Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 900
Filtrar
1.
Biochim Biophys Acta Biomembr ; 1866(8): 184385, 2024 12.
Artículo en Inglés | MEDLINE | ID: mdl-39349289

RESUMEN

The phase transition from the ripple gel phase to the interdigitated gel phase of bilayers of phosphatidylcholines (PCs) with two saturated long-chain fatty acids under high pressure was investigated by pressure-scanning microscopy, fluorometry, and dynamic light scattering (DLS) measurements. Microscopic observation for giant vesicles (GVs) of distearoyl-PC (DSPC) under high pressure showed that spherical GVs transforms significantly into warped and distorted spherical ones instantaneously at the pressure-induced interdigitation. The fluorescence intensities of amphiphilic probe Prodan and hydrophobic probe Laurdan in the dipalmitoyl-PC (DPPC) bilayer steeply decreased and increased, respectively, at the interdigitation, suggesting that the conformational change of the polar head group of DPPC molecule in the bilayer transiently occurred at the interdigitation. Further, it was found from the high-pressure DLS measurements that the size of the vesicle particles of the DPPC and DSPC transiently increases near the interdigitation pressure, whereas the chemically induced interdigitation by adding ethanol to the DSPC bilayer membrane under atmospheric pressure produce no such change in the particle size. Taking account of the critical packing parameter of the PC molecule, the above experimental results would lead us to the conclusion that the pressure-induced interdigitation is attributable to the increase in repulsive interaction between the polar head groups of the PC molecules resulting from the orientational change of the head group from a parallel alignment to a perpendicular one with respect to the bilayer surface by applying pressure, namely the transient state: it occurs when the repulsive interaction exceeds a threshold value for the balance between the repulsive interaction and the attractive interaction among the hydrophobic acyl chains.


Asunto(s)
1,2-Dipalmitoilfosfatidilcolina , 2-Naftilamina , Membrana Dobles de Lípidos , Fosfatidilcolinas , Presión , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , 1,2-Dipalmitoilfosfatidilcolina/química , Fosfatidilcolinas/química , 2-Naftilamina/análogos & derivados , 2-Naftilamina/química , Transición de Fase , Lauratos/química , Interacciones Hidrofóbicas e Hidrofílicas , Fosfolípidos/química , Fosfolípidos/metabolismo , Dispersión Dinámica de Luz
2.
Chem Phys Lipids ; 264: 105434, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39216637

RESUMEN

Melting of brain sphingomyelin (bSM) manifests as a broad feature in the DSC curve that encompasses the temperature range of 25 - 45 °C, with two distinguished maxima originating from the phase transitions of two the most abundant components: C24:1 (Tm,1) and C18:0 (Tm,2). While C24:1/C18:0 sphingomyelin transforms from the gel/ripple phase to the fluid/fluid phase, the dynamics of water molecules in the interfacial layer remain completely unknown. Therefore, we carried out a calorimetric (DSC), spectroscopic (temperature-dependent UV-Vis and fluorescence) and MD simulation study of bSM in the absence/presence of Laurdan® (bSM ± L) suspended in Britton-Robinson buffer with three different pH values, 4 (BRB4), 7 (BRB7) and 9 (BRB9), and of comparable ionic strength (I = 100 mM). According to DSC, T̅m, 1 (≈ 34.5 °C/≈ 32.1 °C) and T̅m, 2 (≈ 38.0 °C/≈ 37.2 °C) of bSM suspended in BRB4, BRB7, and BRB9 in the absence/presence of Laurdan® are found to be practically pH-independent. Turbidity-based data (UV-Vis) detected both qualitative and quantitative differences in the response of bSM suspended in BRB4/BRB7/BRB9 (T̅m: ∼ 35 °C/32.0 ± 0.2 °C/36.4 ± 0.4), suggesting an intricate interplay of weakening of van der Waals forces between their hydrocarbon chains and of increased hydration in the polar headgroups region during melting. The temperature-dependent response of Laurdan® reported a discontinuous, pH-dependent change in the reorientation of interfacial water molecules that coincides with the melting of C24:1 lipids (on average, T̅m (LTC/HTC): ≈ 31.8 °C/30.6 °C/30.5 °C). MD simulations elucidated the impact of Laurdan® on a change in the physicochemical properties of bSM lipids and characterized the hydrogen bond network at the interface at 20 °C and 50 °C.


