Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Ceska Slov Farm ; 61(4): 144-9, 2012 Aug.
Artículo en Checo | MEDLINE | ID: mdl-23251955

RESUMEN

The amyloid-beta peptide (Abeta) has been associated with Alzheimer's disease (AD) for some time. The original amyloid cascade hypothesis declared that the insoluble extracellular plaques were responsible for main Abeta toxicity. Nowadays, this hypothesis is outdated and soluble intracellular Abeta forms and their effects within the cell have come into the centre of attention. There are many intracellular proteins interacting with Abeta including the mitochondrial enzyme amyloid-binding alcohol dehydrogenase (ABAD). The interaction between ABAD and Abeta impairs mitochondrial functions and ultimately results in cell death. In this review, current findings concerning the enzyme ABAD are summarized. Its role in AD development and its interaction with Abeta as a potential therapeutic target are discussed.


Asunto(s)
3-Hidroxiacil-CoA Deshidrogenasas/metabolismo , Enfermedad de Alzheimer/enzimología , Mitocondrias/enzimología , 3-Hidroxiacil-CoA Deshidrogenasas/química , 3-Hidroxiacil-CoA Deshidrogenasas/fisiología , Enfermedad de Alzheimer/terapia , Péptidos beta-Amiloides/metabolismo , Humanos
2.
J Diabetes ; 2(3): 157-67, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20923481

RESUMEN

BACKGROUND: Hyperinsulinemia associated with non-ketotic hypoglycemia is observed in patients with mutated ß-oxidation enzyme short-chain 3-hydroxyacyl-CoA dehydrogenase (HADHSC). In the present study, we investigated the mechanism underlying HADHSC-mediated regulation of insulin secretion. METHODS: Knockdown of HADHSC expression by RNA interference in INS832/13 ß-cells was achieved using short hairpin RNA and short interference RNA. RESULTS: Knockdown of HADHSC increased both fuel- (glucose or leucine plus glutamine) and non-fuel (high KCl)-induced insulin secretion. Enhanced glucose-stimulated insulin secretion (GSIS) induced by HADHSC knockdown was independent of changes in cytosolic Ca(2+) and also occurred in the presence of fatty acids. L-Carnitine, used in the formation of acyl-carnitine compounds, increased GSIS in control cells, but was unable to further increase the augmented GSIS in HADHSC-knockdown cells. The pan transaminase inhibitor amino-oxyacetate reversed HADHSC knockdown-mediated increases in GSIS. Oxidation of [1-(14) C]-palmitate and -octanoate was not reduced in HADHSC-knockdown cells. L-3-Hydroxybutyryl-carnitine (tested using its precursor L-3-hydroxybutyrate) and L-3-hydroxyglutarate, which accumulate in blood and urine, respectively, of HADHSC-deficient patients, did not change insulin secretion. CONCLUSIONS: Insulin secretion promoted by both fuel and non-fuel stimuli is negatively regulated by HADHSC. Enhanced secretion after HADHSC knockdown is not due to inhibition of fatty acid oxidation causing an accumulation of long-chain fatty acids or their CoA derivatives. L-3-Hydroxybutyrate and L-3-hydroxyglutarate do not mediate enhanced secretion caused by reduced HADHSC activity. Transamination reaction(s) and the formation of short-chain acylcarnitines and CoAs may be implicated in the mechanism whereby HADHSC deficiency results in enhanced insulin secretion and hyperinsulinemia.


