoidance of stress-related stimuli, is a key feature of anxiety- and stress-related disorders, and contributes to increases in alcohol misuse after stress exposure. Previous work using a rat model of predator odor stress avoidance identified corticotropin-releasing factor (CRF) signaling via CRF Type 1 receptors (CRF1) in the CeA, as well as CeA projections to the lateral hypothalamus (LH) as key mediators of conditioned avoidance of stress-paired contexts and/or increased alcohol drinking after stress. Here, we report that CRF1-expressing CeA cells that project to the LH are preferentially activated in male and female rats that show persistent avoidance of predator odor stress-paired contexts (termed Avoider rats), and that chemogenetic inhibition of these cells rescues stress-induced increases in anxiety-like behavior and alcohol self-administration in male and female Avoider rats. Using slice electrophysiology, we found that prior predator odor stress exposure blunts inhibitory synaptic transmission and increases synaptic drive in CRF1 CeA-LH cells. In addition, we found that CRF bath application reduces synaptic drive in CRF1 CeA-LH cells in Non-Avoiders only. Collectively, these data show that CRF1 CeA-LH cells contribute to stress-induced increases in anxiety-like behavior and alcohol self-administration in male and female Avoider rats.SIGNIFICANCE STATEMENT Stress may lead to a variety of behavioral and physiological negative consequences, and better understanding of the neurobiological mechanisms that contribute to negative stress effects may lead to improved prevention and treatment strategies. This study, performed in laboratory rats, shows that animals that exhibit avoidance stress coping go on to develop heightened anxiety-like behavior and alcohol self-administration, and that these behaviors can be rescued by inhibiting the activity of a specific population of neurons in the central amygdala. This study also describes stress-induced physiological changes in these neurons that may contribute to their role in promoting increased anxiety and alcohol self-administration.


Asunto(s)
Ansiedad , Núcleo Amigdalino Central , Hormona Liberadora de Corticotropina , Etanol , Trastornos de Estrés Traumático , Animales , Femenino , Masculino , Ratas , Ansiedad/etiología , Núcleo Amigdalino Central/metabolismo , Hormona Liberadora de Corticotropina/metabolismo , Etanol/administración & dosificación , Área Hipotalámica Lateral/metabolismo , Neuronas/fisiología , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Trastornos de Estrés Traumático/complicaciones
12.
Eur J Neurosci ; 58(9): 4002-4010, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37818927

RESUMEN

Recent studies have focused on how sickness behaviours, including lethargy, are coordinated in the brain in response to peripheral infections. Decreased hypocretin (orexin) signalling is associated with lethargy and previous research suggests that hypocretin signalling is downregulated during sickness. However, there are studies that find increases or no change in hypocretin signalling during sickness. It is further unknown whether hypocretin receptor expression changes during sickness. Using lipopolysaccharide (LPS) to induce sickness in female mice, we investigated how LPS-injection affects gene expression of hypocretin receptors and prepro-hypocretin as well as hypocretin-1 peptide concentrations in brain tissue. We found that hypocretin receptor 1 gene expression was downregulated during sickness in the lateral hypothalamus and ventral tegmental area, but not in the dorsal raphe nucleus or locus coeruleus. We found no changes in hypocretin receptor 2 expression. Using a gene expression calculation that accounts for primer efficiencies and multiple endogenous controls, we were unable to detect changes in prepro-hypocretin expression. Using radioimmunoassay, we found no change in hypocretin-1 peptide in rostral brain tissue. Our results indicate that hypocretin receptor expression can fluctuate during sickness, adding an additional level of complexity to understanding hypocretin signalling during sickness.


Asunto(s)
Área Hipotalámica Lateral , Neuropéptidos , Ratones , Femenino , Animales , Orexinas/metabolismo , Área Hipotalámica Lateral/metabolismo , Receptores de Orexina/metabolismo , Neuropéptidos/metabolismo , Área Tegmental Ventral/metabolismo , Letargia/metabolismo , Lipopolisacáridos/metabolismo , Hipotálamo/metabolismo
13.
Nat Neurosci ; 26(10): 1805-1819, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37735497

RESUMEN

The prefrontal cortex (PFC) enables mammals to respond to situations, including internal states, with appropriate actions. One such internal state could be 'tiredness'. Here, using activity tagging in the mouse PFC, we identified particularly excitable, fast-spiking, somatostatin-expressing, γ-aminobutyric acid (GABA) (PFCSst-GABA) cells that responded to sleep deprivation. These cells projected to the lateral preoptic (LPO) hypothalamus and the lateral hypothalamus (LH). Stimulating PFCSst-GABA terminals in the LPO hypothalamus caused sleep-preparatory behavior (nesting, elevated theta power and elevated temperature), and stimulating PFCSst-GABA terminals in the LH mimicked recovery sleep (non-rapid eye-movement sleep with higher delta power and lower body temperature). PFCSst-GABA terminals had enhanced activity during nesting and sleep, inducing inhibitory postsynaptic currents on diverse cells in the LPO hypothalamus and the LH. The PFC also might feature in deciding sleep location in the absence of excessive fatigue. These findings suggest that the PFC instructs the hypothalamus to ensure that optimal sleep takes place in a suitable place.


