RESUMEN
PURPOSE: Colorectal cancer (CRC) remains a major global health concern, necessitating innovative therapeutic strategies to enhance treatment efficacy. In this study, we investigated the role of AKR1C4 in CRC and its impact on chemotherapy response. METHODS: AKR1C4 stable knockout CRC cell lines were generated using CRISPR/Cas9 technology. The impact of AKR1C4 depletion on chemotherapy sensitivity was assessed using Sulforhodamine B assay. Long-term, low-dose drug induction with increasing concentrations of 5FU, irinotecan, and oxaliplatin were employed to establish acquired chemoresistant CRC cell lines. Ferroptosis induction and inhibition were examined through total iron content and lipid peroxidation measurements. RESULTS: We found that AKR1C4 knockout enhances CRC cell sensitivity to chemotherapy, specifically by inducing ferroptosis. The enzymatic activity of AKR1C4 is crucial for regulating chemotherapy sensitivity in CRC cells, as evidenced by the inability of a Y55A mutant to reverse the sensitizing effect. Additionally, AKR1C4 inhibitors enhance chemotherapy sensitivity by inducing ferroptosis. Notably, AKR1C4 depletion resensitizes the acquired chemoresistant CRC cells to chemotherapy, suggesting its potential as a therapeutic target for overcoming acquired chemoresistance. Clinical analysis reveals that high AKR1C4 expression is associated with poor prognosis in CRC patients undergoing chemotherapy, highlighting its significance as a prognostic marker and a potential target for therapeutic intervention. CONCLUSION: This study illuminates the multifaceted role of AKR1C4 in CRC, demonstrating its significance in regulating chemotherapy sensitivity, overcoming acquired resistance, and impacting clinical outcomes. The insights provided may pave the way for novel therapeutic strategies in CRC management.
Asunto(s)
Neoplasias Colorrectales , Resistencia a Antineoplásicos , Ferroptosis , Humanos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/genética , Ferroptosis/efectos de los fármacos , Línea Celular Tumoral , Oxaliplatino/farmacología , 20-Hidroxiesteroide Deshidrogenasas/genética , 20-Hidroxiesteroide Deshidrogenasas/metabolismo , Animales , Ratones , Irinotecán/farmacología , Antineoplásicos/farmacología , Fluorouracilo/farmacología , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Atrazine (ATZ, C8H14ClN5) is a widely used synthetic herbicide that contaminates drinking water. It is a known endocrine disruptor that disrupts various molecular pathways involved in hormone signaling, and DNA damage, and can cause reproductive disorders, including decreased fertility, and abnormal development of reproductive organs, as revealed in animal model studies. However, the effect of ATZ on steroidogenesis in the male reproductive system, especially reduction of ketosteroids to hydroxysteroids, remains unclear. This study investigated the toxicity of ATZ on the male reproductive system in the Wistar rat model, with an emphasis on its adverse effect on aldo-ketoreductase family 1 member C2 (AKR1C2). Male Wistar rats were administered ATZ for 56 days (duration of one spermatogenic cycle) through oral route, at 20, 40 and 60 mg/kg body weight (bw) doses. The results indicate that ATZ exposure affects the body weight, impairs sperm production, and decrease FSH, LH, and testosterone levels. Additionally, the down-regulation of key steroidogenic enzymes by ATZ disrupted the synthesis of testosterone, leading to decreased levels of this essential male hormone. On the other hand, the expression of AKR1C2 (mRNA and protein) in the testis was upregulated. The findings suggest that AKR1C2 plays a role in androgen metabolism. Furthermore, its overexpression may lead to alteration in the expression of genes in the connected pathway, causing an increase in the breakdown or inactivation of androgens, which would result in lower androgen levels and, thereby, lead to hypoandrogenism, as the combined effects of down-regulation of steroidogenic genes and up-regulation of AKR1C2. These findings reveal direct implication of disrupted AKR1C2 in male reproductive health and highlight the need for further research on the impact of environmental toxins on human fertility, ultimately providing for better patient care.
