Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.370
Filtrar
1.
J Am Chem Soc ; 146(23): 15897-15907, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38818863

RESUMEN

In the RNA World before the emergence of an RNA polymerase, nonenzymatic template copying would have been essential for the transmission of genetic information. However, the products of chemical copying with the canonical nucleotides (A, U, C, and G) are heavily biased toward the incorporation of G and C, which form a more stable base pair than A and U. We therefore asked whether replacing adenine (A) with diaminopurine (D) might lead to more efficient and less biased nonenzymatic template copying by making a stronger version of the A:U pair. As expected, primer extension substrates containing D bound to U in the template more tightly than substrates containing A. However, primer extension with D exhibited elevated reaction rates on a C template, leading to concerns about fidelity. Our crystallographic studies revealed the nature of the D:C mismatch by showing that D can form a wobble-type base pair with C. We then asked whether competition with G would decrease the mismatched primer extension. We performed nonenzymatic primer extension with all four activated nucleotides on randomized RNA templates containing all four letters and used deep sequencing to analyze the products. We found that the DUCG genetic system exhibited a more even product distribution and a lower mismatch frequency than the canonical AUCG system. Furthermore, primer extension is greatly reduced following all mismatches, including the D:C mismatch. Our study suggests that D deserves further attention for its possible role in the RNA World and as a potentially useful component of artificial nonenzymatic RNA replication systems.


Asunto(s)
2-Aminopurina , ARN , ARN/química , 2-Aminopurina/química , 2-Aminopurina/análogos & derivados , Emparejamiento Base , Moldes Genéticos , Conformación de Ácido Nucleico , Modelos Moleculares
2.
J Phys Chem B ; 128(11): 2640-2651, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38452253

RESUMEN

2-Aminopurine (2AP) is the most widely used fluorescent nucleobase analogue in DNA and RNA research. Its unique photophysical properties and sensitivity to environmental changes make it a useful tool for understanding nucleic acid dynamics and DNA-protein interactions. We studied the effect of ions present in commonly used buffer solutions on the excited-state photophysical properties of 2AP. Fluorescence quenching was negligible for tris(hydroxymethyl)aminomethane (TRIS), but significant for phosphate, carbonate, 3-(N-morpholino) propanesulfonic acid (MOPS), and 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffers. Results indicate that the two tautomers of 2AP (7H, 9H) are quenched by phosphate ions to different extents. Quenching by the H2PO4- ion is more pronounced for the 7H tautomer, while the opposite is true for the HPO42- ion. For phosphate ions, the results of the time-resolved fluorescence study cannot be explained using a simple collisional quenching mechanism. Instead, results are consistent with transient interactions between 2AP and the phosphate ions. We postulate that excited-state interactions between the 2AP tautomers and an H-bond acceptor (phosphate and carbonate) result in significant quenching of the singlet-excited state of 2AP. Such interactions manifest in biexponential fluorescence intensity decays with pre-exponential factors that vary with quencher concentration, and downward curvatures of the Stern-Volmer plots.


Asunto(s)
2-Aminopurina , ADN , 2-Aminopurina/química , Fluorescencia , ADN/química , Carbonatos , Fosfatos , Espectrometría de Fluorescencia/métodos
3.
Anal Methods ; 16(4): 576-582, 2024 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-38189219

RESUMEN

Reversible structural changes in DNA nanomachines have great potential in the field of bioanalysis. Here, we demonstrate an assembly strategy for quencher-free and tunable DNA tweezers based on 2-aminopurine (2-AP), avoiding the tedious fluorescence labelling step. The conformational state of the tweezers could be controlled by specific oligonucleotides (fuel or anti-fuel). Taking advantage of the local environmental sensitivity of 2-AP, the structural changes of the tweezers were easily tracked, and multiple cyclic switching of the tweezers between the open and closed states was achieved. In addition, the influence of oligonucleotide structure on the fluorescence properties of 2-AP was deeply explored. We figured out that the fluorescence of 2-AP was highly quenched by the base-stacking of natural bases in DNA oligonucleotides. Moreover, by comprehensively regulating the type of bases surrounding the inserted 2-AP site, a sensitive fluorescence response towards dynamic change can be obtained. This principle of quencher-free nanodevices based on 2-AP provides a convenient method for monitoring the structural changes of DNA nanomachines.