Asunto(s)
Encéfalo , Simulación de Dinámica Molecular , Transición de Fase , Esfingomielinas , Agua , Esfingomielinas/química , Agua/química , Encéfalo/metabolismo , Rastreo Diferencial de Calorimetría , Concentración de Iones de Hidrógeno , Lauratos/química , 2-Naftilamina/análogos & derivados , 2-Naftilamina/química
3.
Cells ; 13(15)2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39120265

RESUMEN

The widely used Laurdan probe has two conformers, resulting in different optical properties when embedded in a lipid bilayer membrane, as demonstrated by our previous simulations. Up to now, the two conformers' optical responses have, however, not been investigated when the temperature and the phase of the membrane change. Since Laurdan is known to be both a molecular rotor and a solvatochromic probe, it is subject to a profound interaction with both neighboring lipids and water molecules. In the current study, molecular dynamics simulations and hybrid Quantum Mechanics/Molecular Mechanics calculations are performed for a DPPC membrane at eight temperatures between 270K and 320K, while the position, orientation, fluorescence lifetime and fluorescence anisotropy of the embedded probes are monitored. The importance of both conformers is proven through a stringent comparison with experiments, which corroborates the theoretical findings. It is seen that for Conf-I, the excited state lifetime is longer than the relaxation of the environment, while for Conf-II, the surroundings are not yet adapted when the probe returns to the ground state. Throughout the temperature range, the lifetime and anisotropy decay curves can be used to identify the different membrane phases. The current work might, therefore, be of importance for biomedical studies on diseases, which are associated with cell membrane transformations.


Asunto(s)
1,2-Dipalmitoilfosfatidilcolina , 2-Naftilamina , Lauratos , Membrana Dobles de Lípidos , Simulación de Dinámica Molecular , Espectrometría de Fluorescencia , Temperatura , Agua , 1,2-Dipalmitoilfosfatidilcolina/química , 2-Naftilamina/análogos & derivados , 2-Naftilamina/química , Lauratos/química , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Agua/química , Polarización de Fluorescencia
4.
Acc Chem Res ; 57(16): 2245-2254, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39105728

RESUMEN

ConspectusLight is ubiquitously available to probe the structure and dynamics of biomolecules and biological tissues. Generally, this cannot be done directly with visible light, because of the absence of absorption by those biomolecules. This problem can be overcome by incorporating organic molecules (chromophores) that show an optical response in the vicinity of those biomolecules. Since those optical properties are strongly dependent on the chromophore's environment, time-resolved spectroscopic studies can provide a wealth of information on biosystems at the molecular scale in a nondestructive way. In this work, we give an overview on the multiscale computational strategy developed by us in the last eight years and prove that theoretical studies and simulations are needed to explain, guide, and predict observations in fluorescence experiments. As we challenge the accepted views on existing probes, we discover unexplored abilities that can discriminate surrounding lipid bilayers and their temperature-dependent as well as solvent-dependent properties. We focus on three archetypal chromophores: diphenylhexatriene (DPH), Laurdan, and azobenzene. Our method shows that conformational changes should not be neglected for the prototype rod-shaped molecule DPH. They determine its position and orientation in a liquid-ordered (Lo) sphingomyelin/cholesterol (SM/Chol) bilayer and are responsible for a strong differentiation of its absorption spectra and fluorescence decay times in dioleoylphosphatidylcholine (DOPC) and dipalmitoylphosphatidylcholine (DPPC) membranes, which are at room temperature in liquid-disordered (Ld) and solid-gel (So) phases, respectively. Thanks to its pronounced first excited state dipole moment, Laurdan has long been known as a solvatochromic probe. Since this molecule has however two conformers, we prove that they exhibit different properties in different lipid membrane phases. We see that the two conformers are only blocked in one phase but not in another. Supported by fluorescence anisotropy decay simulations, Laurdan can therefore be regarded as a molecular rotor. Finally, the conformational versatility of azobenzene in saturated Ld lipid bilayers is simulated, along with its photoisomerization pathways. By means of nonadiabatic QM/MM surface hopping analyses (QM/MM-SH), a dual mechanism is found with a torsional mechanism and a slow conversion for trans-to-cis. For cis-to-trans, simulations show a much higher quantum yield and a so-called "pedal-like" mechanism. The differences are related to the different potential energy surfaces as well as the interactions with the surrounding alkyl chains. When tails of increased length are attached to this probe, cis is pushed toward the polar surface, while trans is pulled toward the center of the membrane.