Asunto(s)
Atrazina , Herbicidas , Infertilidad Masculina , Testículo , Animales , Masculino , Ratas , 20-Hidroxiesteroide Deshidrogenasas/genética , 20-Hidroxiesteroide Deshidrogenasas/metabolismo , Atrazina/toxicidad , Disruptores Endocrinos/toxicidad , Herbicidas/toxicidad , Infertilidad Masculina/inducido químicamente , Infertilidad Masculina/genética , Ratas Wistar , Testículo/efectos de los fármacos , Testículo/metabolismo , Testículo/enzimología , TestosteronaRESUMEN
Abdominal aortic aneurysm (AAA) is a cardiovascular disease that seriously threatens human health and brings huge economic burden. At present, its pathogenesis remains unclear and its treatment is limited to surgical treatment. With the deepening and analysis of studies on the mechanism of ferroptosis, a new idea has been provided for the clinical management of AAA patients, including diagnosis, treatment and prevention. Therefore, this paper aims to construct a competitive endogenous RNA (ceRNA) regulatory axis based on ferroptosis to preliminarily explore the pathogenesis and potential therapeutic targets of AAA. We obtained upregulated and downregulated ferroptosis-related DEGs (FRGs) from GSE144431 dataset and 60 known ferroptosis-related genes. Pearson correlation analysis was used to find aldoketone reductase 1C (AKR1C1) in AAA samples. Enrichment analysis of these genes was performed via Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Correlation test between immune cells and AKR1C1 was investigated through single-sample gene set enrichment analysis (ssGSEA). The AKR1C1-miRNA pairs were predicted by the TargetScan database and miRWalk database. Circular RNA (CircRNA)-miRNA pairs were selected by the CircInteractome database. Overlapping miRNA between circRNA-miRNA and AKR1C1-miRNA pairs was visualized by Venn diagram. Finally, the circRNA-miRNA-mRNA axis was constructed by searching for upstream circRNA and downstream mRNA of overlapping miRNA. Only one downregulated AKR1C1 gene was found in GSE144431 and 60 ferroptosis-related genes. Functional Enrichment and Pathway Analysis of AKR1C1-related genes were further explored, and it was observed that they were mainly enriched in "response to oxidative stress," "glutathione biosynthetic process" and "nonribosomal peptide biosynthetic process," "Ferroptosis," "Glutathione metabolism" and "Chemical carcinogenesis-reactive oxygen species." They were also found to be significantly associated with most immune cells, including Activated Dendritic cells, CD56dim Natural killer cells, Gamma Delta T cells, Immature B cells, Plasmacytoid dendritic cell, Type 2 T helper cell, Activated CD4 T cell and Type 1 T helper cell. Has_circ_0005073-miRNA-543 and AKR1C1-miRNA-543 were identified by Online Database analysis. Therefore, we have established the has_circ_0005073/miRNA-543/AKR1C1 axis in AAA. We found AKR1C1 was differentially expressed between normal and AAA groups. Based on AKR1C1, we constructed the has_circ_0005073/miRNA-543/AKR1C1 axis to analyze AAA.
Asunto(s)
20-Hidroxiesteroide Deshidrogenasas , Aneurisma de la Aorta Abdominal , Ferroptosis , MicroARNs , ARN Circular , ARN Mensajero , Humanos , Aneurisma de la Aorta Abdominal/genética , Aneurisma de la Aorta Abdominal/metabolismo , Ferroptosis/genética , MicroARNs/genética , MicroARNs/metabolismo , 20-Hidroxiesteroide Deshidrogenasas/genética , 20-Hidroxiesteroide Deshidrogenasas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , Regulación hacia AbajoRESUMEN
The process of human parturition involves inflammation at the interface where fetal chorion trophoblast cells interact with maternal decidual stromal (DS) cells and maternal immune cells in the decidua (endometrium of pregnancy). This study tested the hypothesis that inflammation at the chorion-decidua interface (CDI) induces labor by negating the capacity for progesterone (P4) to block labor and that this is mediated by inactivation of P4 in DS cells by aldo-keto reductase family 1 member C1 (AKR1C1). In human, Rhesus macaque, and mouse CDI, AKR1C1 expression increased in association with term and preterm labor. In a human DS cell line and in explant cultures of term human fetal membranes containing the CDI, the prolabor inflammatory cytokine, interleukin-1ß (IL-1ß), and media conditioned by LPS-stimulated macrophages increased AKR1C1 expression and coordinately reduced nuclear P4 levels and P4 responsiveness. Loss of P4 responsiveness was overcome by inhibition of AKR1C1 activity, inhibition of AKR1C1 expression, and bypassing AKR1C1 activity with a P4 analog that is not metabolized by AKR1C1. Increased P4 activity in response to AKR1C1 inhibition was prevented by the P4 receptor antagonist RU486. Pharmacologic inhibition of AKR1C1 activity prevented parturition in a mouse model of inflammation-induced preterm parturition. The data suggest that inflammatory stimuli at the CDI drive labor by inducing AKR1C1-mediated P4 inactivation in DS cells and that inhibiting and/or bypassing of AKR1C1-mediated P4 inactivation is a plausible therapeutic strategy to mitigate the risk of inflammation-associated preterm birth.
Asunto(s)
20-Hidroxiesteroide Deshidrogenasas , Decidua , Inflamación , Macaca mulatta , Parto , Progesterona , Células del Estroma , Femenino , Animales , Progesterona/metabolismo , Progesterona/farmacología , Decidua/metabolismo , Humanos , Ratones , Células del Estroma/metabolismo , Embarazo , Inflamación/metabolismo , 20-Hidroxiesteroide Deshidrogenasas/metabolismo , 20-Hidroxiesteroide Deshidrogenasas/genética , Interleucina-1beta/metabolismo , Corion/metabolismoRESUMEN
Prostaglandin F2α (PGF2α) is a luteolytic hormone that promotes parturition in mammals at the end of pregnancy by reducing progesterone secretion from the corpus luteum (CL). In rodents and primates, PGF2α rapidly converts progesterone to 20α-hydroxyprogesterone (20α-OHP) by promoting 20α-hydroxysteroid dehydrogenase (20α-HSD) expression. However, the specific mechanism of 20α-HSD regulation by PGF2α remains unclear. Casein Kinase 1α (CK1α) is a CK1 family member that regulates a variety of physiological functions, including reproductive development. Here, we investigated the effects of CK1α on pregnancy in female mice. Our experiments showed that CK1α is expressed in mouse CL, and its inhibition enhanced progesterone metabolism, decreased progesterone levels, and affected mouse embryo implantation. Further, CK1α mediated the effect of PGF2α on 20α-HSD in mouse luteal cells in vitro. Our results are the first to show that CK1α affects the 20α-HSD mRNA level by affecting the ERK signalling pathway to regulate the expression of the transcription factor SP1. These findings improve our understanding of PGF2α regulation of 20α-HSD.