Asunto(s)
2-Aminopurina , ADN , 2-Aminopurina/química , Fluorescencia , ADN/química , Oligonucleótidos/química , Secuencia de Bases
4.
Photochem Photobiol ; 100(2): 393-403, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38018292

RESUMEN

Prolonged ultraviolet exposure results in the formation of cyclobutane pyrimidine dimers (CPDs) in RNA. Consequently, prebiotic photolesion repair mechanisms should have played an important role in the maintenance of the structural integrity of primitive nucleic acids. 2,6-Diaminopurine is a prebiotic nucleobase that repairs CPDs with high efficiency when incorporated into polymers. We investigate the electronic deactivation pathways of 2,6-diaminopurine-2'-deoxyribose and 9-methyl-2,6-diaminopurine in acetonitrile and aqueous solution to shed light on the photophysical and excited state properties of the 2,6-diaminopurine chromophore. Evidence is presented that both are photostable compounds exhibiting similar deactivation mechanisms upon the population of the S1 (ππ* La ) state at 290 nm. The mechanism involves deactivation through the C2- and C6-reaction coordinates and >99% of the excited state population decays through nonradiative pathways involving two conical intersections with the ground state. The radiative and nonradiative lifetimes are longer in aqueous solution compared to acetonitrile. While τ1 is similar in both derivatives, τ2 is ca. 1.5-fold longer in 2,6-diaminopurine-2'-deoxyribose due to a more efficient trapping in the S1 (ππ* La ) minimum. Therefore, 2,6-diaminopurine could have accumulated in significant quantities during prebiotic times to be incorporated into non-canonical RNA and play a significant role in its photoprotection.


Asunto(s)
2-Aminopurina/análogos & derivados , Desoxirribosa , Agua/química , ARN , Acetonitrilos/química
5.
Biotechnol Bioeng ; 121(4): 1384-1393, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38151965

RESUMEN

2,6-diaminopurine (Z), a naturally occurring noncanonical nucleotide base found in bacteriophages, enhances DNA hybridization by forming three hydrogen bonds with thymine (T). These distinct biochemical characteristics make it particularly valuable in applications that rely on the thermodynamics of DNA hybridization. However, the practical use of Z-containing oligos is limited by their high production cost and the challenges associated with their synthesis. Here, we developed an efficient and cost-effective approach to synthesize Z-containing oligos of high quality based on an isothermal strand displacement reaction. These newly synthesized Z-oligos are then employed as toehold-blockers in an isothermal genotyping assay designed to detect rare single nucleotide variations (SNV). When compared with their counterparts containing the standard adenine (A) base, the Z-containing blockers significantly enhance the accuracy of identifying SNV. Overall, our innovative methodology in the synthesis of Z-containing oligos, which can also be used to incorporate other unconventional and unnatural bases into oligonucleotides, is anticipated to be adopted for diverse applications, including genotyping, biosensing, and gene therapy.


Asunto(s)
2-Aminopurina/análogos & derivados , ADN , Nucleótidos , Genotipo , Hibridación de Ácido Nucleico , ADN/química
6.
Int J Mol Sci ; 24(24)2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38139210

RESUMEN

The synthesis and characterization of the multicomponent crystals formed by 2,2'-thiodiacetic acid (H2tda) and 2,6-diaminopurine (Hdap) or N9-(2-hydroxyethyl)adenine (9heade) are detailed in this report. These crystals exist in a salt rather than a co-crystal form, as confirmed by single crystal X-ray diffractometry, which reflects their ionic nature. This analysis confirmed proton transfer from the 2,2'-thiodiacetic acid to the basic groups of the coformers. The new multicomponent crystals have molecular formulas [(H9heade+)(Htda-)] 1 and [(H2dap+)2(tda2-)]·2H2O 2. These were also characterized using FTIR, 1H and 13C NMR and mass spectroscopies, elemental analysis, and thermogravimetric/differential scanning calorimetry (TG/DSC) analyses. In the crystal packing the ions interact with each other via O-H⋯N, O-H⋯O, N-H⋯O, and N-H⋯N hydrogen bonds, generating cyclic hydrogen-bonded motifs with graph-set notation of R22(16), R22(10), R32(10), R33(10), R22(9), R32(8), and R42(8), to form different supramolecular homo- and hetero-synthons. In addition, in the crystal packing of 2, pairs of diaminopurinium ions display a strong anti-parallel π,π-stacking interaction, characterized by short inter-centroids and interplanar distances (3.39 and 3.24 Å, respectively) and a fairly tight angle (17.5°). These assemblies were further analyzed energetically using DFT calculations, MEP surface analysis, and QTAIM characterization.