Asunto(s)
Compuestos Azo , Membrana Dobles de Lípidos , Membrana Dobles de Lípidos/química , Compuestos Azo/química , Difenilhexatrieno/química , 2-Naftilamina/análogos & derivados , 2-Naftilamina/química , Lauratos/química , Simulación de Dinámica Molecular
5.
Methods Enzymol ; 700: 105-126, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38971597

RESUMEN

Hyperspectral imaging is a technique that captures a three-dimensional array of spectral information at each spatial location within a sample, enabling precise characterization and discrimination of biological structures, materials, and chemicals, based on their unique spectral features. Nowadays most commercially available confocal microscopes allow hyperspectral imaging measurements, providing a valuable source of spatially resolved spectroscopic data. Spectral phasor analysis quantitatively and graphically transforms the fluorescence spectra at each pixel of a hyperspectral image into points in a polar plot, offering a visual representation of the spectral characteristics of fluorophores within the sample. Combining the use of environmentally sensitive dyes with phasor analysis of hyperspectral images provides a powerful tool for measuring small changes in lateral membrane heterogeneity. Here, we focus on applications of spectral phasor analysis for the probe LAURDAN on model membranes to resolve packing and hydration. The method is broadly applicable to other dyes and to complex systems such as cell membranes.


Asunto(s)
Colorantes Fluorescentes , Espectrometría de Fluorescencia , Colorantes Fluorescentes/química , Espectrometría de Fluorescencia/métodos , Microscopía Confocal/métodos , Lauratos/química , Membrana Celular/química , Membrana Celular/metabolismo , 2-Naftilamina/análogos & derivados , 2-Naftilamina/química , Membrana Dobles de Lípidos/química
6.
Sci Rep ; 14(1): 15831, 2024 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982188

RESUMEN

2-Hydroxyoleic acid (2-OHOA) has gained attention as a membrane lipid therapy (MLT) anti-cancer drug. However, in the viewpoint of anti-cancer drug, 2-OHOA shows poor water solubility and its effectiveness still has space for improvement. Thus, this study aimed to overcome the problems by formulating 2-OHOA into liposome dosage form. Furthermore, in the context of MLT reagents, the influence of 2-OHOA on the biophysical properties of the cytoplasmic membrane remains largely unexplored. To bridge this gap, our study specifically focused the alterations in cancer cell membrane fluidity and lipid packing characteristics before and after treatment. By using a two-photon microscope and the Laurdan fluorescence probe, we noted that liposomes incorporating 2-OHOA induced a more significant reduction in cancer cell membrane fluidity, accompanied by a heightened rate of cellular apoptosis when compared to the non-formulated 2-OHOA. Importantly, the enhanced efficacy of 2-OHOA within the liposomal formulation demonstrated a correlation with its endocytic uptake mechanism. In conclusion, our findings underscore the significant influence of 2-OHOA on the biophysical properties of cancer plasma membranes, emphasizing the potential of liposomes as an optimized delivery system for 2-OHOA in anti-cancer therapy.


Asunto(s)
Membrana Celular , Liposomas , Fluidez de la Membrana , Liposomas/química , Humanos , Membrana Celular/metabolismo , Membrana Celular/química , Membrana Celular/efectos de los fármacos , Fluidez de la Membrana/efectos de los fármacos , 2-Naftilamina/análogos & derivados , 2-Naftilamina/química , Apoptosis/efectos de los fármacos , Lauratos/química , Microscopía de Fluorescencia por Excitación Multifotónica , Línea Celular Tumoral , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Antineoplásicos/farmacología , Antineoplásicos/química , Ácidos Oléicos/química , Colorantes Fluorescentes/química
7.
ACS Chem Biol ; 19(8): 1773-1785, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39069657

