Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 236
Filtrar
Más filtros












Intervalo de año de publicación
1.
Molecules ; 29(11)2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38893579

RESUMEN

The fabrication of zinc oxide-based nanomaterials (including natural and synthetic polymers like sulfated polysaccharide, chitosan, and polymethyl methacrylate) has potential to improve oral cancer treatment strategies. This comprehensive review explores the diverse synthesis methods employed to fabricate zinc oxide nanomaterials tailored for oral cancer applications. Several synthesis processes, particularly sol-gel, hydrothermal, and chemical vapor deposition approaches, are thoroughly studied, highlighting their advantages and limitations. The review also examines how synthesis parameters, such as precursor selection, the reaction temperature, and growth conditions, influence both the physicochemical attributes and biological efficacy of the resulting nanomaterials. Furthermore, recent advancements in surface functionalization and modification strategies targeted at improving the targeting specificity and pharmaceutical effectiveness of zinc oxide-based nanomaterials in oral cancer therapy are elucidated. Additionally, the review provides insights into the existing issues and prospective views in the field, emphasizing the need for further research to optimize synthesis methodologies and elucidate the mechanisms underlying the efficacy of zinc oxide-based nanoparticles in oral cancer therapy.


Asunto(s)
Neoplasias de la Boca , Nanoestructuras , Óxido de Zinc , Humanos , Óxido de Zinc/química , Óxido de Zinc/síntesis química , Neoplasias de la Boca/tratamiento farmacológico , Nanoestructuras/química , Nanoestructuras/uso terapéutico , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/uso terapéutico , Animales
2.
Bioorg Chem ; 150: 107513, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38905888

RESUMEN

The interaction of green zinc oxide nanoparticles (ZnO NPs) with bacterial strains are still scarcely reported. This work was conducted to study the green-one-pot-synthesized ZnO NPs from the Aloe Vulgarize (AV) leaf peel extract assisted with different sonication techniques followed by the physicochemical, biological activities and molecular docking studies. The NPs structure was analyzed using FTIR, UV-vis and EDX. The morphology, particle size and crystallinity of ZnO NPs were identified using FESEM and XRD. It was found that the formed flower-like structure with sharp edge and fine size of particulates in ZnO NPs/AV could enhance the bacterial inhibition. The minimum inhibitory concentration (MIC) for all the tested bacterial strains is at 3.125 µg/ml and the bacterial growth curve are dependent on the ZnO NPs dosage. The results of disc diffusion revealed that the ZnO NPs/AV possess better antibacterial effect with bigger ZOI due to the presence of AV active ingredient. The molecular docking between active ingredients of AV in the NPs with the protein of IFCM and 1MWU revealed that low binding energy (Ebind = -6.56 kcal/mol and -8.99 kcal/mol, respectively) attributes to the excessive hydrogen bond from AV that highly influenced their interaction with the amino acid of the selected proteins. Finally, the cytotoxicity test on the biosynthesized ZnO NPs with concentration below 20 µg/ml are found nontoxic on the HDF cell. Overall, ZnO NPs/20 % AV (probe sonication) is considered as the best synthesis option due to its efficient one-pot method, short sonication time but own the best antibacterial effect.


Asunto(s)
Aloe , Antibacterianos , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Óxido de Zinc , Aloe/química , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Óxido de Zinc/química , Óxido de Zinc/farmacología , Óxido de Zinc/síntesis química , Relación Dosis-Respuesta a Droga , Nanopartículas del Metal/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Sonicación , Tamaño de la Partícula , Relación Estructura-Actividad , Estructura Molecular
3.
Cell Biochem Funct ; 42(4): e4062, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38807490

RESUMEN

Since most solid tumors have a low pH value, a pH-responsive drug delivery system may offer a broad method for tumor-targeting treatment. The present study is used to analyze the anticancer activity of carvacrol-zinc oxide quantum dots (CVC-ZnO QDs) against breast cancer cells (MDA-MB-231). CVC-ZnO QDs demonstrate pH responsive and are specifically released within the acidic pH tumor microenvironment. This property enables targeted drug delivery exclusively to cancer cells while minimizing the impact on normal cells. To the synthesized ZnO QDs, the CVC was loaded and then examined by X-ray diffraction, ultraviolet-visible, Fourier transform infrared spectrophotometer, scanning electron microscopy-energy dispersive X-ray, and transmission electron microscopy. For up to 20 h, CVC release was examined in different pH-buffered solutions. The results showed that carvacrol release was stable in an acidic pH solution. Further, cytotoxicity assay, antioxidant, and lipid peroxidation activity, reactive oxygen species, mitochondrial membrane potential, nuclear damage, and the ability of CVC-ZnO QDs to cause apoptosis were all examined. Apoptosis markers such as Bcl2, Bax, caspase-3, and caspase-9, were also studied. In conclusion, the CVC-ZnO QDs destabilized the MDA-MB-231cells under its acidic tumor microenvironment and regulated apoptosis.