Asunto(s)
Dinoprost , Progesterona , Embarazo , Ratones , Femenino , Animales , Progesterona/farmacología , Progesterona/metabolismo , Dinoprost/farmacología , 20-Hidroxiesteroide Deshidrogenasas/genética , 20-Hidroxiesteroide Deshidrogenasas/metabolismo , Cuerpo Lúteo/metabolismo , Parto , Mamíferos/metabolismoRESUMEN
Signet ring cell gastric carcinoma (SRCGC) is a lethal malignancy that has developed drug resistance to cisplatin therapies. The aim of this study was to characterize the acquisition of the cisplatin-resistance SRCGC cell line (KATO/DDP cells) and to understand the molecular mechanisms underlying cisplatin resistance. Transcriptomic and bioinformatic analyses were used to identify the candidate gene. This was confirmed by qPCR and Western blot. Aldoketoreductase1C1 and 1C3 (AKR1C1 and AKR1C3) were the most promising molecules in KATO/DDP cells. A specific inhibitor of AKR1C1 (5PBSA) and AKR1C3 (ASP9521) was used to enhance cisplatin-induced KATO/DPP cell death. Although cisplatin alone induced KATO/DDP apoptosis, a combination treatment of cisplatin and the AKR1C inhibitors had no influence on percent cell apoptosis. In conjunction with the autophagy inhibitor, 3MA, attenuated the effects of 5PBSA or ASP9521 to enhance cisplatin-induced cell death. These results indicated that AKR1C1 and 1C3 regulated cisplatin-induced KATO/DDP cell death via autophagy. Moreover, cisplatin in combination with AKR1C inhibitors and N-acetyl cysteine increased KATO/DDP cells' viability when compared with a combination treatment of cisplatin and the inhibitors. Taken together, our results suggested that AKR1C1 and 1C3 play a crucial role in cisplatin resistance of SRCGC by regulating redox-dependent autophagy.
Asunto(s)
20-Hidroxiesteroide Deshidrogenasas/genética , Miembro C3 de la Familia 1 de las Aldo-Ceto Reductasas/genética , Carcinoma de Células en Anillo de Sello/tratamiento farmacológico , Neoplasias Gástricas/tratamiento farmacológico , Muerte Celular Autofágica/efectos de los fármacos , Muerte Celular Autofágica/genética , Carcinoma de Células en Anillo de Sello/genética , Carcinoma de Células en Anillo de Sello/patología , Línea Celular Tumoral , Cisplatino/farmacología , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Transcriptoma/efectos de los fármacosRESUMEN
BACKGROUND: As a promising way to repair bone defect, bone tissue engineering has attracted a lot of attentions from researchers in recent years. Searching for new molecular target to modify the seed cells and enhance their osteogenesis capacity is one of the hot topics in this field. As a member of aldo-keto reductase family, aldo-keto reductase family 1 member C1 (AKR1C1) is reported to associate with various tumors. However, whether AKR1C1 takes part in regulating differentiation of adipose-derived mesenchymal stromal/stem cells (ASCs) and its relationship with progesterone receptor (PGR) remain unclear. METHODS: Lost-and-gain-of-function experiments were performed using knockdown and overexpression of AKR1C1 to identify its role in regulating osteogenic and adipogenic differentiation of hASCs in vitro. Heterotypic bone and adipose tissue formation assay in nude mice were used to conduct the in vivo experiment. Plasmid and siRNA of PGR, as well as western blot, were used to clarify the mechanism AKR1C1 regulating osteogenesis. RESULTS: Our results demonstrated that AKR1C1 acted as a negative regulator of osteogenesis and a positive regulator of adipogenesis of hASCs via its enzyme activity both in vitro and in vivo. Mechanistically, PGR mediated the regulation of AKR1C1 on osteogenesis. CONCLUSIONS: Collectively, our study suggested that AKR1C1 could serve as a regulator of osteogenic differentiation via targeting PGR and be used as a new molecular target for ASCs modification in bone tissue engineering.
Asunto(s)
20-Hidroxiesteroide Deshidrogenasas/genética , Osteogénesis , Receptores de Progesterona , Células Madre/citología , Tejido Adiposo/citología , Aldo-Ceto Reductasas/genética , Animales , Diferenciación Celular , Células Cultivadas , Humanos , Ratones , Ratones DesnudosRESUMEN
OBJECTIVES: Chronic inflammatory diseases, including diabetes and cardiovascular disease, are heterogeneous and often co-morbid, with increasing global prevalence. Uncontrolled type 2 diabetes (T2D) can result in severe inflammatory complications. As neutrophils are essential to normal and aberrant inflammation, we conducted RNA-seq transcriptomic analyses to investigate the association between neutrophil gene expression and T2D phenotype. As specialized pro-resolving lipid mediators (SPM) act to resolve inflammation, we further surveyed the impact of neutrophil receptor binding SPM resolvin E1 (RvE1) on isolated diabetic and healthy neutrophils. METHODS: Cell isolation and RNA-seq analysis of neutrophils from N = 11 T2D and N = 7 healthy individuals with available clinical data was conducted. Additionally, cultured neutrophils (N = 3 T2D, N = 3 healthy) were perturbed with increasing RvE1 doses (0 nM, 1 nM, 10 nM, or 100 nM) prior to RNA-seq. Data was evaluated through a bioinformatics pipeline including pathway analysis and post hoc false discovery rate (FDR)-correction. RESULTS: We observed significant differential expression of 50 genes between T2D and healthy neutrophils (p < 0.05), including decreased T2D gene expression in inflammatory- and lipid-related genes SLC9A4, NECTIN2, and PLPP3 (p < 0.003). RvE1 treatment induced dose-dependent differential gene expression (uncorrected p < 0.05) across groups, including 59 healthy and 216 T2D neutrophil genes. Comparing T2D to healthy neutrophils, 1097 genes were differentially expressed across RvE1 doses, including two significant genes, LILRB5 and AKR1C1, involved in inflammation (p < 0.05). CONCLUSIONS: The neutrophil transcriptomic database revealed novel chronic inflammatory- and lipid-related genes that were differentially expressed between T2D cells when compared to controls, and cells responded to RvE1 dose-dependently by gene expression changes. Unraveling the mechanisms regulating abnormalities in diabetic neutrophil responses could lead to better diagnostics and therapeutics targeting inflammation and inflammation resolution.