RESUMEN

Organelles feature characteristic lipid compositions that lead to differences in membrane properties. In cells, membrane ordering and fluidity are commonly measured using the solvatochromic dye Laurdan, whose fluorescence is sensitive to lipid packing. As a general lipophilic dye, Laurdan stains all hydrophobic environments in cells; therefore, it is challenging to characterize membrane properties in specific organelles or assess their responses to pharmacological treatments in intact cells. Here, we describe the synthesis and application of Laurdan-derived probes that read out the membrane packing of individual cellular organelles. The set of organelle-targeted Laurdans (OTL) localizes to the ER, mitochondria, lysosomes, and Golgi compartments with high specificity while retaining the spectral resolution needed to detect biological changes in membrane ordering. We show that ratiometric imaging with OTLs can resolve membrane heterogeneity within organelles as well as changes in lipid packing resulting from inhibition of trafficking or bioenergetic processes. We apply these probes to characterize organelle-specific responses to saturated lipid stress. While the ER and lysosomal membrane fluidity is sensitive to exogenous saturated fatty acids, that of mitochondrial membranes is protected. We then use differences in ER membrane fluidity to sort populations of cells based on their fatty acid diet, highlighting the ability of organelle-localized solvatochromic probes to distinguish between cells based on their metabolic state. These results expand the repertoire of targeted membrane probes and demonstrate their application in interrogating lipid dysregulation.


Asunto(s)
2-Naftilamina , Lauratos , Fluidez de la Membrana , Orgánulos , Humanos , Lauratos/química , Lauratos/farmacología , 2-Naftilamina/análogos & derivados , 2-Naftilamina/química , Fluidez de la Membrana/efectos de los fármacos , Orgánulos/metabolismo , Orgánulos/efectos de los fármacos , Colorantes Fluorescentes/química , Ácidos Grasos/metabolismo , Lisosomas/metabolismo , Lisosomas/efectos de los fármacos , Membranas Intracelulares/metabolismo , Membranas Intracelulares/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/efectos de los fármacos
8.
Int J Mol Sci ; 25(11)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38892117

RESUMEN

While edible algae might seem low in fat, the lipids they contain are crucial for good health and preventing chronic diseases. This study introduces a binary matrix to analyze all the polar lipids in both macroalgae (Wakame-Undaria pinnatifida, Dulse-Palmaria palmata, and Nori-Porphyra spp.) and microalgae (Spirulina-Arthrospira platensis, and Chlorella-Chlorella vulgaris) using matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS). The key lies in a new dual matrix made by combining equimolar amounts of 1,5-diaminonaphthalene (DAN) and 9-aminoacridine (9AA). This combination solves the limitations of single matrices: 9AA is suitable for sulfur-containing lipids and acidic phospholipids, while DAN excels as an electron-transfer secondary reaction matrix for intact chlorophylls and their derivatives. By employing the equimolar binary matrix, a wider range of algal lipids, including free fatty acids, phospholipids, glycolipids, pigments, and even rare arsenosugarphospholipids were successfully detected, overcoming drawbacks related to ion suppression from readily ionizable lipids. The resulting mass spectra exhibited a good signal-to-noise ratio at a lower laser fluence and minimized background noise. This improvement stems from the binary matrix's ability to mitigate in-source decay effects, a phenomenon often encountered for certain matrices. Consequently, the data obtained are more reliable, facilitating a faster and more comprehensive exploration of algal lipidomes using high-throughput MALDI-MS/MS analysis.


Asunto(s)
Lípidos , Microalgas , Algas Marinas , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Lípidos/química , Lípidos/análisis , Algas Marinas/química , Microalgas/química , 2-Naftilamina/análogos & derivados , 2-Naftilamina/química , Aminacrina/química , Pigmentos Biológicos/análisis , Pigmentos Biológicos/química , Spirulina/química
9.
J Chromatogr A ; 1729: 465030, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-38838449