Asunto(s)
Adenina , Protones , 2-Aminopurina
7.
J Phys Chem B ; 127(37): 7858-7871, 2023 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-37698525

RESUMEN

Novel fluorescent nucleic acid base analogues (FBAs) with improved optical properties are needed in a variety of biological applications. 2-Amino-6-chloro-8-vinylpurine (2A6Cl8VP) is structural analogue of two existing highly fluorescent FBAs, 2-aminopurine (2AP) and 8-vinyladenine (8VA), and can therefore be expected to have similar base pairing as well as better optical properties compared to its counterparts. In order to determine the absorption and fluorescence properties of 2A6Cl8VP, as a first step, we used TD-DFT calculations and the polarizable continuum model for simulating the solvents and computationally predicted absorption and fluorescence maxima. To test the computational predictions, we also synthesized 2A6Cl8VP and measured its UV/vis absorbance, fluorescence emission, and fluorescence lifetime. The computationally predicted absorbance and fluorescence maxima of 2A6Cl8VP are in reasonable agreement to the experimental values and are significantly redshifted compared to 2AP and 8VA, allowing for its specific excitation. The fluorescence quantum yield of 2A6Cl8VP, however, is significantly lower than those of 2AP and 8VA. Overall, 2A6Cl8VP is a novel fluorescent nucleobase analogue, which can be useful in studying structural, biophysical, and biochemical applications.


Asunto(s)
2-Aminopurina , Purinas , Biofisica , Colorantes
8.
Molecules ; 28(15)2023 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-37570884

RESUMEN

Rheumatoid arthritis (RA) remains one of the most prevalent autoimmune diseases worldwide. Janus kinase 3 (JAK3) is an essential enzyme for treating autoimmune diseases, including RA. Molecular modeling techniques play a crucial role in the search for new drugs by reducing time delays. In this study, the 3D-QSAR approach is employed to predict new JAK3 inhibitors. Two robust models, both field-based with R2 = 0.93, R = 0.96, and Q2 = 87, and atom-based with R2 = 0.94, R = 0.97, and Q2 = 86, yielded good results by identifying groups that may readily direct their interaction. A reliable pharmacophore model, DHRRR1, was provided in this work to enable the clear characterization of chemical features, leading to the design of 13 inhibitors with their pIC50 values. The DHRRR1 model yielded a validation result with a ROC value of 0.87. Five promising inhibitors were selected for further study based on an ADMET analysis of their pharmacokinetic properties and covalent docking (CovDock). Compared to the FDA-approved drug tofacitinib, the pharmaceutical features, binding affinity and stability of the inhibitors were analyzed through CovDock, 300 ns molecular dynamics simulations, free energy binding calculations and ADMET predictions. The results show that the inhibitors have strong binding affinity, stability and favorable pharmaceutical properties. The newly predicted molecules, as JAK3 inhibitors for the treatment of RA, are promising candidates for use as drugs.


Asunto(s)
2-Aminopurina , Antirreumáticos , Diseño Asistido por Computadora , Diseño de Fármacos , Janus Quinasa 3 , Inhibidores de las Cinasas Janus , 2-Aminopurina/análogos & derivados , 2-Aminopurina/farmacología , Inhibidores de las Cinasas Janus/química , Inhibidores de las Cinasas Janus/farmacología , Janus Quinasa 3/antagonistas & inhibidores , Relación Estructura-Actividad Cuantitativa , Piperidinas/química , Piperidinas/farmacología , Pirimidinas/química , Pirimidinas/farmacología , Artritis Reumatoide/tratamiento farmacológico , Antirreumáticos/química , Antirreumáticos/farmacología , Farmacóforo
9.
Anal Methods ; 15(34): 4243-4251, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37592315