Asunto(s)
3-Hidroxiacil-CoA Deshidrogenasas/fisiología , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , 3-Hidroxiacil-CoA Deshidrogenasas/genética , Adenosina Trifosfato/metabolismo , Secuencia de Bases , Calcio/metabolismo , Células Cultivadas/citología , Células Cultivadas/metabolismo , Regulación hacia Abajo , Homeostasis , Humanos , Hiperinsulinismo/fisiopatología , Secreción de Insulina , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/enzimología , Reacción en Cadena de la Polimerasa/métodos , ARN Interferente Pequeño/genética
3.
Rev Endocr Metab Disord ; 11(3): 185-91, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20931292

RESUMEN

Mutations in the HADH and HNF4A genes are rare causes of diazoxide responsive congenital hyperinsulinism (CHI). This chapter details the phenotype known to be associated with mutations in these genes. Additionally, the authors give a brief overview of the role of these genes in glucose physiology and the possible mechanisms of CHI in patients with mutations in these genes.


Asunto(s)
3-Hidroxiacil-CoA Deshidrogenasas/genética , Hiperinsulinismo Congénito/genética , Factor Nuclear 4 del Hepatocito/genética , Mutación , 3-Hidroxiacil-CoA Deshidrogenasas/metabolismo , 3-Hidroxiacil-CoA Deshidrogenasas/fisiología , Hiperinsulinismo Congénito/metabolismo , Factor Nuclear 4 del Hepatocito/metabolismo , Factor Nuclear 4 del Hepatocito/fisiología , Humanos , Recién Nacido , Células Secretoras de Insulina/metabolismo , Modelos Biológicos , Mutación/fisiología
5.
Mol Genet Metab ; 92(1-2): 36-42, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17618155

RESUMEN

The HSD17B10 gene maps on chromosome Xp11.2, a region highly associated with X-linked mental retardation. This gene encodes HSD10, a mitochondrial multifunctional enzyme that plays a significant part in the metabolism of neuroactive steroids and the degradation of isoleucine. The HSD17B10 gene is composed of six exons and five introns. Its exon 5 is an alternative exon such that there are several HSD17B10 mRNA isoforms in brain. A silent mutation (c.605C-->A) and three missense mutations (c.395C-->G; c.419C-->T; c.771A-->G), respectively, cause the X-linked mental retardation, choreoathetosis, and abnormal behavior (MRXS10) and the hydroxyacyl-CoA dehydrogenase II deficiency. The latter condition seems to be a multifactorial disease due to the disturbance of more than one metabolic pathway by the HSD10 deficiency. HSD10 inactivates the positive modulators of GABAA receptors, and plays a role in the maintenance of GABAergic neuronal function. This working model may account for the mental retardation of these patients. The dehydrogenase activity is slightly inhibited by the binding of amyloid-beta peptide to the loop D of HSD10. Elevated levels of HSD10 were observed in hippocampi of Alzheimer disease patients so this multifunctional enzyme may be related to Alzheimer disease pathogenesis; however, the molecular mechanism of its involvement remains to be ascertained.


Asunto(s)
3-Hidroxiacil-CoA Deshidrogenasas/fisiología , Trastornos del Conocimiento/enzimología , Isoleucina/metabolismo , Neurotransmisores/metabolismo , Esteroides/metabolismo , 3-Hidroxiacil-CoA Deshidrogenasas/genética , Secuencia de Aminoácidos , Humanos , Discapacidad Intelectual Ligada al Cromosoma X/enzimología , Discapacidad Intelectual Ligada al Cromosoma X/etiología , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido
6.
Artículo en Inglés | MEDLINE | ID: mdl-16611167

RESUMEN

Human type 10 17beta-hydroxysteroid dehydrogenase (HSD) is a homotetrameric protein located in mitochondria. This enzyme was alternatively named short chain L-3-hydroxyacyl-CoA dehydrogenase (SCHSD). This NAD(H)-dependent dehydrogenase is essential for the metabolism of branched-chain fatty acids and isoleucine, and is expressed in a variety of tissues, e.g., prostate, brain, liver, and heart. This enzyme inactivates 17beta-estradiol and exhibits a strong oxidative 3alpha-HSD activity to convert 5alpha-androstanediol and allopregnanolone into 5alpha-dihydrotestosterone (5alpha-DHT) and 5alpha-dihydroprogesterone, respectively, in living cells. Certain malignant prostatic epithelial cells and activated astrocytes in Alzheimer's disease patient's brain contain extraordinarily high levels of this enzyme. This mitochondrial dehydrogenase enables prostate cancer cells to generate 5alpha-DHT in the absence of testosterone. Its inactivation of allopregnanolone is important to the modulation of GABA(A) receptor. Among steroidogenic enzymes 17beta-HSD10 plays a significant part in the intracrinology. Although this protein has an affinity for amyloid-beta peptide, its role in the pathogenesis of Alzheimer's disease is far from clear. Additional knowledge of this versatile enzyme would provide the foundation for designing new drugs aimed at treating some neurological diseases and certain types of cancers.