Asunto(s)
Antineoplásicos , Apoptosis , Neoplasias de la Mama , Cimenos , Puntos Cuánticos , Óxido de Zinc , Humanos , Puntos Cuánticos/química , Óxido de Zinc/química , Óxido de Zinc/farmacología , Óxido de Zinc/síntesis química , Cimenos/farmacología , Cimenos/química , Concentración de Iones de Hidrógeno , Neoplasias de la Mama/patología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Femenino , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Especies Reactivas de Oxígeno/metabolismo , Supervivencia Celular/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos
4.
Appl Radiat Isot ; 181: 110114, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35066326

RESUMEN

This study, it is aimed to prepare a polymer composite between styrene, acrylic acid, and ZnO and to measure the radiation shielding of the synthesized polymer composite. Firstly poly(styrene-co-acrylic acid) (P(S-co-AA)) copolymer was synthesized using the emulsion polymerization method between styrene and acrylic acid. Then, P(S-co-AA)-ZnO composites were prepared with different percentages of ZnO. For preparing these composites, the materials were mixed in a 60 °C ultrasonic bath. P(S-co-AA)-ZnO was poured into Petri dishes to form a film. When the TG curves were examined, it was not found a significant difference between the copolymer composite and the copolymer. The molecular weight of the copolymer was found to be 120000. SEM images show zinc fragments located between the polymer chains. The potential for radiation capture against gamma was determined using a NaI scintillation detector. The linear gamma attenuation coefficients for P(S-co-AA)-ZnO samples were calculated to Lambert's Beer Law and measured for 662 keV. Theoretical gamma attenuation coefficient values were calculated by multiplying the density of the composite with the mass attenuation coefficients. The absorption parameters of polymer composites are directly proportional to the increasing amount of zinc oxide. P(S-co-AA)-ZnO-15% was the best absorber at 662 keV energy compared to other polymer composites.


Asunto(s)
Acrilatos/síntesis química , Rayos gamma , Poliestirenos/síntesis química , Protección Radiológica/métodos , Óxido de Zinc/síntesis química , Microscopía Electroquímica de Rastreo , Polimerizacion
5.
Molecules ; 26(24)2021 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-34946767

RESUMEN

This paper compared the effects of A. indica plant proteins over chemical methods in the morphology of zinc oxide nanoparticles (ZnO NPs) prepared by a co-precipitation method, and ethanol sensing performance of prepared thin films deposited over a fluorene-doped tin oxide (FTO) bind glass substrate using spray pyrolysis technique. The average crystallite sizes and diameters of the grain-sized cluster ZnO NPs were 25 and (701.79 ± 176.21) nm for an undoped sample and 20 and (489.99 ± 112.96) nm for A. india dye-doped sample. The fourier transform infrared spectroscopy (FTIR) analysis confirmed the formation of the Zn-O bond at 450 cm-1, and also showed the presence of plant proteins due to A. indica dye extracts. ZnO NPs films exhibited good response (up to 51 and 72% for without and with A. indica dye-doped extracts, respectively) toward ethanol vapors with quick response-recovery characteristics at a temperature of 250 °C for undoped and 225 °C for A. indica dye-doped ZnO thin films. The interaction of A. indica dye extracts helps to decrease the operating temperature and increased the response and recovery rates of the sensor, which may be due to an increase in the specific surface area, resulting in adsorption of more oxygen and hence high response results.


Asunto(s)
Azadirachta/química , Etanol/química , Nanopartículas/química , Extractos Vegetales/química , Óxido de Zinc/síntesis química , Fluorenos/química , Gases/química , Vidrio/química , Tamaño de la Partícula , Espectroscopía Infrarroja por Transformada de Fourier , Propiedades de Superficie , Temperatura , Compuestos de Estaño/química , Óxido de Zinc/química
6.
Int J Biol Macromol ; 190: 259-269, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34419540

RESUMEN

In this report, chitosan/zinc oxide (CS/ZnO) nanocomposite was synthesized using Sida acuta and assessed their antibacterial and photocatalytic properties. The formation of CS/ZnO nanocomposite was preliminary confirmed by colour change and UV-visible spectroscopy. The crystalline peaks related to CS and ZnO in CS/ZnO nanocomposite were demonstrated by XRD. Morphological analysis through FE-SEM and TEM showed a rod like appearance for ZnO NPs and agglomerated grains with rod shaped morphology was observed for the CS/ZnO nanocomposite. The peaks around 400-800 cm-1 in the IR spectrum of nanocomposite indicated the vibrations of metal-oxygen (ZnO), whereas bands at 1659 cm-1 and 1546 cm-1 indicated the presence of amine groups, which confirms the CS in the synthesized CS/ZnO nanocomposite. The CS/ZnO nanocomposite exhibited remarkable growth inhibition activity against B. subtilis and E. coli with 22 ± 0.3 and 16.5 ± 0.5 mm zone of inhibitions. In addition, CS/ZnO nanocomposite treated cotton fabrics also exhibited antibacterial activity against B. subtilis and E. coli. Furthermore, the ZnO NPs and nanocomposite showed time depended photodegradation activity and revealed 76% and 91% decomposition of CR under sunlight irradiation. In conclusion, our study revealed that the functionalization of biopolymer CS to the inorganic ZnO enhances the bio and catalytic properties.