RESUMEN

Simple, rapid, and highly sensitive methods for single-stranded nucleic acid detection are of great significance in clinical testing. Meanwhile, common methods are inseparable from the participation of enzymes, which greatly increases their complexity. Herein, an enzyme-free and sensitive method combining HCR and CHA is established to detect single-stranded nucleic acid. A target induces the auxiliary hairpin strands to open their secondary structure, exposing partial sequences that can trigger catalytic hairpin assembly (CHA) and hybridization chain reactions (HCR), respectively. To avoid additional signaling substances, 2-aminopurines (which fluoresces differently in double-stranded DNA and G-quadruplex) are modified in the substrate chains of CHA and HCR. Compared with methods that adopt CHA or HCR alone, the sensitivity of this method is increased by nearly 10 times. Moreover, this method can effectively improve the specific recognition of the target. To "turn on" the method, two regions that can pair with H5 and H6 are required. Taking foot-and-mouth disease virus (FMDV) as the object, this method can specifically detect FMDV to 2.78 × 101 TCID50. Although the sensitivity is not as good as RT-qPCR, it owns the advantages of simplicity and speed. We think this method can be used for the primary screening of FMDV, and has application potential in some grassroots.


Asunto(s)
Virus de la Fiebre Aftosa , Ácidos Nucleicos , Animales , Hibridación de Ácido Nucleico , Hibridación Genética , 2-Aminopurina , Catálisis
10.
J Mol Endocrinol ; 71(3)2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37522854

RESUMEN

Placenta synthesizes hormones that play a vital role in adapting maternal physiology and supporting fetal growth. This study aimed to explore the link between progesterone, a key steroid hormone produced by placenta, and mitochondrial fission and protein kinase R through the use of chemical inhibition in trophoblasts subjected to endotoxin lipopolysaccharide and double-stranded RNA analog polyinosinic:polycytidylic acid stress. Expressions of protein kinase R, dynamin-related protein 1, mitochondrial fission protein 1, and heat shock protein 60 were determined by applying lipopolysaccharide and polyinosinic:polycytidylic acid to BeWo trophoblast cells. Next, cells were treated with protein kinase R inhibitor 2-aminopurine and mitochondrial division inhibitor 1 to examine changes in progesterone levels and expression levels of proteins and mRNAs involved in progesterone biosynthesis. Last, effect of 2-aminopurine on mitochondrial fission was determined by immunoblotting and quantitative PCR (qPCR). Mitochondrial structural changes were also examined by transmission electron microscopy. Lipopolysaccharide and polyinosinic:polycytidylic acid stimulation induced mitochondrial fission and activated protein kinase R but decreased heat shock protein 60 levels and progesterone synthesis. Chemical inhibition of mitochondrial fission elevated progesterone synthesis and protein and mRNA levels of genes involved in progesterone biosynthesis. Inhibition of protein kinase R with 2-aminopurine prevented lipopolysaccharide and polyinosinic:polycytidylic acid induced mitochondrial fission and increased progesterone biosynthesis. Use of chemical inhibitors to treat placental stress caused by pathogens has potential to stabilize the production of progesterone. The study reveals that inhibiting mitochondrial fragmentation and reducing activity of stress kinase protein kinase R in syncytiotrophoblasts leads to an increase in progesterone synthesis when exposed to lipopolysaccharide and polyinosinic:polycytidylic acid.


Asunto(s)
Placenta , Progesterona , Embarazo , Femenino , Humanos , Placenta/metabolismo , Progesterona/metabolismo , Dinámicas Mitocondriales/fisiología , Lipopolisacáridos/farmacología , 2-Aminopurina/metabolismo , 2-Aminopurina/farmacología , Chaperonina 60/metabolismo , Proteínas Quinasas/metabolismo , Poli C/metabolismo , Poli C/farmacología
11.
J Phys Chem Lett ; 14(18): 4313-4321, 2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37130045

RESUMEN

The level of interest in probing the strength of noncovalent interactions in DNA duplexes is high, as these weak forces dictate the range of suprastructures the double helix adopts under different conditions, in turn directly impacting the biological functions and industrial applications of duplexes that require making and breaking them to access the genetic code. However, few experimental tools can measure these weak forces embedded within large biological suprastructures in the native solution environment. Here, we develop experimental methods for detecting the presence of a single noncovalent interaction [a hydrogen bond (H-bond)] within a large DNA duplex in solution and measure its formation enthalpy (ΔHf). We report that introduction of a H-bond into the TC2═O group from the noncanonical nucleobase 2-aminopurine produces an expected decrease ∼10 ± 0.76 cm-1 (from ∼1720 cm-1 in Watson-Crick to ∼1710 cm-1 in 2-aminopurine), which correlates with an enthalpy of ∼0.93 ± 0.066 kcal/mol for this interaction.