RESUMEN

Exposure to tobacco smoke is highly correlated to the incidence of different types of cancer due to various carcinogenic compounds present in such smoke. Aromatic amines, such as 1-naphthylamine (1-NA) and 2-naphthylamine (2-NA), are produced in tobacco burning and are linked to bladder cancer. Miniaturized solid phase extraction techniques, such as microporous membrane solid phase extraction (MMSPE), have shown potential for the extraction of aromatic compounds. In this study, a bioanalytical method for the determination of 1-NA and 2-NA in human urine was developed using polypropylene microporous membranes as a sorptive phase for MMSPE. Urine samples were hydrolyzed with HCl for 1 h at 80 °C, after which pH was adjusted to 10. Ultrasound-assisted MMSPE procedure was optimized by factorial design as follows. To each sample, 750 µL of methanol was added, and ultrasound-assisted MMSPE was conducted for 1 h with four devices containing seven 2 mm polypropylene membrane segments. After extraction, the segments were transferred to 400 µL of hexane, and desorption was conducted for 30 min. Extracts were submitted to a simple and fast microwave-assisted derivatization procedure, by the addition of 10 µL of PFPA and heating at 480 W for 3 min, followed by clean-up with phosphate buffer pH 8.0 and GC-MS/MS analysis. Adequate linearity was obtained for both analytes in a range from 25 to 500 µg L-1, while the multiple reaction monitoring approach provided satisfactory selectivity and specificity. Intra-day (n = 6) and inter-day (n = 5) precision and accuracy were satisfactory, below 15 % and between 85 and 115 %, respectively. Recovery rates found were 91.9 and 58.4 % for 1-NA and 2-NA, respectively, with adequate precision. 1-NA was found in first-hand smokers' urine samples in a concentration range from 20.98 to 89.09 µg in 24 h, while it could be detected in second-hand smoker's urine samples, and 2-NA detected in all first and second-hand smokers' urine samples. The proposed method expands the applicability of low cost MMSPE devices to aromatic amines and biological fluids.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas , Límite de Detección , Polipropilenos , Extracción en Fase Sólida , Espectrometría de Masas en Tándem , Humanos , Polipropilenos/química , Espectrometría de Masas en Tándem/métodos , Cromatografía de Gases y Espectrometría de Masas/métodos , Extracción en Fase Sólida/métodos , Carcinógenos/análisis , Carcinógenos/aislamiento & purificación , Reproducibilidad de los Resultados , 1-Naftilamina/análogos & derivados , 1-Naftilamina/química , Membranas Artificiales , 2-Naftilamina/análogos & derivados , 2-Naftilamina/química , Porosidad , Fumadores
10.
J Mater Chem B ; 12(10): 2547-2558, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38358131

RESUMEN

Monitoring active membrane cholesterol and lipid raft cholesterol in the inner leaflet of the plasma membrane is significant for understanding the membrane function and cellular physiopathological processes. Limited by existing methods, it is difficult to differentiate active membrane cholesterol and lipid raft cholesterol. A novel dual-monomer solvatochromic probe system (DSPS) that targets two types of cholesterol was developed. Acrylodan-BG/SNAP-D4 composed of SNAP-D4 cholesterol-recognizing monomers and solvatochromic acrylodan-BG-sensing monomers exhibits excellent cholesterol detecting properties in terms of selectivity, accuracy, convenience and economic benefits. Cell imaging revealed that lipid raft cholesterol emitted blue fluorescence, whereas active membrane cholesterol (which partially bobbed in aqueous cytosol) displayed green fluorescence; both the fluorescence emissions increased or decreased in a cholesterol-dependent manner. This system provides a new technology for the determination of two types of cholesterol, which is beneficial for the further study of membrane function, intracellular cholesterol trafficking, and cell signaling.


Asunto(s)
2-Naftilamina/análogos & derivados , Colesterol , Microdominios de Membrana , Membrana Celular/metabolismo , Colesterol/metabolismo , Microdominios de Membrana/metabolismo
11.
Zhonghua Kou Qiang Yi Xue Za Zhi ; 59(1): 54-63, 2024 Jan 09.
Artículo en Chino | MEDLINE | ID: mdl-38172062