Asunto(s)
Antibacterianos/farmacología , Quitosano/síntesis química , Luz , Nanocompuestos/química , Óxido de Zinc/síntesis química , Bacterias/efectos de los fármacos , Catálisis/efectos de los fármacos , Catálisis/efectos de la radiación , Quitosano/química , Cristalización , Pruebas de Sensibilidad Microbiana , Fotólisis/efectos de los fármacos , Fotólisis/efectos de la radiación , Espectrofotometría Ultravioleta , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X , Óxido de Zinc/química
7.
J Chem Neuroanat ; 116: 101990, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34146667

RESUMEN

Cisplatin (CP) is a chemotherapy agent used in the treatment of cancer, but it has various side effects, in particular, neurotoxicity. Zinc oxide nanoparticles (ZnO NPs) are a potent antioxidant. However, there is limited knowledge about the protective effects of ZnO NPs against CP-induced hippocampal toxicity. The present study aimed to explore the potential protective effects of ZnO NPs against CP-induced oxidative stress, loss of neurotrophins support, and tissue damage in the hippocampus of the rats. Eighty adult male Wistar rats were dividing into ten groups including: control (Con), sham, ZnO Bulk (ZnB), chemical ZnO NPs (ChZnO NPs), Green ZnO NPs (GrZnO NPs), CP, CP + ZnB, CP + ChZnO NPs, CP + GrZnO NPs and CP + AE. CP was administrated (5 mg/kg/weekly) for four weeks, and animals were treated simultaneously with different forms of ZnO (5 mg/kg/day). At the end of the experiment, the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), malondialdehyde (MDA), changes of reduced glutathione (GSH), oxidized glutathione (GSSG) and GSH/GSSG ratio, histological changes, expression of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) genes were assessed in the hippocampus. The results revealed that a decrease in BDNF and NGF mRNA expression, GSH concentration and GSH/GSSG ratio, increasing of GSSG and MDA levels, and neuronal loss in the CP-treated rats were reversed following the administration of different forms of ZnO, especially Gr ZnO NPs and ch ZnO NPs. Co-administration of ZnO NPs to CP-treated rats restored the suppressive effects of CP on activities of antioxidant enzymes (SOD, GPX, CAT). The results showed that in most of the evaluated factors, Gr ZnO NPs showed a greater protective effect than other forms of ZnO. The results suggest that ZnO NPs, in particular Green ZnO NPs (GrZnO NPs) had more potential protective effects against CP-induced oxidative stress, inadequate support neurotrophin and tissue damage in rat hippocampus.


Asunto(s)
Antioxidantes/farmacología , Cisplatino/toxicidad , Hipocampo/metabolismo , Nanopartículas/administración & dosificación , Factores de Crecimiento Nervioso/biosíntesis , Óxido de Zinc/farmacología , Aloe , Animales , Antineoplásicos/toxicidad , Antioxidantes/síntesis química , Tecnología Química Verde/métodos , Hipocampo/efectos de los fármacos , Masculino , Nanopartículas/química , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Extractos Vegetales/síntesis química , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/farmacología , Ratas , Ratas Wistar , Óxido de Zinc/síntesis química
8.
Int J Biol Macromol ; 184: 235-249, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34126144

RESUMEN

This research work was performed to prepare chitosan-alginate-gelatin and chitosan-bentonite-gelatin films in different mass ratios incorporated with nano particles of Zinc Oxide, which were achieved through the method of green synthesis from Nettle leaf extract. The films were prepared and characterized based on their physicochemical properties, such as water absorption and porosity and surface morphology. Bentonite containing films illustrate more flexibility than alginate ones while the chitosan/bentonite composite films have a maximum water absorption capacity of about 170%. The antibacterial activity of the films was investigated against Staphylococcus aureus and Pseudomonas aeruginosa bacteria and it presents good inhibitory activities against the tested bacteria as compared to the control sample. Furthermore, vivo animal tests were performed to confirm the applicability of the prepared films as a healing material for burned skin. Skin appendages, such as hair follicles and sebaceous gland in the dermis, were detected in normal structures by applying both of the composites to damaged skin. In the control sample (gauze), no re-epithelialized area was observed, except in close proximity of the wound border. The results show that due to its full coverage of the wounds with new epithelium and hair follicles, bentonite-containing composites are more preferred.