Asunto(s)
2-Aminopurina , ADN , Temperatura , Conformación de Ácido Nucleico , Enlace de Hidrógeno , Termodinámica , ADN/química , Análisis Espectral
12.
Analyst ; 148(11): 2482-2492, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37159025

RESUMEN

Target double-stranded DNA (dsDNA) or single-stranded DNA (ssDNA) can activate the trans-cleavage activity of the CRISPR/Cas12a, cutting the surrounding non-target ssDNA arbitrarily. In a typical CRISPR/Cas12a system, this non-target ssDNA, with a fluorescent tag and its quencher incorporated at both ends (ssDNA-FQ), is usually used as the reporter. Here, a 2-aminopurine probe (T-pro 4), made by inserting four 2-APs in non-target ssDNA, was screened for using as a reporter in the CRISPR/Cas12a system. Compared with ssDNA-FQ, each 2-AP probe is cleaved by the activated CRISPR/Cas12a system, multi-unit signals are generated. Therefore, the CRISPR/Cas12a system using the 2-AP probe as a reporter may be more sensitive than the CRISPR/Cas12a system which uses ssDNA-FQ as the reporter. We achieved ssDNA detection at as little as 10-11 M using the 2-AP probe as the reporter in the CRISPR/Cas12a system. Compared to the CRISPR/Cas12a system using ssDNA-FQ as the reporter, its sensitivity increased by an order of magnitude. Furthermore, the method that combines PCR and the 2-AP-probe-mediated CRISPR/Cas12a system can detect goat pox virus (GTPV) down to 8.35 × 10-2 copies per µL, 10 times lower than the method that combines PCR and the ssDNA-FQ-mediated CRISPR/Cas12a system. These results indicate that the CRISPR/Cas12a system using the screened 2-AP probe as a reporter has potential in highly sensitive detection of viruses.


Asunto(s)
2-Aminopurina , Técnicas Biosensibles , Sistemas CRISPR-Cas/genética , ADN de Cadena Simple/genética , Colorantes , Reacción en Cadena de la Polimerasa
13.
Methods Mol Biol ; 2651: 105-113, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36892762

RESUMEN

The left-handed Z-DNA is surrounded by right-handed canonical B-DNA, and thus the junction between B- and Z-DNA has been occurred during temporal Z-DNA formation in the genome. The base extrusion structure of the BZ junction may help detect Z-DNA formation in DNAs. Here we describe the BZ junction structural detection by using 2-aminopurine (2AP) fluorescent probe. BZ junction formation can be measured in solution by this method.


Asunto(s)
ADN Forma B , ADN de Forma Z , ADN/genética , 2-Aminopurina/química , Replicación del ADN , Conformación de Ácido Nucleico
14.
Methods Mol Biol ; 2568: 13-23, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36227559

RESUMEN

Structural analyses of large, complex noncoding RNAs continue to lag behind their rapid discovery and functional descriptions. Site-specifically incorporated, minimally invasive fluorescent probes such as 2-aminopurine (2AP) and pyrrolo-cytosine (PyC) have provided essential complementary information about local RNA structure, conformational dynamics, and interactions. Here I describe a protocol that benchmarks and correlates local RNA conformations with their respective fluorescence lifetimes, as a general technique that confers key advantages over fluorescence intensity-based methods. The observation that fluorescence lifetimes are more sensitive to local structures than sequence contexts suggests broad utility across diverse RNA and ribonucleoprotein systems.


Asunto(s)
2-Aminopurina , ARN , 2-Aminopurina/química , Fluorescencia , Colorantes Fluorescentes/química , Conformación de Ácido Nucleico , ARN/química , Ribonucleoproteínas , Espectrometría de Fluorescencia/métodos
15.
Org Lett ; 24(33): 6111-6116, 2022 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-35973215

RESUMEN

We report a simple, postsynthetic strategy for synthesis of oligonucleotides containing 2,6-diaminopurine nucleotides and 2-aminoadenine conjugates using 2-fluoro-6-amino-adenosine. The strategy allows introduction of 2,6-diaminopurine and other 2-amino group-containing ligands. The strongly electronegative 2-fluoro deactivates 6-NH2 obviating the need for any protecting group on adenine, and simple aromatic nucleophilic substitution of fluorine makes reaction with aqueous NH3 or R-NH2 feasible at the 2-position.