RESUMEN

Objective: To investigate the role and related mechanisms of the LiaSR two-component system in acid tolerance and biofilm formation abilities of Streptococcus mutans (Sm) 593. Methods: The growth curves of various Sm strains in pH=5.5 brian heart infusion (BHI) medium were analyzed. And colony forming unit (CFU) was also performed to evaluate the acid tolerance of Sm. Laurdan probe, H+-K+adenosine triphosphate (ATP)ase activity analysis kit, proton permeability assay and real-time fluorescence quantitative PCR (RT-qPCR) were conducted to detect the acid tolerant mechanisms of LiaSR two-component system in Sm. Crystal violet staining, CFU, SYTOX probe and anthrone-sulfuric method were used to analyze the properties and structures of the Sm biofilms. RT-qPCR was conducted to detect the expression levels of underlying regulated genes. Results: The growth of mutants in acidic BHI were inhibited (P<0.05). The acid tolerance of mutants significantly decreased compared to the wild-type strain (P<0.05). In mutants, the activity of H+-ATPase (917.06±59.53 and 469.53±47.65) were elevated by 7.22-folds and 3.70-folds compared to the wild-type strain (127.00±50.71) (P<0.001, P<0.001) and the encoded gene atpD (3.39±0.21 and 1.94±0.17) were also elevated by 3.39-folds and 1.94-folds compared to the wild-type strain (1.00±0.15) (P<0.001, P=0.001). The Laurdan generalized polarization of mutants (0.18±0.04 and 0.18±0.05) increased significantly compared to the wild-type strain (0.08±0.05) (P=0.006, P=0.003) and the expression levels of fabM gene were decreased in mutants (0.52±0.11 and 0.57±0.05) by 1/2 (P=0.014, P=0.022). In liaR deletion mutant, the reduced terminal pH (4.76±0.01) can also be observed (P<0.001). The total amount of the biofilms of three Sm didn't show significant differences (P>0.05). But the number of viable bacteria of mutants' biofilms were decreased [Sm 593: (12.00±2.80)×107 CFU/ml; Sm ΔliaS: (2.95±1.13)×107 CFU/ml; Sm ΔliaR: (7.25±1.60)×107 CFU/ml] (P=0.001, P=0.024). The extracellular DNA were increased by 18.00-folds and 6.50-folds in mutants' biofilms (128.73±15.65 and 46.38±5.52) compared to the wild-type strain (7.16±3.62) (P<0.001, P=0.003). Water-soluble exopolysaccharides could be found up-regulated in liaS deletion mutant [(138.73±10.12) µg/ml] (P=0.003) along with the expression level of gtfC gene (1.65±0.39) (P=0.014). The expression level of gtfD were elevated by 47.43-folds and 16.90-folds in mutants (P<0.001, P=0.010). Conclusions: The LiaSR two-component system can promote the expression of fabM gene and increase the fluidity of Sm which contributes to acid tolerance. The LiaR can also decrease the proton permeability and restrict the entrance of H+. The LiaSR two-component system can negatively regulate the production of the extracellular matrix in Sm biofilm.


Asunto(s)
2-Naftilamina/análogos & derivados , Lauratos , Protones , Streptococcus mutans , Streptococcus mutans/genética , Biopelículas
12.
Chem Commun (Camb) ; 58(83): 11661-11664, 2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36169286

RESUMEN

Dissolution dynamic nuclear polarization (dDNP) is a versatile hyperpolarization technique to boost signal intensities in nuclear magnetic resonance (NMR) spectroscopy. The possibility to dissolve biomolecules in a hyperpolarized aqueous buffer under mild conditions has recently widened the scope of NMR by dDNP. The water-to-target hyperpolarization transfer mechanisms remain yet unclear, not least due to an often-encountered dilemma of dDNP experiments: The strongly enhanced signal intensities are accompanied by limited structural information as data acquisition is restricted to short time series of only one-dimensional spectra or a single correlation spectrum. Tackling this challenge, we combine dDNP with molecular dynamics (MD) simulations and predictions of cross-relaxation rates to unravel the spin dynamics of magnetization flow in hyperpolarized solutions.


Asunto(s)
Imagen por Resonancia Magnética , Agua , 2-Naftilamina/análogos & derivados , Acrilonitrilo/análogos & derivados , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética/métodos , Simulación de Dinámica Molecular , Agua/química
13.
NMR Biomed ; 35(11): e4787, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35704397

RESUMEN

Hyperpolarized 15 N sites have been found to be promising for generating long-lived hyperpolarized states in solution, and present a promising approach for utilizing dissolution-dynamic nuclear polarization (dDNP)-driven hyperpolarized MRI for imaging in biology and medicine. Specifically, 15 N sites with directly bound protons were shown to be useful when dissolved in D2 O. The purpose of the current study was to further characterize and increase the visibility of such 15 N sites in solutions that mimic an intravenous injection during the first cardiac pass in terms of their H2 O:D2 O composition. The T1 values of hyperpolarized 15 N in [15 N2 ]urea and [15 N]NH4 Cl demonstrated similar dependences on the H2 O:D2 O composition of the solution, with a T1 of about 140 s in 100% D2 O, about twofold shortening in 90% and 80% D2 O, and about threefold shortening in 50% D2 O. [13 C]urea was found to be a useful solid-state 13 C marker for qualitative monitoring of the 15 N polarization process in a commercial pre-clinical dDNP device. Adding trace amounts of Gd3+ to the polarization formulation led to higher solid-state polarization of [13 C]urea and to higher polarization levels of [15 N2 ]urea in solution.