Asunto(s)
Alginatos/química , Antibacterianos/administración & dosificación , Bentonita/química , Quitosano/química , Cicatrización de Heridas/efectos de los fármacos , Óxido de Zinc/administración & dosificación , Animales , Antibacterianos/síntesis química , Antibacterianos/química , Antibacterianos/farmacología , Línea Celular , Modelos Animales de Enfermedad , Femenino , Ratones , Pruebas de Sensibilidad Microbiana , Nanopartículas , Pseudomonas aeruginosa/efectos de los fármacos , Ratas , Repitelización/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Óxido de Zinc/síntesis química , Óxido de Zinc/química , Óxido de Zinc/farmacología
9.
Sci Rep ; 11(1): 11404, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34075116

RESUMEN

A series of ZnO and ZnO/poly(vinyl alcohol) (PVA) catalysts were prepared using sol-gel method. An X-ray diffraction analysis confirmed the existence of the wurtzite ZnO phase, and scanning electron microscopy (SEM) observation revealed the formation of spherical ZnO and ZnO/PVA nanoparticles. The decomposition of methylene blue (MB) and methyl orange (MO) induced by the synthesized pure ZnO and ZnO/PVA nanoparticles was studied under ultraviolet-visible irradiation. Among the catalysts evaluated, ZnO/5PVA was the most active in the decomposition of MB, whereas ZnO/7PVA was the most active catalyst in the decomposition of MO. Moreover, an investigation of the biological activity of pure ZnO and ZnO/PVA indicated that ZnO/5PVA exhibited the best performance in lowering the glucose level in diabetic rats.


Asunto(s)
Hipoglucemiantes/síntesis química , Hipoglucemiantes/farmacología , Luz , Nanopartículas/química , Alcohol Polivinílico/síntesis química , Óxido de Zinc/síntesis química , Ácidos , Animales , Glucemia/metabolismo , Catálisis/efectos de la radiación , Azul de Metileno/química , Azul de Metileno/efectos de la radiación , Alcohol Polivinílico/farmacología , Ratas , Espectrofotometría Ultravioleta , Temperatura , Difracción de Rayos X , Óxido de Zinc/farmacología
10.
Int J Biol Macromol ; 183: 760-771, 2021 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-33932418

RESUMEN

Nano-ZnO were in situ prepared and permanently embedded in regenerated cellulose (RC) films by chemical precipitation to endow antibacterial of films and simultaneously strengthen tensile strength. ZnCl2 was selected as a promoter of 1-allyl-3-methylimidazolium chloride for cellulose dissolution and as a precursor for nano-ZnO synthesis. Zn2+-absorbed cellulose solution was reacted with NaOH under ultrasonic to obtain nano-ZnO embedded RC films. The results indicated that RC films treated with the longest sonication time, highest regeneration solution basicity, and highest cellulose concentration were demonstrated to be the most effective against S. aureus, which agreed well with the dense and homogeneous distribution of high content of nano-ZnO on the film surface. The nanocomposite films achieved particularly high mechanical strength of 202.0 MPa with improved thermal stability. Strong H-bonding formed between nano-ZnO and cellulose, which contributed to high tensile strength and thermal stability of films. This work affords a simple approach to prepare cellulose nanocomposite with outstanding performance for potential application in packaging.


Asunto(s)
Antibacterianos/síntesis química , Celulosa/química , Óxido de Zinc/síntesis química , Antibacterianos/química , Antibacterianos/farmacología , Cloruros/química , Estabilidad de Medicamentos , Embalaje de Alimentos , Enlace de Hidrógeno , Nanocompuestos , Sonicación , Staphylococcus aureus/efectos de los fármacos , Estrés Mecánico , Compuestos de Zinc/química , Óxido de Zinc/química , Óxido de Zinc/farmacología
11.
Molecules ; 26(5)2021 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-33800111

RESUMEN

This article reviews and summarizes work recently performed in this laboratory on the synthesis of advanced transparent conducting oxide nanopowders by the use of plasma. The nanopowders thus synthesized include indium tin oxide (ITO), zinc oxide (ZnO) and tin-doped zinc oxide (TZO), aluminum-doped zinc oxide (AZO), and indium-doped zinc oxide (IZO). These oxides have excellent transparent conducting properties, among other useful characteristics. ZnO and TZO also has photocatalytic properties. The synthesis of these materials started with the selection of the suitable precursors, which were injected into a non-transferred thermal plasma and vaporized followed by vapor-phase reactions to form nanosized oxide particles. The products were analyzed by the use of various advanced instrumental analysis techniques, and their useful properties were tested by different appropriate methods. The thermal plasma process showed a considerable potential as an efficient technique for synthesizing oxide nanopowders. This process is also suitable for large scale production of nano-sized powders owing to the availability of high temperatures for volatilizing reactants rapidly, followed by vapor phase reactions and rapid quenching to yield nano-sized powder.


Asunto(s)
Nanopartículas del Metal/química , Nanotecnología/métodos , Gases em Plasma/química , Aluminio/química , Catálisis , Diseño de Equipo , Indio/química , Microscopía Electrónica de Rastreo , Nanotecnología/instrumentación , Espectroscopía de Fotoelectrones , Polvos , Espectrometría por Rayos X , Espectrometría Raman , Compuestos de Estaño/síntesis química , Difracción de Rayos X , Óxido de Zinc/síntesis química
12.
Sci Rep ; 11(1): 8305, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33859316