Asunto(s)
Ácidos Grasos/metabolismo , Isoleucina/metabolismo , 17-Hidroxiesteroide Deshidrogenasas/antagonistas & inhibidores , 17-Hidroxiesteroide Deshidrogenasas/fisiología , 3-Hidroxiacil-CoA Deshidrogenasas/antagonistas & inhibidores , 3-Hidroxiacil-CoA Deshidrogenasas/fisiología , Errores Innatos del Metabolismo de los Aminoácidos/metabolismo , Andrógenos/biosíntesis , Animales , Estrógenos/farmacología , Humanos , Mitocondrias/enzimología , Datos de Secuencia Molecular , Neurotransmisores/metabolismo
8.
J Biol Chem ; 280(19): 18658-66, 2005 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-15769750

RESUMEN

Peroxisomal beta-oxidation is an essential step in bile acid synthesis, since it is required for shortening of C27-bile acid intermediates to produce mature C24-bile acids. D-Bifunctional protein (DBP) is responsible for the second and third step of this beta-oxidation process. However, both patients and mice with a DBP deficiency still produce C24-bile acids, although C27-intermediates accumulate. An alternative pathway for bile acid biosynthesis involving the peroxisomal L-bifunctional protein (LBP) has been proposed. We investigated the role of LBP and DBP in bile acid synthesis by analyzing bile acids in bile, liver, and plasma from LBP, DBP, and LBP:DBP double knock-out mice. Bile acid biosynthesis, estimated by the ratio of C27/C24-bile acids, was more severely affected in double knock-out mice as compared with DBP-/- mice but was normal in LBP-/- mice. Unexpectedly, trihydroxycholestanoyl-CoA oxidase was inactive in double knock-out mice due to a peroxisomal import defect, preventing us from drawing any firm conclusion about the potential role of LBP in an alternative bile acid biosynthesis pathway. Interestingly, the immature C27-bile acids in DBP and double knock-out mice remained unconjugated in juvenile mice, whereas they occurred as taurine conjugates after weaning, probably contributing to the minimal weight gain of the mice during the lactation period. This correlated with a marked induction of bile acyl-CoA:amino acid N-acyltransferase expression and enzyme activity between postnatal days 10 and 21, whereas the bile acyl-CoA synthetases increased gradually with age. The nuclear receptors hepatocyte nuclear factor-4alpha, farnesoid X receptor, and peroxisome proliferator receptor alpha did not appear to be involved in the up-regulation of the transferase.


Asunto(s)
17-Hidroxiesteroide Deshidrogenasas/fisiología , 3-Hidroxiacil-CoA Deshidrogenasas/fisiología , Ácidos y Sales Biliares/química , Enoil-CoA Hidratasa/fisiología , Regulación del Desarrollo de la Expresión Génica , Isomerasas/fisiología , Complejos Multienzimáticos/fisiología , 17-Hidroxiesteroide Deshidrogenasas/química , 3-Hidroxiacil-CoA Deshidrogenasas/química , Animales , Ácidos y Sales Biliares/metabolismo , Northern Blotting , Western Blotting , Cromatografía Líquida de Alta Presión , Citosol/metabolismo , Proteínas de Unión al ADN/metabolismo , Enoil-CoA Hidratasa/química , Factor Nuclear 4 del Hepatocito , Humanos , Isomerasas/química , Hígado/metabolismo , Ratones , Ratones Noqueados , Modelos Biológicos , Complejos Multienzimáticos/química , Oxidorreductasas/química , Oxígeno/química , PPAR alfa/metabolismo , Enzima Bifuncional Peroxisomal , Proteína-2 Multifuncional Peroxisomal , Peroxisomas/metabolismo , Fosfoproteínas/metabolismo , Receptores Citoplasmáticos y Nucleares , Fracciones Subcelulares , Factores de Tiempo , Factores de Transcripción/metabolismo , Regulación hacia Arriba
9.
Am J Clin Nutr ; 78(3): 430-5, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12936925