Asunto(s)
Diabetes Mellitus Tipo 2/inmunología , Inflamación/genética , Neutrófilos/fisiología , 20-Hidroxiesteroide Deshidrogenasas/genética , Adulto , Anciano , Antígenos CD/genética , Células Cultivadas , Diabetes Mellitus Tipo 2/genética , Ácido Eicosapentaenoico/análogos & derivados , Ácido Eicosapentaenoico/metabolismo , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Receptor Leucocitario Tipo Inmunoglobulina B1/genética , Masculino , Persona de Mediana Edad , Nectinas/genética , Fosfatidato Fosfatasa/genética , Análisis de Secuencia de ARN , Intercambiadores de Sodio-Hidrógeno/genética , TranscriptomaRESUMEN
Porcine steroid hormone profiles have some unique characteristics. We previously studied human and murine steroidogenesis using steroidogenic cells-derived from mesenchymal stem cells (MSCs). To investigate porcine steroidogenesis, we induced steroidogenic cells from porcine subcutaneous preadipocytes (PSPA cells), which originate from MSCs. Using cAMP, adenovirus-mediated introduction of steroidogenic factor-1 (SF-1)/adrenal 4-binding protein (Ad4BP) induced the differentiation of PSPA cells into sex steroid-producing cells. Introducing SF-1/Ad4BP also induced the aldo-keto reductase 1C1 (AKR1C1) gene. Porcine AKR1C1 had 17ß-hydroxysteroid dehydrogenase activity, which converts androstenedione and 11-ketoandrostenedione into testosterone (T) and 11-ketotestosteorne (11KT). Furthermore, differentiated cells expressed hydroxysteroid 11ß-dehydrogenase 2 (HSD11B2) and produced 11KT. HSD11B2 was expressed in testicular Leydig cells and the adrenal cortex. 11KT was present in the plasma of both immature male and female pigs, with slightly higher levels in the male pigs. T levels were much higher in the male pigs. It is noteworthy that in the female pigs, the 11KT levels were >10-fold higher than the T levels. However, castration altered the 11KT and T plasma profiles in the male pigs to near those of the females. 11KT induced endothelial nitric oxide synthase (eNOS) in porcine vascular endothelial cells. These results indicate that 11KT is produced in porcine adrenal glands and testes, and may regulate cardiovascular functions through eNOS expression.
Asunto(s)
Glándulas Suprarrenales/metabolismo , Andrógenos/metabolismo , Testículo/metabolismo , Testosterona/análogos & derivados , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 2/genética , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 2/metabolismo , 20-Hidroxiesteroide Deshidrogenasas/genética , 20-Hidroxiesteroide Deshidrogenasas/metabolismo , Adipocitos/citología , Androstenodiona/metabolismo , Animales , Línea Celular , Células Endoteliales/metabolismo , Células Intersticiales del Testículo/metabolismo , Masculino , Óxido Nítrico Sintasa de Tipo III/genética , Porcinos , Testosterona/metabolismoRESUMEN
Neuroblastoma (NB) has the highest incidence of all extracranial solid tumors in children and is highly lethal. This study aims to establish a prognostic model of NB with MYCN-related genes. We determined the gene expression profiles of 900 NB samples from the UCSC database and four Gene Expression Omnibus (GEO) data sets, and performed a comprehensive bioinformatics analysis and clinical sample verification. After univariate Cox regression, least absolute shrinkage and selection operator (Lasso), and multivariate Cox regression analyses, four (AKR1C1, CHD5, PDE4DIP, and PRKACB) genes were finally selected and used to construct a risk score prognostic model. In the UCSC data set, the high-risk group exhibited a significantly worse prognosis than the low-risk group. In addition, the nomogram, which includes prognostic markers and clinical factors, demonstrates high prognostic value. Finally, the differential expression of the four genes in the model was verified by quantitative real-time PCR in clinical tissues. These findings of MYCN-related genes provide a new and reliable prognostic model for NB related to MYCN.