RESUMEN

In this research, zinc oxide nanoparticles (ZnONPs) were prepared via a facile one-pot chemical precipitation approach and applied in the adsorption of bromophenol blue (BRB) and as antifungal agents against the filamentous fungi and plant pathogens; Alternaria alternata CGJM3078, Alternaria alternata CGJM3006 and Fusarium verticilliodes CGJM3823. The ZnONPs were characterized by the UV-Vis, FTIR, XRD, TGA, BET, SEM, TEM, and EDX techniques, which showed efficient synthesis. The characteristics ZnO UV-Vis absorption band was observed at 375 nm, while the XRD showed an average ZnONPs crystalline size of 47.2 nm. The SEM and TEM images showed an irregular shaped and aggregated porous structure of 65.3 nm average-sized ZnONPs. The TGA showed 22.9% weight loss at 800 °C indicating the high thermal stability of ZnONPs, while BET analysis revealed a surface area, pore volume and pore diameter of 9.259 m2/g, 0.03745 cm3/g and 9.87 nm respectively. The Freundlich, pseudo-second-order, and intra-particle diffusion models showed R2 > 0.9494 and SSE < 0.7412, thus, exhibited the best fit to the isotherm and kinetics models. Thermodynamics revealed feasible, endothermic, random, and spontaneous adsorption of BRB onto the synthesized ZnONPs. The antifungal assay conducted depicts strong antifungal activities against all three tested fungi. Noticeably, ZnONPs (0.002-5 mg/mL) showed maximum activities with the largest zone of inhibition against A. alternata CGJM 3006 from 25.09 to 36.28 mm. This was followed by the strain F. verticilliodes CGJM 3823 (range from 23.77 to 34.77 mm) > A. alternata CGJM3078 (range from 22.73 to 30.63 mm) in comparison to Bleach 5% (positive control). Additionally a model was proposed based on the possible underlying mechanisms for the antifungal effect. This research demonstrated the potent use of ZnONPs for the adsorption of BRB and as effective antifungal agents.


Asunto(s)
Azul de Bromofenol/química , Precipitación Química , Hongos/efectos de los fármacos , Nanopartículas , Óxido de Zinc/síntesis química , Óxido de Zinc/farmacología , Adsorción , Farmacorresistencia Fúngica
13.
Molecules ; 26(4)2021 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-33670482

RESUMEN

In this paper, the structural and optical properties of ZnO-SiO2-based ceramics fabricated from oil palm empty fruit bunch (OPEFB) were investigated. The OPEFB waste was burned at 600, 700 and 800 °C to form palm ash and was then treated with sulfuric acid to extract silica from the ash. X-ray fluorescence (XRF) and X-ray diffraction (XRD) analyses confirmed the existence of SiO2 in the sample. Field emission scanning electron microscopy (FESEM) showed that the particles displayed an irregular shape and became finer after leaching. Then, the solid-state method was used to produce the ZnO-SiO2 composite and the samples were sintered at 600, 800, 1000, 1200 and 1400 °C. The XRD peaks of the Zn2SiO4 showed high intensity, which indicated high crystallinity of the composite. FESEM images proved that the grain boundaries were larger as the temperature increased. Upon obtaining the absorbance spectrum from ultraviolet-visible (UV-Vis) spectroscopy, the energy band gaps obtained were 3.192, 3.202 and 3.214 eV at room temperature, 600 and 800 °C, respectively, and decreased to 3.127, 2.854 and 2.609 eV at 1000, 1200 and 1400 °C, respectively. OPEFB shows high potential as a silica source in producing promising optical materials.


Asunto(s)
Frutas/química , Aceite de Palma/química , Dióxido de Silicio/síntesis química , Óxido de Zinc/síntesis química , Dióxido de Silicio/química , Análisis Espectral , Temperatura , Residuos , Difracción de Rayos X , Óxido de Zinc/química
14.
Molecules ; 26(3)2021 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-33499293

RESUMEN

Applications of metal oxide nanoparticles in the agriculture sector are being extensively included as the materials are considered superior. In the present work, zinc oxide nanoparticle (ZnO NPs), with a developing fertilizer, is applied in the fortification of rice grain yield and nutrient uptake enhancement. To evaluate the role of ZnO NP, two field experiments were conducted during the 2018 and 2019 seasons. ZnO NPs were small, nearly spherical, and their sizes equal to 31.4 nm, as proved via the dynamic light scattering technique. ZnO NPs were applied as a fertilizer in different concentrations, varying between 20 and 60 mg/L as a foliar spray. The mixture of ZnSO4 and ZnO NP40 ameliorated yield component and nutrients (N, K, and Zn) uptake was enhanced compared to traditional ZnSO4 treatment. Nevertheless, the uptake of the phosphorous element (P) was adversely affected by the treatment of ZnO NPs. Thus, treatment via utilizing ZnO NPs as a foliar with a very small amount (40 ppm) with of basal ZnSO4 led to a good improvement in agronomic and physiological features; eventually, higher yield and nutrient-enriched rice grain were obtained.