Asunto(s)
Protones , Agua , 2-Naftilamina/análogos & derivados , Acrilonitrilo/análogos & derivados , Imagen por Resonancia Magnética , Urea
14.
Biophys J ; 121(12): 2411-2418, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35596525

RESUMEN

Here we seek to gain insight into changes in the plasma membrane of live cells upon the application of osmotic stress using Laurdan, a fluorescent probe that reports on membrane organization, hydration, and dynamics. It is known that the application of osmotic stress to lipid vesicles causes a decrease in Laurdan's generalized polarization (GP), which has been interpreted as an indication of membrane stretching. In cells, we see the opposite effects, as GP increases when the osmolarity of the solution is decreased. This increase in GP is associated with the presence of caveolae, which are known to disassemble and flatten in response to osmotic stress.


Asunto(s)
2-Naftilamina , Lauratos , 2-Naftilamina/análogos & derivados , Membrana Celular/metabolismo , Polarización de Fluorescencia , Colorantes Fluorescentes/metabolismo , Presión Osmótica , Espectrometría de Fluorescencia
15.
J Photochem Photobiol B ; 228: 112404, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35196617

RESUMEN

Cell function is highly dependent on membrane structure, organization, and fluidity. Therefore, methods to probe the biophysical properties of biological membranes are required. Determination of generalized polarization (GP) values using Laurdan in fluorescence microscopy studies is one of the most widely-used methods to investigate changes in membrane fluidity in vitro and in vivo. In the last couple of decades, there has been a major increase in the number of studies using Laurdan GP, where several different methodological approaches are used. Such differences interfere with data interpretation inasmuch as it is difficult to validate if Laurdan GP variations actually reflect changes in membrane organization or arise from biased experimental approaches. To address this, we evaluated the influence of different methodological details of experimental data acquisition and analysis on Laurdan GP. Our results showed that absolute GP values are highly dependent on several of the parameters analyzed, showing that incorrect data can result from technical and methodological inconsistencies. Considering these differences, we further analyzed the impact of cell variability on GP determination, focusing on basic cell culture conditions, such as cell confluency, number of passages and media composition. Our results show that GP values can report alterations in the biophysical properties of cell membranes caused by cellular adaptation to the culture conditions. In summary, this study provides thorough analysis of the factors that can lead to Laurdan GP variability and suggests approaches to improve data quality, which would generate more precise interpretation and comparison within individual studies and among the literature on Laurdan GP.


Asunto(s)
Análisis de Datos , Colorantes Fluorescentes , 2-Naftilamina/análogos & derivados , 2-Naftilamina/química , Técnicas de Cultivo de Célula , Membrana Celular/metabolismo , Polarización de Fluorescencia , Colorantes Fluorescentes/química , Lauratos
16.
Am J Physiol Lung Cell Mol Physiol ; 322(2): L191-L203, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34851730

RESUMEN

By coating the alveolar air-liquid interface, lung surfactant overwhelms surface tension forces that, otherwise, would hinder the lifetime effort of breathing. Years of research have provided a picture of how highly hydrophobic and specialized proteins in surfactant promote rapid and efficient formation of phospholipid-based complex three-dimensional films at the respiratory surface, highly stable under the demanding breathing mechanics. However, recent evidence suggests that the structure and performance of surfactant typically isolated from bronchoalveolar lung lavages may be far from that of nascent, still unused, surfactant as freshly secreted by type II pneumocytes into the alveolar airspaces. In the present work, we report the isolation of lung surfactant from human amniotic fluid (amniotic fluid surfactant, AFS) and a detailed description of its composition, structure, and surface activity in comparison to a natural surfactant (NS) purified from porcine bronchoalveolar lavages. We observe that the lipid/protein complexes in AFS exhibit a substantially higher lipid packing and dehydration than in NS. AFS shows melting transitions at higher temperatures than NS and a conspicuous presence of nonlamellar phases. The surface activity of AFS is not only comparable with that of NS under physiologically meaningful conditions but displays significantly higher resistance to inhibition by serum or meconium, agents that inactivate surfactant in the context of severe respiratory pathologies. We propose that AFS may be the optimal model to study the molecular mechanisms sustaining pulmonary surfactant performance in health and disease, and the reference material to develop improved therapeutic surfactant preparations to treat yet unresolved respiratory pathologies.