Asunto(s)
Área Hipotalámica Lateral , Neuronas , Ratones , Animales , Área Hipotalámica Lateral/metabolismo , Neuronas/fisiología , Somatostatina/metabolismo , Sueño/fisiología , Hipotálamo/fisiología , Ácido gamma-Aminobutírico , Corteza Prefrontal/fisiología , Mamíferos/metabolismo
14.
Mol Psychiatry ; 28(11): 4642-4654, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37730842

RESUMEN

Dopamine (DA) neurons in the ventral tegmental area (VTA) promote social brain functions by releasing DA onto nucleus accumbens neurons, but it remains unclear how VTA neurons communicate with cortical neurons. Here, we report that the medial prefrontal cortex (mPFC)-lateral hypothalamus (LH)-VTA pathway contributes to social deficits in mice with IRSp53 deletion restricted to cortical excitatory neurons (Emx1-Cre;Irsp53fl/fl mice). LH-projecting mutant mPFC neurons display abnormally increased excitability involving decreased potassium channel gene expression, leading to excessive excitatory synaptic input to LH-GABA neurons. A circuit-specific IRSp53 deletion in LH-projecting mPFC neurons also increases neuronal excitability and induces social deficits. LH-GABA neurons with excessive mPFC excitatory synaptic input show a compensatory decrease in excitability, weakening the inhibitory LHGABA-VTAGABA pathway and subsequently over-activating VTA-GABA neurons and over-inhibiting VTA-DA neurons. Accordingly, optogenetic activation of the LHGABA-VTAGABA pathway improves social deficits in Emx1-Cre;Irsp53fl/fl mice. Therefore, the mPFC-LHGABA-VTAGABA-VTADA pathway contributes to the social deficits in Emx1-Cre;Irsp53fl/fl mice.


Asunto(s)
Área Hipotalámica Lateral , Área Tegmental Ventral , Animales , Ratones , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Área Hipotalámica Lateral/metabolismo , Núcleo Accumbens/metabolismo , Área Tegmental Ventral/metabolismo
15.
Mol Metab ; 76: 101788, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37536499

RESUMEN

OBJECTIVE: The present study tests the hypothesis that changes in the glucose sensitivity of lateral hypothalamus (LH) hypocretin/orexin glucose-inhibited (GI) neurons following weight loss leads to glutamate plasticity on ventral tegmental area (VTA) dopamine neurons and drives food seeking behavior. METHODS: C57BL/6J mice were calorie restricted to a 15% body weight loss and maintained at that body weight for 1 week. The glucose sensitivity of LH hypocretin/orexin GI and VTA dopamine neurons was measured using whole cell patch clamp recordings in brain slices. Food seeking behavior was assessed using conditioned place preference (CPP). RESULTS: 1-week maintenance of calorie restricted 15% body weight loss reduced glucose inhibition of hypocretin/orexin GI neurons resulting in increased neuronal activation with reduced glycemia. The effect of decreased glucose on hypocretin/orexin GI neuronal activation was blocked by pertussis toxin (inhibitor of G-protein coupled receptor subunit Gαi/o) and Rp-cAMP (inhibitor of protein kinase A, PKA). This suggests that glucose sensitivity is mediated by the Gαi/o-adenylyl cyclase-cAMP-PKA signaling pathway. The excitatory effect of the hunger hormone, ghrelin, on hcrt/ox neurons was also blocked by Rp-cAMP suggesting that hormonal signals of metabolic status may converge on the glucose sensing pathway. Food restriction and weight loss increased glutamate synaptic strength (indexed by increased AMPA/NMDA receptor current ratio) on VTA dopamine neurons and the motivation to seek food (indexed by CPP). Chemogenetic inhibition of hypocretin/orexin neurons during caloric restriction and weight loss prevented these changes in glutamate plasticity and food seeking behavior. CONCLUSIONS: We hypothesize that this change in the glucose sensitivity of hypocretin/orexin GI neurons may drive, in part, food seeking behavior following caloric restriction.