Asunto(s)
Nanopartículas del Metal/química , Oryza/crecimiento & desarrollo , Óxido de Zinc/síntesis química , Transporte Biológico Activo , Grano Comestible/química , Grano Comestible/crecimiento & desarrollo , Grano Comestible/metabolismo , Fertilizantes , Alimentos Fortificados/análisis , Tecnología Química Verde/métodos , Humanos , Nanopartículas del Metal/administración & dosificación , Nanopartículas del Metal/ultraestructura , Microscopía Electrónica , Nanotecnología , Valor Nutritivo , Oryza/química , Oryza/metabolismo , Difracción de Rayos X , Óxido de Zinc/administración & dosificación , Óxido de Zinc/farmacocinética
15.
Int J Nanomedicine ; 16: 89-104, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33447029

RESUMEN

BACKGROUND: Therapeutic selectivity and drug resistance are critical issues in cancer therapy. Currently, zinc oxide nanoparticles (ZnO NPs) hold considerable promise to tackle this problem due to their tunable physicochemical properties. This work was designed to prepare SnO2-doped ZnO NPs/reduced graphene oxide nanocomposites (SnO2-ZnO/rGO NCs) with enhanced anticancer activity and better biocompatibility than those of pure ZnO NPs. MATERIALS AND METHODS: Pure ZnO NPs, SnO2-doped ZnO (SnO2-ZnO) NPs, and SnO2-ZnO/rGO NCs were prepared via a facile hydrothermal method. Prepared samples were characterized by field emission transmission electron microscopy (FETEM), energy dispersive spectroscopy (EDS), field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), ultraviolet-visible (UV-VIS) spectrometer, and dynamic light scattering (DLS) techniques. Selectivity and anticancer activity of prepared samples were assessed in human breast cancer (MCF-7) and human normal breast epithelial (MCF10A) cells. Possible mechanisms of anticancer activity of prepared samples were explored through oxidative stress pathway. RESULTS: XRD spectra of SnO2-ZnO/rGO NCs confirmed the formation of single-phase of hexagonal wurtzite ZnO. High resolution TEM and SEM mapping showed homogenous distribution of SnO2 and rGO in ZnO NPs with high quality lattice fringes without any distortion. Band gap energy of SnO2-ZnO/rGO NCs was lower compared to SnO2-ZnO NPs and pure ZnO NPs. The SnO2-ZnO/rGO NCs exhibited significantly higher anticancer activity against MCF-7 cancer cells than those of SnO2-ZnO NPs and ZnO NPs. The SnO2-ZnO/rGO NCs induced apoptotic response through the upregulation of caspase-3 gene and depletion of mitochondrial membrane potential. Mechanistic study indicated that SnO2-ZnO/rGO NCs kill cancer cells through oxidative stress pathway. Moreover, biocompatibility of SnO2-ZnO/rGO NCs was also higher against normal breast epithelial (MCF10A cells) in comparison to SnO2-ZnO NPs and ZnO NPs. CONCLUSION: SnO2-ZnO/rGO NCs showed enhanced anticancer activity and better biocompatibility than SnO2-ZnO NPs and pure ZnO NPs. This work suggested a new approach to improve the selectivity and anticancer activity of ZnO NPs. Studies on antitumor activity of SnO2-ZnO/rGO NCs in animal models are further warranted.


Asunto(s)
Antineoplásicos/farmacología , Grafito/síntesis química , Grafito/farmacología , Nanocompuestos/química , Estrés Oxidativo , Compuestos de Estaño/síntesis química , Óxido de Zinc/síntesis química , Óxido de Zinc/farmacología , Apoptosis/efectos de los fármacos , Dispersión Dinámica de Luz , Grafito/química , Humanos , Células MCF-7 , Nanocompuestos/ultraestructura , Nanopartículas/química , Fenómenos Ópticos , Estrés Oxidativo/efectos de los fármacos , Espectrometría por Rayos X , Compuestos de Estaño/farmacología , Difracción de Rayos X , Óxido de Zinc/química
16.
Biotechnol Appl Biochem ; 68(3): 603-615, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32533898

RESUMEN

Nanobiotechnology-mediated synthesis of ZnO nanoparticles, micro/nanocurcumin, and curcumin-ZnO nanocomposites and their characterization followed by comparative study of their antibacterial, antioxidant, and iron-chelating efficiency at various dosages are discussed. Micro/nanocurcumin and ZnO nanoparticles were synthesized using curcumin and zinc nitrate as precursor and then conjugated by sonication to synthesize curcumin-ZnO nanocomposites. The synthesized nanoparticles were then characterized by using ultraviolet-visible spectroscopy, X-ray diffraction, Scanning electron microscopy, Fourier-transform infrared spectroscopy, and dynamic light scattering analysis. After that, the antibacterial activity of the synthesized nanoparticles was evaluated by the optical density (OD600 ) method against Escherichia coli and Staphylococcus aureus cells. The DPPH (2,2-diphenyl-1-picrylhydrazyl ), hydroxyl radical scavenging activity, and ferrous ion-chelating efficiency of synthesized nanoparticles were evaluated by spectrophotometry analysis. Nanocurcumin (mean zeta potential = -25 mV; average hydrodynamic diameter = 410 nm) based coating of ZnO nanoparticles (mean zeta potential = -15.9 mV; average hydrodynamic diameter = 274 nm) to synthesize curcumin-ZnO nanocomposites (mean zeta potential = -18.8 mV; average hydrodynamic diameter = 224 nm) exhibited enhanced zeta potential, which resulted in reduced agglomeration, smaller hydrodynamic size in water, improved aqueous solubility, and dispersion. All the aforesaid factors including the synergistic antibacterial effect of ZnO nanoparticle and micro/nanocurcumin contributed to increased antibacterial efficiency of curcumin-ZnO nanocomposites. Micro/nanocurcumin due to its better water solubility and small hydrodynamic diameter exhibited enhanced antioxidant and ferrous ion-chelating efficiency than curcumin.