Asunto(s)
2-Aminopurina , Oligonucleótidos , 2-Aminopurina/análogos & derivados , Adenina
16.
J Hazard Mater ; 440: 129712, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-35952430

RESUMEN

Based on the high recognition ability and flexible programmability of GR5 DNAzyme, two fluorescent biosensors were engineered for amplified detection of Pb2+ via incorporating Ti3C2TX MXenes and embedding 2-aminopurine (2-AP), respectively. The quencher-required approach relied on the DNA affinity and fluorescence quenching ability of Ti3C2TX MXenes. Benefiting from the low background signal modulated by Ti3C2TX MXenes, the sensitive determination of Pb2+ was achieved in the linear range of 0.2-10 ng mL-1 with the limit of detection (LOD) of 0.05 ng mL-1. The quencher-free approach combined the fluorescent trait of 2-AP embedded in DNA structure, and the RNA cleavage-propelled digestion process of Exonuclease I (Exo I) for signal amplification, indicating the sensitive detection of Pb2+ with the LOD as low as 0.02 ng mL-1 in the linear range of 0.1-10 ng mL-1. Both DNAzyme assays exhibited simple procedures, favorable specificity, rapid analysis, and satisfactory application in standard reference materials (lead in drinking water) and spiked water samples. The two fluorescent biosensors established in this work would not only provide theoretic fundament for DNA adsorption of Ti3C2TX MXenes and the design of 2-AP-embedded DNAzyme assays, but also hold a great potential for on-site monitoring of lead pollution in water samples.


Asunto(s)
Técnicas Biosensibles , ADN Catalítico , Agua Potable , 2-Aminopurina/análisis , Técnicas Biosensibles/métodos , ADN/química , ADN Catalítico/química , Agua Potable/análisis , Plomo/análisis , Límite de Detección , División del ARN
17.
J Phys Chem Lett ; 13(34): 8010-8018, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35984918

RESUMEN

RNA plays a critical role in many biological processes, and the structures it adopts are intimately linked to those functions. Among many factors that contribute to RNA folding, van der Waals interactions between adjacent nucleobases stabilize structures in which the bases are stacked on top of one another. Here, we utilize fluorescence-detected circular dichroism spectroscopy (FDCD) to investigate base-stacking heterogeneity in RNA labeled with the fluorescent adenine analogue 2-aminopurine (2-AP). Comparison of standard (transmission-detected) CD and FDCD spectra reveals that in dinucleotides, 2-AP fluorescence is emitted almost exclusively by unstacked molecules. In a trinucleotide, some fluorescence is emitted by a population of stacked and highly quenched molecules, but more than half originates from a minor ∼10% population of unstacked molecules. The combination of FDCD and standard CD measurements reveals the prevalence of stacked and unstacked conformational subpopulations as well as their relative fluorescence quantum yields.


Asunto(s)
2-Aminopurina , ARN , 2-Aminopurina/química , Dicroismo Circular , Conformación de Ácido Nucleico , ARN/química , Espectrometría de Fluorescencia
18.
Neurotherapeutics ; 19(4): 1381-1400, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35655111

RESUMEN

Double-stranded RNA (dsRNA)-activated kinase (PKR) is an important component in inflammation and immune dysfunction. However, the role of PKR in neuropathic pain remains unclear. Here, we showed that lumbar 5 spinal nerve ligation (SNL) led to a significant increase in the level of phosphorylated PKR (p-PKR) in both the dorsal root ganglia (DRG) and spinal dorsal horn. Images of double immunofluorescence staining revealed that p-PKR was expressed in myelinated A-fibers, unmyelinated C-fibers, and satellite glial cells in the DRG. In the dorsal horn, p-PKR was located in neuronal cells, astrocytes, and microglia. Data from behavioral tests showed that intrathecal (i.t.) injection of 2-aminopurine (2-AP), a specific inhibitor of PKR activation, and PKR siRNA prevented the reductions in PWT and PWL following SNL. Established neuropathic pain was also attenuated by i.t. injection of 2-AP and PKR siRNA, which started on day 7 after SNL. Prior repeated i.t. injections of PKR siRNA prevented the SNL-induced degradation of IκBα and IκBß in the cytosol and the nuclear translocation of nuclear factor κB (NF-κB) p65 in both the DRG and dorsal horn. Moreover, the SNL-induced increase in interleukin-1ß (IL-1ß), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) production was diminished by this treatment. Collectively, these results suggest that peripheral nerve injury-induced PKR activation via NF-κB signaling-regulated expression of proinflammatory cytokines in the DRG and dorsal horn contributes to the pathogenesis of neuropathic pain. Our findings suggest that pharmacologically targeting PKR might be an effective therapeutic strategy for the treatment of neuropathic pain.