RESUMEN

BACKGROUND: Little is known about the effects of weight loss on the relation between skeletal muscle enzymes and energy metabolism. OBJECTIVE: This study was performed retrospectively to investigate the relation between skeletal muscle enzymes and 24-h energy metabolism in obese persons before and after weight loss. DESIGN: Ten women and 9 men [with body mass indexes (in kg/m(2)) > 30] underwent a 15-wk weight-loss program (-700 kcal/d). Body weight and composition, 24-h energy metabolism (whole-body indirect calorimetry), and maximal activities of phosphofructokinase (EC 2.7.1.11), creatine kinase (CK; EC 2.7.3.2), citrate synthase (CS; EC 4.1.3.7), 3-hydroxyacyl-CoA dehydrogenase (HADH; EC 1.1.1.35), and cytochrome-c oxidase (COX; EC 1.9.3.1) were determined from biopsy samples of the vastus lateralis taken before and after weight loss. RESULTS: Before weight loss, fat-free mass (FFM) was the only predictor of 24-h energy expenditure (R(2) = 0.70, P < 0.001), whereas the cumulative variance in sleeping metabolic rate explained by FFM and fat mass (FM) was 83% (P < 0.001). After weight loss, CS (r = 0.45, P = 0.05) and COX (r = 0.65, P < 0.01) were significantly associated with 24-h energy expenditure, whereas CK (r = 0.53, P < 0.05), CS (r = 0.45, P < 0.05), COX (r = 0.64, P < 0.01), and HADH (r = 0.45, P = 0.05) were all significant correlates of sleeping metabolic rate. After weight loss, FFM, FM, and COX explained 84% (P < 0.01) of the variance in 24-h energy expenditure, whereas FFM, FM, and CK all contributed to the cumulative variance in sleeping metabolic rate explained by this model (R(2) = 0.82, P < 0.05). CONCLUSION: Maximal activities of key skeletal muscle enzymes contribute to the variability in 24-h energy metabolism in reduced-obese persons.


Asunto(s)
Metabolismo Energético/fisiología , Músculo Esquelético/enzimología , Obesidad/metabolismo , 3-Hidroxiacil-CoA Deshidrogenasas/análisis , 3-Hidroxiacil-CoA Deshidrogenasas/fisiología , Adulto , Biomarcadores/análisis , Citrato (si)-Sintasa/análisis , Citrato (si)-Sintasa/fisiología , Creatina Quinasa/análisis , Creatina Quinasa/fisiología , Complejo IV de Transporte de Electrones/análisis , Complejo IV de Transporte de Electrones/fisiología , Femenino , Humanos , Masculino , Fosfofructoquinasas/análisis , Fosfofructoquinasas/fisiología , Valor Predictivo de las Pruebas , Estudios Retrospectivos , Factores de Tiempo , Pérdida de Peso/fisiología
10.
Artículo en Inglés | MEDLINE | ID: mdl-12538078