Asunto(s)
Antibacterianos/farmacología , Curcumina/farmacología , Escherichia coli/efectos de los fármacos , Hidrodinámica , Nanopartículas/química , Staphylococcus aureus/efectos de los fármacos , Óxido de Zinc/química , Antibacterianos/síntesis química , Antibacterianos/química , Curcumina/síntesis química , Curcumina/química , Pruebas de Sensibilidad Microbiana , Tamaño de la Partícula , Propiedades de Superficie , Óxido de Zinc/síntesis química
17.
Biometals ; 34(1): 175-196, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33244683

RESUMEN

In the case of Proteus vulgaris infection, the increased occurrence of multidrug-resistance strains has become a critical challenge in the treatment of urinary tract diseases. Therefore, using plant extracts as eco-friendly antibacterial provides an attractive solution to battle bacterial infection. The current study investigates the antibacterial and antihemolytic activity of nine medicinal plant extracts against P. vulgaris. Citrus limon extract at 150 µg/ml exhibited the highest antimicrobial action against P. vulgaris (the inhibition zone diameter; 22.7 mm). Zinc oxide nanoparticles (ZnO NPs) are synthesized using the plant extracts of C. limon, Allium sativum, Sonchus bulbosus, Allium cepa, and Asparagus racemosus. The antibacterial activity of ZnO NPs synthesized using C. limon extract at 150 µg/ml is significantly increased (33.8 mm). ZnO NPs synthesized using A. cepa, A. racemosus, and C. limon plant extracts are effectively protective for human red blood cells. The ZnO NPs synthesized using C. limon extract are characterized using UV-Visible spectroscopy, FTIR, XRD, and TEM. FTIR revealed that the plant extracts may serve as reducing and capping agents of ZnO NPs. XRD spectra confirmed the crystallinity of ZnO NPs. TEM image demonstrated the formation of spherical shapes of ZnO NPs with an average size of 37.05 nm. SEM of P. vulgaris cells treated with ZnO NPs showed cellular morphological damage compared to the untreated cells. ZnO NPs are synthesized by gamma irradiation as a clean and novel method. This study recommended the promising uses of the biosynthesized ZnO NPs using plant extracts as a natural, unique approach, to control the pathogenicity of P. vulgaris.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Nanopartículas/química , Extractos Vegetales/farmacología , Proteus vulgaris/efectos de los fármacos , Óxido de Zinc/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Rayos gamma , Pruebas de Sensibilidad Microbiana , Extractos Vegetales/síntesis química , Extractos Vegetales/química , Plantas Medicinales/química , Óxido de Zinc/síntesis química , Óxido de Zinc/química
18.
Anticancer Agents Med Chem ; 21(3): 316-326, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32698752

RESUMEN

BACKGROUND: The use of nanoparticles synthesized by the green method to treat cancer is fairly recent. The aim of this study was to evaluate cytotoxicity, apoptotic and anti-angiogenic effects and the expression of involved genes, of Zinc Oxide Nanoparticles (ZnO-NPs) synthesized with Carob extracts on different human breast cancer cell lines. METHODS: ZnO-NPs were synthesized using the extracts of Carob and characterized with various analytical techniques. The MCF-7 and MDA-MB231 cells were treated at different times and concentrations of ZnO-NPs. The cytotoxicity, apoptosis, and anti-angiogenic effects were examined using a series of cellular assays. Expression of apoptotic genes (Bax and Bcl2) and anti-angiogenic genes, Vascular Endothelial Growth Factor (VEGF) and its Receptor (VEGF-R) in cancer cells treated with ZnO-NPs were examined with Reverse Transcriptionquantitative Polymerase Chain Reaction (RT-qPCR). The anti-oxidant activities of ZnO-NPs were evaluated by ABTS and DPPH assay. RESULTS: Exposure of cells to ZnO-NPs resulted in a dose-dependent loss of cell viability. The IC50 values at 24, 48, and 72 hours were 125, 62.5, and 31.2µg/ml, respectively (p<0.001). ZnO-NPs treated cells showed, in fluorescent microscopy, that ZnO-NPs are able to upregulate apoptosis and RT-qPCR revealed the upregulation of Bax (p<0.001) and downregulation of Bcl-2 (p<0.05). ZnO-NPs increased VEGF gene expression while decreasing VEGF-R (p<0.001). The anti-oxidant effects of ZnO-NPs were higher than the control group and were dose-dependent (p<0.001). CONCLUSION: ZnO-NPs synthetized using Carob extract have the ability to eliminate breast cancer cells and inhibit angiogenesis, therefore, they could be used as an anticancer agent.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Tecnología Química Verde , Nanopartículas/química , Óxido de Zinc/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad , Óxido de Zinc/síntesis química , Óxido de Zinc/química
19.
Drug Deliv ; 27(1): 1378-1385, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32998587