Asunto(s)
Neuralgia , Traumatismos de los Nervios Periféricos , Ratas , Animales , Ganglios Espinales , Traumatismos de los Nervios Periféricos/complicaciones , Traumatismos de los Nervios Periféricos/metabolismo , Interleucina-1beta/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , ARN Bicatenario/metabolismo , ARN Bicatenario/farmacología , ARN Bicatenario/uso terapéutico , Inhibidor NF-kappaB alfa/metabolismo , FN-kappa B/metabolismo , Interleucina-6/metabolismo , Proteínas Quinasas/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , 2-Aminopurina/metabolismo , 2-Aminopurina/farmacología , 2-Aminopurina/uso terapéutico , Hiperalgesia/metabolismo , Ratas Sprague-Dawley , Neuralgia/tratamiento farmacológico , Asta Dorsal de la Médula Espinal/metabolismo
19.
ACS Chem Biol ; 17(7): 1672-1676, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35700389

RESUMEN

2,6-Diaminopurine (Z) is a naturally occurring adenine (A) analog that bacteriophages employ in place of A in their genetic alphabet. Recent discoveries of biogenesis pathways of Z in bacteriophages have stimulated substantial research interest in this DNA modification. Here, we systematically examined the effects of Z on the efficiency and fidelity of DNA transcription. Our results showed that Z exhibited no mutagenic yet substantial inhibitory effects on transcription mediated by purified T7 RNA polymerase and by human RNA polymerase II in HeLa nuclear extracts and in human cells. A structurally related adenine analog, 2-aminopurine (2AP), strongly blocked T7 RNA polymerase but did not impede human RNA polymerase II in vitro or in human cells, where no mutant transcript could be detected. The lack of mutagenic consequence and the presence of a strong blockage effect of Z on transcription suggest a role of Z in transcriptional regulation. Z is also subjected to removal by transcription-coupled nucleotide-excision repair (TC-NER), but not global-genome NER in human cells. Our findings provide new insight into the effects of Z on transcription and its potential biological functions.


Asunto(s)
2-Aminopurina , ARN Polimerasa II , 2-Aminopurina/análogos & derivados , 2-Aminopurina/farmacología , ADN , Reparación del ADN , Humanos , ARN Polimerasa II/metabolismo , Transcripción Genética
20.
Chembiochem ; 23(12): e202200127, 2022 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-35468257

RESUMEN

Glucose is the most important analyte for biosensors. Recently a DNA aptamer was reported allowing binding-based detection. However, due to a relatively weak binding affinity, it is difficult to perform binding assays to understand the property of this aptamer. In this work, we replaced the only adenine base in the aptamer binding pocket with a 2-aminopurine (2AP) and used fluorescence spectroscopy to study glucose binding. In the selection buffer, glucose increased the 2AP fluorescence with a Kd of 15.0 mM glucose, which was comparable with the 10 mM Kd previously reported using the strand displacement assay. The binding required two Na+ ions or one Mg2+ that cannot be replaced by Li+ or K+ . The binding was weaker at higher temperature and its van't Hoff plot indicated enthalpy-driven binding. While other monosaccharides failed to achieve saturated binding even at high concentrations, two glucose-containing disaccharides, namely trehalose and sucrose, reached a similar fluorescence level as glucose although with over 10-fold higher Kd values. Detection limits in both the selection buffer (0.9 mM) and in artificial interstitial fluids (6.0 mM) were measured.


Asunto(s)
2-Aminopurina , Aptámeros de Nucleótidos , 2-Aminopurina/química , Aptámeros de Nucleótidos/química , Fluorescencia , Glucosa , Iones , Conformación de Ácido Nucleico , Espectrometría de Fluorescencia/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...