Asunto(s)
Líquido Amniótico/química , Surfactantes Pulmonares/química , 2-Naftilamina/análogos & derivados , 2-Naftilamina/química , Animales , Rastreo Diferencial de Calorimetría , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Lauratos/química , Lípidos/química , Membranas , Porcinos
18.
Biochim Biophys Acta Biomembr ; 1864(1): 183794, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34627747

RESUMEN

Employing fluorescence spectroscopy and the membrane-embedded dye Laurdan we experimentally show that linear changes of cell membrane order in the physiological temperature regime are part of broad order-disorder-phase transitions which extend over a much broader temperature range. Even though these extreme temperatures are usually not object of live science research due to failure of cellular functions, our findings help to understand and predict cell membrane properties under physiological conditions as they explain the underlying physics of a broad order-disorder phase transition. Therefore, we analyzed the membranes of various cell lines, red blood cell ghosts and lipid vesicles by spectral decomposition in a custom-made setup in a temperature range from -40 °C to +90 °C. While the generalized polarization as a measure for membrane order of artificial lipid membranes like phosphatidylcholine show sharp transitions as known from calorimetry measurements, living cells in a physiological temperature range do only show linear changes. However, extending the temperature range shows the existence of broad transitions and their sensitivity to cholesterol content, pH and anaesthetic. Moreover, adaptation to culture conditions like decreased temperature and morphological changes like detachment of adherent cells or dendrite growth are accompanied by changes in membrane order as well. The observed changes of the generalized polarization are equivalent to temperature changes dT in the range of +12 K < dT < -6 K.


Asunto(s)
Membrana Celular/química , Membrana Eritrocítica/química , Lípidos/química , 2-Naftilamina/análogos & derivados , 2-Naftilamina/química , Colesterol/química , Colorantes Fluorescentes/química , Lauratos/química , Transición de Fase , Fosfatidilcolinas/química , Espectrometría de Fluorescencia , Termodinámica
19.
Curr Top Membr ; 88: 235-256, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34862028

RESUMEN

Impact of different lipids on membrane structure/lipid order is critical for multiple biological processes. Laurdan microscopy provides a unique tool to assess this property in heterogeneous biological membranes. This review describes the general principles of the approach and its application in model membranes and cells. It also provides an in-depth discussion of the insights obtained using Laurdan microscopy to evaluate the differential effects of cholesterol, oxysterols and oxidized phospholipids on lipid packing of ordered and disordered domains in vascular endothelial cells.


Asunto(s)
2-Naftilamina , Células Endoteliales , 2-Naftilamina/análogos & derivados , Membrana Celular , Lauratos , Lípidos de la Membrana
20.
J Phys Chem B ; 125(51): 13858-13867, 2021 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-34914398

RESUMEN

Excited-state character and dynamics of two 6-(dimethylamino)-2-acylnaphthalene dyes (Prodan and Badan-SCH2CH2OH) were studied by picosecond time-resolved IR spectroscopy (TRIR) in solvents of different polarity and relaxation times: hexane, CD3OD, and glycerol-d8. In all these solvents, near-UV excitation initially produced the same S1(ππ*) excited state characterized by a broad TRIR signal. A very fast decay (3, ∼100 ps) followed in hexane, whereas conversion to a distinct IR spectrum with a ν(C═O) band downshifted by 76 cm-1 occurred in polar/H-bonding solvents, slowing down on going from CD3OD (1, 23 ps) to glycerol-d8 (5.5, 51, 330 ps). The final relaxed excited state was assigned as planar Me2N → C═O intramolecular charge transfer S1(ICT) by comparing experimental and TDDFT-calculated spectra. TRIR conversion kinetics are comparable to those of early stages of multiexponential fluorescence decay and dynamic fluorescence red-shift. This work presents a strong evidence that Prodan-type dyes undergo solvation-driven charge separation in their S1 state, which is responsible for the dynamic fluorescence Stokes shift observed in polar/H-bonding solvents. The time evolution of the optically prepared S1(ππ*) state to the S1(ICT) final state reflects environment relaxation and solvation dynamics. This finding rationalizes the widespread use of Prodan-type dyes as probes of environment dynamics and polarity.


Asunto(s)
Colorantes Fluorescentes , 2-Naftilamina/análogos & derivados , Cinética , Solventes , Análisis Espectral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...