RESUMEN

Herein, electrospun zinc oxide nanoparticle/poly (vinylidene fluoride) (ZnONP/PVDF) composite fiber membranes were designed, fabricated, and tested for improved orthopedic applications. A single factor screening study was conducted to determine the optimal ZnONP/PVDF formulation based on osteoblast (bone forming cells) proliferation and antibacterial properties. Further, ZnONP/PVDF materials were characterized for their morphology, crystallinity, roughness, piezoelectric properties, and chemistry to understand such cell results. The optimal concentration of high molecular weight PVDF (18%, w/v) and a low concentration of ZnONPs (1 mg/ml) were identified for electrospinning at room temperature in order to inhibit bacterial colonization (without resorting to antibiotic use) and promote osteoblast proliferation. Compared to no ZnO/PVDF scaffold without Piezo-excited group,the study showed that on the 1 mg/ml ZnO/PVDF scaffolds with piezo-excitation, the density of SA and E.coli decreased by 68% and 56%.The density of osteoblasts doubled within three days(compared to the control). In summary, ZnONP/PVDF composite fiber membranes were formulated by electrospinning showing an exceptional ability to eliminate bacteria colonization while at the same time promote osteoblast functions and, thus, they should be further studied for a wide range of orthopedic applications.


Asunto(s)
Antibacterianos/administración & dosificación , Nanocompuestos/administración & dosificación , Procedimientos Ortopédicos , Osteoblastos/efectos de los fármacos , Polivinilos/administración & dosificación , Óxido de Zinc/administración & dosificación , Antibacterianos/síntesis química , Proliferación Celular/efectos de los fármacos , Proliferación Celular/fisiología , Células Cultivadas , Humanos , Nanocompuestos/química , Osteoblastos/fisiología , Polivinilos/síntesis química , Andamios del Tejido/química , Difracción de Rayos X/métodos , Óxido de Zinc/síntesis química
20.
Molecules ; 25(21)2020 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-33113894

RESUMEN

In this work, we present an ecofriendly, non-hazardous, green synthesis of zinc oxide nanoparticles (ZnO NPs) by leaf extract of Crotalaria verrucosa (C. verrucosa). Total phenolic content, total flavonoid and total protein contents of C. verrucosa were determined. Further, synthesized ZnO NPs was characterized by UV-visible spectroscopy (UV-vis), X-ray diffractometer (XRD), Fourier transform infra-red (FTIR) Spectra, transmission electron microscope (TEM), and Dynamic light scattering (DLS) analysis. UV-vis shows peak at 375 nm which is unique to ZnO NPs. XRD analysis demonstrates the hexagonal phase structures of ZnO NPs. FTIR spectra demonstrates the molecules and bondings associated with the synthesized ZnO NPs and assures the role of phytochemical compounds of C. verrucosa in reduction and capping of ZnO NPs. TEM image exhibits that the prepared ZnO NPs is hexagonal shaped and in size ranged between 16 to 38 nm which is confirmed by DLS. Thermo-gravimetric analysis (TGA) was performed to determine the thermal stability of biosynthesized nanoparticles during calcination. The prepared ZnO NPs showed significant antibacterial potentiality against Gram-positive (S. aureus) and Gram-negative (Proteus vulgaris, Klebsiella pneumoniae, and Escherichia coli) pathogenic bacteria and SEM image shows the generalized mechanism of action in bacterial cell after NPs internalization. In addition, NPs are also found to be effective against the studied cancer cell lines for which cytotoxicity was assessed using MTT assay and results demonstrate highest growth of inhibition at the concentration of 100 µg/mL with IC50 value at 7.07 µg/mL for HeLa and 6.30 µg/mL for DU145 cell lines, in contrast to positive control (C. verrucosa leaf extract) with IC50 of 22.30 µg/mL on HeLa cells and 15.72 µg/mL on DU145 cells. Also, DAPI staining was performed in order to determine the effect on nuclear material due to ZnO NPs treatment in the studied cell lines taking leaf extract as positive control and untreated negative control for comparison. Cell migration assay was evaluated to determine the direct influence of NPs on metastasis that is potential suppression capacity of NPs to tumor cell migration. Outcome of the synthesized ZnO NPs using C. verrucosa shows antimicrobial activity against studied microbes, also cytotoxicity, apoptotic mediated DNA damage and antiproliferative potentiality in the studied carcinoma cells and hence, can be further used in biomedical, pharmaceutical and food processing industries as an effective antimicrobial and anti-cancerous agent.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Crotalaria/química , Nanopartículas/química , Hojas de la Planta/química , Óxido de Zinc/química , Óxido de Zinc/farmacología , Antibacterianos/síntesis química , Antineoplásicos/síntesis química , Antineoplásicos/química , Antineoplásicos/farmacología , Tecnología Química Verde , Células HeLa , Humanos , Pruebas de Sensibilidad Microbiana , Extractos Vegetales/química , Óxido de Zinc/síntesis química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...