RESUMEN

The tissue content of highly unsaturated fatty acids (HUFA) such as arachidonic acid and docosahexaenoic acid is maintained in a narrow range by feedback regulation of synthesis. Delta-6 desaturase (D6D) catalyzes the first and rate-limiting step of the HUFA synthesis. Recent identification of a human case of D6D deficiency underscores the importance of this pathway. Sterol regulatory element binding protein-1c (SREBP-1c) is a key transcription factor that activates transcription of genes involved with fatty acid synthesis. We recently identified sterol regulatory element (SRE) that is required for activation of the human D6D gene by SREBP-1c. Moreover, the same SRE also mediates the suppression of the D6D gene by HUFA. The identification of SREBP-1c as a key regulator of D6D suggests that the major physiological function of SREBP-1c in liver may be the regulation of phospholipid synthesis rather than triglyceride synthesis. Peroxisome proliferators (PP) induce fatty acid oxidation enzymes and desaturases in rodent liver. However, the induction of desaturases by PP is slower than the induction of oxidation enzymes. This delayed induction may be a compensatory reaction to the increased demand of HUFA caused by increased HUFA oxidation and peroxisome proliferation in PP administration. Recent studies have demonstrated a critical role of peroxisomal beta-oxidation in DHA synthesis, and identified acyl CoA oxidase and D-bifunctional protein as the key enzymes.


Asunto(s)
17-Hidroxiesteroide Deshidrogenasas , Proteínas Potenciadoras de Unión a CCAAT/fisiología , Proteínas de Unión al ADN/fisiología , Enoil-CoA Hidratasa , Ácidos Grasos/biosíntesis , Factores de Transcripción , 3-Hidroxiacil-CoA Deshidrogenasas/fisiología , Acil-CoA Oxidasa , Animales , Ácidos Grasos/metabolismo , Regulación Enzimológica de la Expresión Génica , Humanos , Hidroliasas/fisiología , Hígado/metabolismo , Modelos Biológicos , Complejos Multienzimáticos/fisiología , Oxidorreductasas/fisiología , Proteína-2 Multifuncional Peroxisomal , Proliferadores de Peroxisomas/metabolismo , Peroxisomas/metabolismo , Ratas , Proteína 1 de Unión a los Elementos Reguladores de Esteroles
12.
Biochem J ; 363(Pt 3): 801-7, 2002 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-11964182

RESUMEN

According to current views, the second peroxisomal beta-oxidation pathway is responsible for the degradation of the side chain of bile acid intermediates. Peroxisomal multifunctional enzyme type 2 [peroxisomal multifunctional 2-enoyl-CoA hydratase/(R)-3-hydroxyacyl-CoA dehydrogenase; MFE-2] catalyses the second (hydration) and third (dehydrogenation) reactions of the pathway. Deficiency of MFE-2 leads to accumulation of very-long-chain fatty acids, 2-methyl-branched fatty acids and C(27) bile acid intermediates in plasma, but bile acid synthesis is not blocked completely. In this study we describe an alternative pathway, which allows MFE-2 deficiency to be overcome. The alternative pathway consists of alpha-methylacyl-CoA racemase and peroxisomal multifunctional enzyme type 1 [peroxisomal multifunctional 2-enoyl-CoA hydratase/(S)-3-hydroxyacyl-CoA dehydrogenase; MFE-1]. (24E)-3alpha,7alpha,12alpha-Trihydroxy-5beta-cholest-24-enoyl-CoA, the presumed physiological isomer, is hydrated by MFE-1 with the formation of (24S,25S)-3alpha,7alpha,12alpha,24-tetrahydroxy-5beta-cholestanoyl-CoA [(24S,25S)-24-OH-THCA-CoA], which after conversion by a alpha-methylacyl-CoA racemase into the (24S,25R) isomer can again be dehydrogenated by MFE-1 to 24-keto-3alpha,7alpha,12alpha-trihydroxycholestanoyl-CoA, a physiological intermediate in cholic acid synthesis. The discovery of the alternative pathway of cholesterol side-chain oxidation will improve diagnosis of peroxisomal deficiencies by identification of serum 24-OH-THCA-CoA diastereomer profiles.