Asunto(s)
Área Hipotalámica Lateral , Neuropéptidos , Ratones , Animales , Orexinas/metabolismo , Área Hipotalámica Lateral/metabolismo , Neuropéptidos/metabolismo , Restricción Calórica , Glucosa/metabolismo , Ratones Endogámicos C57BL , Neuronas Dopaminérgicas/metabolismo , Glutamatos/metabolismo , Glutamatos/farmacología
16.
Psychoneuroendocrinology ; 156: 106333, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37454647

RESUMEN

OBJECTIVE: Ghrelin is a potent orexigenic hormone, and the lateral hypothalamic area (LHA) has been suggested as a putative target mediating ghrelin's effects on food intake. Here, we aimed to investigate the presence of neurons expressing ghrelin receptor (a.k.a. growth hormone secretagogue receptor, GHSR) in the mouse LHA (LHAGHSR neurons), its physiological implications and the neuronal circuit recruited by local ghrelin action. METHODS: We investigated the distribution of LHAGHSR neurons using different histologic strategies, including the use of a reporter mice expressing enhanced green fluorescent protein under the control of the GHSR promoter. Also, we investigated the physiological implications of local injections of ghrelin within the LHA, and the extent to which the orexigenic effect of intra-LHA-injected ghrelin involves the arcuate nucleus (ARH) and orexin neurons of the LHA (LHAorexin neurons) RESULTS: We found that: 1) LHAGHSR neurons are homogeneously distributed throughout the entire LHA; 2) intra-LHA injections of ghrelin transiently increase food intake and locomotor activity; 3) ghrelin's orexigenic effect in the LHA involves the indirect recruitment of LHAorexin neurons and the activation of ARH neurons; and 4) LHAGHSR neurons are not targeted by plasma ghrelin. CONCLUSIONS: We provide a compelling neuroanatomical and functional characterization of LHAGHSR neurons in male mice that indicates that LHAGHSR cells are part of a hypothalamic neuronal circuit that potently induces food intake.


Asunto(s)
Núcleo Arqueado del Hipotálamo , Área Hipotalámica Lateral , Ratones , Masculino , Animales , Área Hipotalámica Lateral/metabolismo , Núcleo Arqueado del Hipotálamo/metabolismo , Ghrelina/farmacología , Ghrelina/metabolismo , Orexinas , Neuronas/metabolismo , Receptores de Ghrelina/metabolismo , Ingestión de Alimentos
17.
Nature ; 619(7969): 332-337, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37380765

RESUMEN

Fast-acting neurotransmitters and slow, modulatory neuropeptides are co-released from neurons in the central nervous system, albeit from distinct synaptic vesicles1. The mechanisms of how co-released neurotransmitters and neuropeptides that have opposing actions-for example, stimulatory versus inhibitory-work together to exert control of neural circuit output remain unclear. This has been difficult to resolve owing to the inability to selectively isolate these signalling pathways in a cell- and circuit-specific manner. Here we developed a genetic-based anatomical disconnect procedure that utilizes distinct DNA recombinases to independently facilitate CRISPR-Cas9 mutagenesis2 of neurotransmitter- and neuropeptide-related genes in distinct cell types in two different brain regions simultaneously. We demonstrate that neurons within the lateral hypothalamus that produce the stimulatory neuropeptide neurotensin and the inhibitory neurotransmitter GABA (γ-aminobutyric acid) utilize these signals to coordinately activate dopamine-producing neurons of the ventral tegmental area. We show that GABA release from lateral hypothalamus neurotensin neurons inhibits GABA neurons within the ventral tegmental area, disinhibiting dopamine neurons and causing a rapid rise in calcium, whereas neurotensin directly generates a slow inactivating calcium signal in dopamine neurons that is dependent on the expression of neurotensin receptor 1 (Ntsr1). We further show that these two signals work together to regulate dopamine neuron responses to maximize behavioural responding. Thus, a neurotransmitter and a neuropeptide with opposing signals can act on distinct timescales through different cell types to enhance circuit output and optimize behaviour.


Asunto(s)
Encéfalo , Vías Nerviosas , Neurotensina , Neurotransmisores , Transducción de Señal , Encéfalo/citología , Encéfalo/metabolismo , Calcio/metabolismo , Sistemas CRISPR-Cas , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Neuronas GABAérgicas , Ácido gamma-Aminobutírico/metabolismo , Edición Génica , Área Hipotalámica Lateral/citología , Área Hipotalámica Lateral/metabolismo , Neurotensina/metabolismo , Neurotransmisores/metabolismo , Receptores de Neurotensina/metabolismo , Área Tegmental Ventral/citología , Área Tegmental Ventral/metabolismo
18.
Neuropeptides ; 101: 102336, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37290176