Asunto(s)
Biomarcadores de Tumor/genética , Biología Computacional , Proteína Proto-Oncogénica N-Myc/genética , Neuroblastoma/diagnóstico , Neuroblastoma/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , 20-Hidroxiesteroide Deshidrogenasas/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Subunidades Catalíticas de Proteína Quinasa Dependientes de AMP Cíclico/genética , Proteínas del Citoesqueleto/genética , ADN Helicasas/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Proteínas del Tejido Nervioso/genética , PronósticoRESUMEN
Cervical cancer (CC) is a common gynecological malignancy, accounting for 10% of all gynecological cancers. Recently, targeted therapy for CC has shown unprecedented advantages. To improve CC patients' prognosis, there are still urgent needs to develop more promising therapeutic targets. Aldo-keto reductase 1 family member C1 (AKR1C1) is a type of aldosterone reductase and plays a regulatory role in a variety of key metabolic pathways. Several studies indicated that AKR1C1 was highly expressed in a series of tumors, and participated in the progression of these tumors. However, the possible effects of AKR1C1 on CC progression remain unclear. Herein, we revealed AKR1C1 was highly expressed in human CC tissues and correlated with the clinical characteristics of patients with CC. AKR1C1 could regulate the proliferation and invasion of cervical cancer cells in vitro. Further experiments showed that AKR1C1 could regulate TWIST1 expression and AKT pathway. In summary, we confirmed the involvement of AKR1C1 in CC progression, and therefore AKR1C1 may have the potential to be a molecular target for CC treatment.
Asunto(s)
20-Hidroxiesteroide Deshidrogenasas/metabolismo , Regulación Neoplásica de la Expresión Génica , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/biosíntesis , Proteína 1 Relacionada con Twist/biosíntesis , Neoplasias del Cuello Uterino/metabolismo , 20-Hidroxiesteroide Deshidrogenasas/genética , Femenino , Células HeLa , Humanos , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Proteína 1 Relacionada con Twist/genética , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/patologíaRESUMEN
Lipedema is an often underdiagnosed chronic disorder that affects subcutaneous adipose tissue almost exclusively in women, which leads to disproportionate fat accumulation in the lower and upper body extremities. Common comorbidities include anxiety, depression, and pain. The correlation between mood disorder and subcutaneous fat deposition suggests the involvement of steroids metabolism and neurohormones signaling, however no clear association has been established so far. In this study, we report on a family with three patients affected by sex-limited autosomal dominant nonsyndromic lipedema. They had been screened by whole exome sequencing (WES) which led to the discovery of a missense variant p.(Leu213Gln) in AKR1C1, the gene encoding for an aldo-keto reductase catalyzing the reduction of progesterone to its inactive form, 20-α-hydroxyprogesterone. Comparative molecular dynamics simulations of the wild-type vs. variant enzyme, corroborated by a thorough structural and functional bioinformatic analysis, suggest a partial loss-of-function of the variant. This would result in a slower and less efficient reduction of progesterone to hydroxyprogesterone and an increased subcutaneous fat deposition in variant carriers. Overall, our results suggest that AKR1C1 is the first candidate gene associated with nonsyndromic lipedema.
Asunto(s)
20-Hidroxiesteroide Deshidrogenasas/genética , Secuenciación del Exoma/métodos , Lipedema/genética , Mutación Missense , 20-Hidroxiesteroide Deshidrogenasas/química , 20-Hidroxiesteroide Deshidrogenasas/metabolismo , 20-alfa-Dihidroprogesterona/metabolismo , Adulto , Anciano , Femenino , Humanos , Lipedema/metabolismo , Mutación con Pérdida de Función , Persona de Mediana Edad , Modelos Moleculares , Simulación de Dinámica Molecular , Linaje , Progesterona/metabolismo , Conformación ProteicaRESUMEN
The relationship between metabolism reprogramming and neuroblastoma (NB) is largely unknown. In this study, one RNA-sequence data set (n = 153) was used as discovery cohort and two microarray data sets (n = 498 and n = 223) were used as validation cohorts. Differentially expressed metabolic genes were identified by comparing stage 4s and stage 4 NBs. Twelve metabolic genes were selected by LASSO regression analysis and integrated into the prognostic signature. The metabolic gene signature successfully stratifies NB patients into two risk groups and performs well in predicting survival of NB patients. The prognostic value of the metabolic gene signature is also independent with other clinical risk factors. Nine metabolism-related long non-coding RNAs (lncRNAs) were also identified and integrated into the metabolism-related lncRNA signature. The lncRNA signature also performs well in predicting survival of NB patients. These results suggest that the metabolic signatures have the potential to be used for risk stratification of NB. Gene set enrichment analysis (GSEA) reveals that multiple metabolic processes (including oxidative phosphorylation and tricarboxylic acid cycle, both of which are emerging targets for cancer therapy) are enriched in the high-risk NB group, and no metabolic process is enriched in the low-risk NB group. This result indicates that metabolism reprogramming is associated with the progression of NB and targeting certain metabolic pathways might be a promising therapy for NB.
Asunto(s)
Perfilación de la Expresión Génica , Análisis por Micromatrices , Neuroblastoma/genética , Neuroblastoma/metabolismo , RNA-Seq , 20-Hidroxiesteroide Deshidrogenasas/genética , 20-Hidroxiesteroide Deshidrogenasas/metabolismo , Supervivencia sin Enfermedad , Regulación Neoplásica de la Expresión Génica , Humanos , Estimación de Kaplan-Meier , Anotación de Secuencia Molecular , Mutación/genética , Pronóstico , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Reproducibilidad de los ResultadosRESUMEN
The endometrium is an important tissue for pregnancy and plays an important role in reproduction. In this study, high-throughput transcriptome sequencing was performed in endometrium samples of Meishan and Yorkshire pigs on days 18 and 32 of pregnancy. Aldo-keto reductase family 1 member C1 (AKR1C1) was found to be a differentially expressed gene, and was identified by quantitative real-time PCR (qRT-PCR) and Western blot. Immunohistochemistry results revealed the cellular localization of the AKR1C1 protein in the endometrium. Luciferase activity assay demonstrated that the AKR1C1 core promoter region was located in the region from -706 to -564, containing two nuclear factor erythroid 2-related factor 2 (NRF2) binding sites (antioxidant response elements, AREs). XLOC-2222497 was identified as a nuclear long non-coding RNA (lncRNA) highly expressed in the endometrium. XLOC-2222497 overexpression and knockdown have an effect on the expression of AKR1C1. Endocrinologic measurement showed the difference in progesterone levels between Meishan and Yorkshire pigs. Progesterone treatment upregulated AKR1C1 and XLOC-2222497 expression in porcine endometrial epithelial cells. In conclusion, transcriptome analysis revealed differentially expressed transcripts during the early pregnancy process. Further experiments demonstrated the interaction of XLOC-2222497/AKR1C1/progesterone in the endometrium and provided new potential targets for pregnancy maintenance and its control.
Asunto(s)
20-Hidroxiesteroide Deshidrogenasas/genética , Endometrio/metabolismo , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica , Progesterona/metabolismo , ARN Largo no Codificante/genética , 20-Hidroxiesteroide Deshidrogenasas/metabolismo , Animales , Western Blotting , Células Cultivadas , Endometrio/citología , Células Epiteliales/metabolismo , Femenino , Embarazo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , PorcinosRESUMEN
The leukaemic bone marrow microenvironment, comprising abnormal mesenchymal stromal cells (MSCs), is responsible for the poor prognosis of acute myeloid leukaemia (AML). Therefore, it is essential to determine the mechanisms underlying the supportive role of MSCs in the survival of leukaemia cells. Through in silico analyses, we identified a total of 271 aberrantly expressed genes in the MSCs derived from acute myeloid leukemia (AML) patients that were associated with adipogenic differentiation, of which aldo-keto reductase 1C1 (AKR1C1) was significantly upregulated in the AML-MSCs. Knockdown of AKR1C1 in the MSCs suppressed adipogenesis and promoted osteogenesis, and inhibited the growth of co-cultured AML cell lines compared to the situation in wild- type AML-derived MSCs. Introduction of recombinant human AKR1C1 in the MSCs partially alleviated the effects of AKR1C1 knockdown. In addition, the absence of AKR1C1 reduced secretion of cytokines such as MCP-1, IL-6 and G-CSF from the MSCs, along with inactivation of STAT3 and ERK1/2 in the co-cultured AML cells. AKR1C1 is an essential factor driving the adipogenic differentiation of leukaemic MSCs and mediates its pro-survival effects on AML cells by promoting cytokine secretion and activating the downstream pathways in the AML cells.
Asunto(s)
20-Hidroxiesteroide Deshidrogenasas/genética , Leucemia Mieloide Aguda/genética , Células Madre Mesenquimatosas/metabolismo , Adolescente , Adulto , Niño , Preescolar , Femenino , Humanos , Masculino , Persona de Mediana Edad , Análisis de Supervivencia , Regulación hacia Arriba , Adulto JovenRESUMEN
Recent studies have shown that an adrenal steroid 11ß-hydroxy-4-androstene-3,17-dione serves as the precursor to androgens, 11-ketotestosterone and 11-ketodihydrotestosterone (11KDHT). The biosynthetic pathways include the reduction of 3- and 17-keto groups of the androgen precursors 11-keto-C19-steroids, which has been reported to be mediated by three human enzymes; aldo-keto reductase (AKR)1C2, AKR1C3 and 17ß-hydroxysteroid dehydrogenase (HSD) type-3. To explore the contribution of the enzymes in the reductive metabolism, we kinetically compared the substrate specificity for 11-keto-C19-steroids among purified recombinant preparations of four AKRs (1C1, 1C2,1C3 and 1C4) and DHRS11, which shows 17ß-HSD activity. Although AKR1C1 did not reduce the 11-keto-C19-steroids, AKR1C3 and DHRS11 reduced 17-keto groups of 11-keto-4-androstene-3,17-dione, 11-keto-5α-androstane-3,17-dione (11K-Adione) and 11-ketoandrosterone with Km values of 5-28⯵M. The 3-keto groups of 11KDHT and 11K-Adione were reduced by AKR1C4 (Km 1⯵M) more efficiently than by AKR1C2 (Km 5 and 8⯵M, respectively). GC/MS analysis of the products showed that DHRS11 acts as 17ß-HSD, and that AKR1C2 and AKR1C4 are predominantly 3α-HSDs, but formed a minor 3ß-metabolite from 11KDHT. Since DHRS11 was thus newly identified as 11-keto-C19-steroid reductase, we also investigated its substrate-binding mode by molecular docking and site-directed mutagenesis of Thr163 and Val200, and found the following structural features: 1). There is a space that accommodates the 11-keto group of the 11-keto-C19-steroids in the substrate-binding site. 2) Val200 is a critical determinant for exhibiting the strict 17ß-HSD activity of the enzyme, because the Val200Leu mutation resulted in both significant impairment of the 17ß-HSD activity and emergence of 3ß-HSD activity towards 5α-androstanes including 11KDHT.