RESUMEN

Sleep deprivation alters orexinergic neuronal activity in the lateral hypothalamus (LH), which is the main regulator of sleep-wake, arousal, appetite, and energy regulation processes. Cannabinoid receptor (CBR) expression in this area is involved in modulating the function of orexin neurons. In this study, we investigated the effects of endocannabinoid anandamide (AEA) administration on improving food intake and appetite by modulating the activity of orexin neurons and CB1R expression after chronic sleep deprivation. Adult male Wistar rats (200-250 g) were randomly divided into three groups: control + vehicle (Control), chronic sleep deprivation + vehicle (SD), and chronic sleep deprivation +20 mg/kg AEA (SD + A). For SD induction, the rats were kept in a sleep deprivation device for 18 h (7 a.m. to 1 a.m.) daily for 21 days. Weight gain, food intake, the electrical power of orexin neurons, CB1R mRNA expression in hypothalamus, CB1R protein expression in the LH, TNF-α, IL-6, IL-4 levels and antioxidant activity in hypothalamus were measured after SD induction. Our results showed that AEA administration significantly improved food intake (p < 0.01), Electrical activity of orexin neurons (p < 0.05), CB1R expression in the hypothalamus (p < 0.05), and IL-4 levels (p < 0.05). AEA also reduced mRNA expression of OX1R and OX2R (p < 0.01 and p < 0.05 respectively), also IL-6 and TNF-α (p < 0.01) and MDA level (p < 0.05) in hypothalamic tissue. As a consequence, AEA modulates orexinergic system function and improves food intake by regulating the expression of the CB1 receptor in the LH in sleep deprived rats.


Asunto(s)
Área Hipotalámica Lateral , Privación de Sueño , Ratas , Masculino , Animales , Orexinas/metabolismo , Área Hipotalámica Lateral/metabolismo , Privación de Sueño/metabolismo , Endocannabinoides/metabolismo , Receptor Cannabinoide CB1/metabolismo , Ratas Wistar , Interleucina-4/metabolismo , Interleucina-4/farmacología , Interleucina-6/metabolismo , Interleucina-6/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Hipotálamo/metabolismo , Neuronas/metabolismo , Ingestión de Alimentos/fisiología , ARN Mensajero/metabolismo , Receptores de Orexina/metabolismo
19.
Appetite ; 189: 106621, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37311483

RESUMEN

Orexin neurons in the Lateral Hypothalamus (LH) play an important role in food seeking behavior. Approximately 60 percent of LH orexin neurons are inhibited by elevated extracellular glucose. It has been shown that elevated LH glucose decreases conditioned place preference for a food associated chamber. However, it has never been shown how modulation of LH extracellular glucose effects a rat's motivation to work for food. In this experiment we used reverse microdialysis to modulate extracellular glucose levels in LH during an operant task. Results from a progressive ratio task demonstrated that 4 mM glucose perfusion significantly decreased the animal's motivation to work for sucrose pellets while not effecting the hedonic value of the pellets. In a second experiment we demonstrated that 4 mM but not 2.5 mM glucose perfusion was sufficient to significantly decrease the number of sucrose pellets earned. Finally, we showed that modulating LH extracellular glucose mid-session from 0.7 mM to 4 mM did not affect behavior. This indicates that once feeding behavior has begun the animal becomes unresponsive to changes in extracellular glucose levels in LH. Taken together these experiments indicate that LH glucose sensing neurons play an important role in motivation to initiate feeding. However, once consumption has begun it is likely that feeding is controlled by brain regions downstream of LH.


Asunto(s)
Área Hipotalámica Lateral , Sacarosa , Ratas , Animales , Área Hipotalámica Lateral/metabolismo , Orexinas/metabolismo , Orexinas/farmacología , Sacarosa/farmacología , Recompensa , Conducta Alimentaria/fisiología
20.
Trends Neurosci ; 46(9): 738-749, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37353461

RESUMEN

The lateral hypothalamic area (LHA) is a subcortical brain region that exerts control over motivated behavior, feeding, and energy balance across species. Recent single-cell sequencing studies have defined at least 30 distinct LHA neuron types. Some of these influence specific aspects of energy homeostasis; however, the functions of many LHA cell types remain unclear. This review addresses the rapidly emerging evidence from cell-type-specific investigations that the LHA leverages distinct neuron populations to regulate energy balance through complex connections with other brain regions. It will highlight recent findings demonstrating that LHA control of energy balance extends beyond mere food intake and propose outstanding questions to be addressed by future research.


Asunto(s)
Encéfalo , Área Hipotalámica Lateral , Humanos , Área Hipotalámica Lateral/metabolismo , Encéfalo/fisiología , Homeostasis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...