Asunto(s)
17-Hidroxiesteroide Deshidrogenasas/química , 20-Hidroxiesteroide Deshidrogenasas/química , Aldo-Ceto Reductasas/química , Esteroides/biosíntesis , 17-Hidroxiesteroide Deshidrogenasas/genética , 17-Hidroxiesteroide Deshidrogenasas/metabolismo , 20-Hidroxiesteroide Deshidrogenasas/genética , 20-Hidroxiesteroide Deshidrogenasas/metabolismo , Miembro C3 de la Familia 1 de las Aldo-Ceto Reductasas/química , Miembro C3 de la Familia 1 de las Aldo-Ceto Reductasas/genética , Miembro C3 de la Familia 1 de las Aldo-Ceto Reductasas/metabolismo , Aldo-Ceto Reductasas/genética , Aldo-Ceto Reductasas/metabolismo , Andrógenos/biosíntesis , Andrógenos/química , Vías Biosintéticas/genética , Humanos , Simulación del Acoplamiento Molecular , Oxidorreductasas/química , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Esteroides/química , Especificidad por Sustrato , Testosterona/análogos & derivados , Testosterona/metabolismoRESUMEN
3-Nitrobenzanthrone (3-NBA) is a suspected human carcinogen present in diesel exhaust. It requires metabolic activation via nitroreduction in order to form DNA adducts and promote mutagenesis. We have determined that human aldo-keto reductases (AKR1C1-1C3) and NAD(P)H:quinone oxidoreductase 1 (NQO1) contribute equally to the nitroreduction of 3-NBA in lung epithelial cell lines and collectively represent 50% of the nitroreductase activity. The genes encoding these enzymes are induced by the transcription factor NF-E2 p45-related factor 2 (NRF2), which raises the possibility that NRF2 activation exacerbates 3-NBA toxification. Since A549 cells possess constitutively active NRF2, we examined the effect of heterozygous (NRF2-Het) and homozygous NRF2 knockout (NRF2-KO) by CRISPR-Cas9 gene editing on the activation of 3-NBA. To evaluate whether NRF2-mediated gene induction increases 3-NBA activation, we examined the effects of NRF2 activators in immortalized human bronchial epithelial cells (HBEC3-KT). Changes in AKR1C1-1C3 and NQO1 expression by NRF2 knockout or use of NRF2 activators were confirmed by qPCR, immunoblots, and enzyme activity assays. We observed decreases in 3-NBA activation in the A549 NRF2 KO cell lines (53% reduction in A549 NRF2-Het cells and 82% reduction in A549 NRF2-KO cells) and 40-60% increases in 3-NBA bioactivation due to NRF2 activators in HBEC3-KT cells. Together, our data suggest that activation of the transcription factor NRF2 exacerbates carcinogen metabolism following exposure to diesel exhaust which may lead to an increase in 3-NBA-derived DNA adducts.
Asunto(s)
Contaminantes Atmosféricos/toxicidad , Benzo(a)Antracenos/toxicidad , Regulación de la Expresión Génica/fisiología , Mutágenos/toxicidad , Factor 2 Relacionado con NF-E2/metabolismo , 20-Hidroxiesteroide Deshidrogenasas/genética , Células A549 , Activación Metabólica , Contaminantes Atmosféricos/metabolismo , Miembro C3 de la Familia 1 de las Aldo-Ceto Reductasas/genética , Benzo(a)Antracenos/metabolismo , Bronquios/citología , Células Epiteliales/efectos de los fármacos , Técnicas de Inactivación de Genes , Humanos , Hidroxiesteroide Deshidrogenasas/genética , Imidazoles/farmacología , Isotiocianatos/farmacología , Mutágenos/metabolismo , NAD(P)H Deshidrogenasa (Quinona)/genética , Factor 2 Relacionado con NF-E2/agonistas , Factor 2 Relacionado con NF-E2/genética , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/farmacología , Estrés Oxidativo/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , SulfóxidosRESUMEN
BACKGROUND: Cisplatin is the first-line chemotherapy used against most upper aerodigestive tract carcinomas. In head and neck cancer, sensitivity to cisplatin remains the key issue in treatment response and outcome. Genetic heterogeneity and aberrant gene expression may be the intrinsic factors that cause primary cisplatin-resistance. METHODS: Combination of the HNSCC gene expression data and the cisplatin sensitivity results from public database. We found that aldo-keto reductase family 1 member C1 (AKR1C1) may be associated with cisplatin sensitivity in HNSCC treatment of naïve cells. We examined the AKR1C1 expression and its correlation with cisplatin IC50 and prognosis in patients. The in vitro and in vivo AKR1C1 functions in cisplatin-resistance through overexpression or knockdown assays, respectively. cDNA microarrays were used to identify the upstream regulators that modulate AKR1C1-induced signaling in HNSCC. Finally, we used the cigarette metabolites to promote AKR1C1 expression and ruxolitinib to overcome AKR1C1-induced cisplatin-resistance. RESULTS: AKR1C1 positively correlates to cisplatin-resistance in HNSCC cells. AKR1C1 is a poor prognostic factor for recurrence and death of HNSCC patients. Silencing of AKR1C1 not only reduced in vitro IC50 but also increased in vivo cisplatin responses and vise versa in overexpression cells. Cigarette metabolites also promote AKR1C1 expression. Transcriptome analyses revealed that STAT1 and STAT3 activation enable AKR1C1-induced cisplatin-resistance and can be overcome by ruxolitinib treatment. CONCLUSIONS: AKR1C1 is a crucial regulator for cisplatin-resistance in HNSCC and also poor prognostic marker for patients. Targeting the AKR1C1-STAT axis may provide a new therapeutic strategy to treat patients who are refractory to cisplatin treatment.
Asunto(s)
20-Hidroxiesteroide Deshidrogenasas/genética , Antineoplásicos/farmacología , Cisplatino/farmacología , Factor de Transcripción STAT1/metabolismo , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Animales , Apoptosis/genética , Caspasas/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Mediadores de Inflamación/metabolismo , Ratones , Modelos Biológicos , Pronóstico , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal/efectos de los fármacos , Carcinoma de Células Escamosas de Cabeza y Cuello/mortalidad , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Transcriptoma , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Different studies have shown that HPV16-positive OPSCC can be subdivided based on integration status (integrated, episomal and mixed forms). Because we showed that integration neither affects the levels of viral genes, nor those of virally disrupted human genes, a genome-wide screen was performed to identify human genes which expression is influenced by viral integration and have clinical relevance. Thirty-three fresh-frozen HPV-16 positive OPSCC samples with known integration status were analyzed by mRNA expression profiling. Among the genes of interest, Aldo-keto-reductases 1C1 and 1C3 (AKR1C1, AKR1C3) were upregulated in tumors with viral integration. Additionally, 141 OPSCC, including 48 HPV-positive cases, were used to validate protein expression by immunohistochemistry. Results were correlated with clinical and histopathological data. Non-hierarchical clustering resulted in two main groups differing in mRNA expression patterns, which interestingly corresponded with viral integration status. In OPSCC with integrated viral DNA, often metabolic pathways were deregulated with frequent upregulation of AKR1C1 and AKR1C3 transcripts. Survival analysis of 141 additionally immunostained OPSCC showed unfavorable survival rates for tumors with upregulation of AKR1C1 or AKR1C3 (both p <0.0001), both in HPV-positive (p ≤0.001) and -negative (p ≤0.017) tumors. OPSCC with integrated HPV16 show upregulation of AKR1C1 and AKR1C3 expression, which strongly correlates with poor survival rates. Also in HPV-negative tumors, upregulation of these proteins correlates with unfavorable outcome. Deregulated AKR1C expression has also been observed in other tumors, making these genes promising candidates to indicate prognosis. In addition, the availability of inhibitors of these gene products may be utilized for drug treatment.
Asunto(s)
20-Hidroxiesteroide Deshidrogenasas/genética , Miembro C3 de la Familia 1 de las Aldo-Ceto Reductasas/genética , Carcinoma de Células Escamosas/genética , Papillomavirus Humano 16/genética , Neoplasias Orofaríngeas/genética , Regulación hacia Arriba/genética , Integración Viral/genética , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/virología , ADN Viral/genética , Femenino , Genes Virales/genética , Humanos , Masculino , Redes y Vías Metabólicas/genética , Persona de Mediana Edad , Neoplasias Orofaríngeas/patología , Neoplasias Orofaríngeas/virología , Infecciones por Papillomavirus/genética , Infecciones por Papillomavirus/patología , Infecciones por Papillomavirus/virología , Pronóstico , Tasa de SupervivenciaRESUMEN
Metastasis is the leading cause of mortality for human non-small cell lung cancer (NSCLC). However, it is difficult to target tumor metastasis because the molecular mechanisms underlying NSCLC invasion and migration remain unclear. Methods: GEO data analyses and IHC analyses were performed to identify that the expression level of AKR1C1, a member of human aldo-keto reductase family, was highly elevated in patients with metastasis or metastatic foci of NSCLC patients. Functional analyses (in vitro and in vivo) and quantitative genomic analyses were preformed to confirm the pro-metastatic effects of AKR1C1 and the underlying mechanisms. The correlation of AKR1C1 with the prognosis of NSCLC patients was evaluated using Kaplan-Meier analyses. Results: in NSCLC patients, AKR1C1 expression was closely correlated with the metastatic potential of tumors. AKR1C1 overexpression in nonmetastatic cancer cells significantly promoted metastasis both in vitro and in vivo, whereas depletion of AKR1C1 in highly metastatic tumors potently alleviated these effects. Quantitative genomic and functional analyses revealed that AKR1C1 directly interacted with STAT3 and facilitated its phosphorylation-thus reinforcing the binding of STAT3 to the promoter regions of target genes-and then transactivated these genes, which ultimately promoted tumor metastasis. Further studies showed that AKR1C1 might facilitate the interaction of STAT3 with its upstream kinase JAK2. Intriguingly, AKR1C1 exerted these pro-metastatic effects in a catalytic-independent manner. In addition, a significant correlation between AKR1C1 and STAT3 pathway was observed in the metastatic foci of NSCLC patients, and the AKR1C1-STAT3 levels were highly correlated with a poor prognosis in NSCLC patients. Conclusions: taken together, we show that AKR1C1 is a potent inducer of NSCLC metastasis. Our study uncovers the active function of AKR1C1 as a key component of the STAT3 pathway, which promotes lung cancer metastasis, and highlights a candidate therapeutic target to potentially improve the survival of NSCLC patients with metastatic disease.