Asunto(s)
Ácidos y Sales Biliares/biosíntesis , Colesterol/análogos & derivados , Racemasas y Epimerasas/fisiología , 3-Hidroxiacil-CoA Deshidrogenasas/metabolismo , 3-Hidroxiacil-CoA Deshidrogenasas/fisiología , Acilcoenzima A/metabolismo , Animales , Colesterol/metabolismo , Cromatografía Líquida de Alta Presión , Enoil-CoA Hidratasa/metabolismo , Enoil-CoA Hidratasa/fisiología , Isomerasas/fisiología , Modelos Químicos , Complejos Multienzimáticos/metabolismo , Complejos Multienzimáticos/fisiología , Enzima Bifuncional Peroxisomal , Racemasas y Epimerasas/metabolismo , Ratas , Estereoisomerismo
13.
J Biol Chem ; 276(39): 36718-26, 2001 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-11451959

RESUMEN

l-3-Hydroxyacyl-CoA dehydrogenase (HAD), the penultimate enzyme in the beta-oxidation spiral, reversibly catalyzes the conversion of l-3-hydroxyacyl-CoA to the corresponding 3-ketoacyl-CoA. Similar to other dehydrogenases, HAD contains a general acid/base, His(158), which is within hydrogen bond distance of a carboxylate, Glu(170). To investigate its function in this catalytic dyad, Glu(170) was replaced with glutamine (E170Q), and the mutant enzyme was characterized. Whereas substrate and cofactor binding were unaffected by the mutation, E170Q exhibited diminished catalytic activity. Protonation of the catalytic histidine did not restore wild-type activity, indicating that modulation of the pK(a) of His(158) is not the sole function of Glu(170). The pH profile of charge transfer complex formation, an independent indicator of active site integrity, was unaltered by the amino acid substitution, but the intensity of the charge transfer band was diminished. This observation, coupled with significantly reduced enzymatic stability of the E170Q mutant, implicates Glu(170) in maintenance of active site architecture. Examination of the crystal structure of E170Q in complex with NAD(+) and acetoacetyl-CoA (R = 21.9%, R(free) = 27.6%, 2.2 A) reveals that Gln(170) no longer hydrogen bonds to the side chain of His(158). Instead, the imidazole ring is nearly perpendicular to its placement in the comparable native complex and no longer positioned for efficient catalysis.


Asunto(s)
3-Hidroxiacil-CoA Deshidrogenasas/química , 3-Hidroxiacil-CoA Deshidrogenasas/fisiología , Ácido Glutámico/química , Histidina/química , Sitios de Unión , Catálisis , Cristalografía por Rayos X , Glutamina/química , Humanos , Hidrógeno , Enlace de Hidrógeno , Concentración de Iones de Hidrógeno , Cinética , Modelos Químicos , Modelos Moleculares , Unión Proteica , Factores de Tiempo
14.
Artículo en Inglés | MEDLINE | ID: mdl-10471118

RESUMEN

The postnatal mammalian heart uses mitochondrial fatty acid oxidation (FAO) as the chief source of energy to meet the high energy demands necessary for pump function. Flux through the cardiac FAO pathway is tightly controlled in accordance with energy demands dictated by diverse physiologic and dietary conditions. In this report, we demonstrate that the lipid-activated nuclear receptor, peroxisome proliferator-activated receptor alpha (PPARalpha), regulates the expression of several key enzymes involved in cardiac mitochondrial FAO. In response to the metabolic stress imposed by pharmacologic inhibition of mitochondrial long-chain fatty acid import with etomoxir, PPARa serves as a molecular 'lipostat' factor by inducing the expression of target genes involved in fatty acid utilization including enzymes involved in mitochondrial and peroxisomal beta-oxidation pathways. In mice lacking PPARalpha (PPARalpha-/- mice), etomoxir precipitates a cardiac phenotype characterized by myocyte lipid accumulation. Surprisingly, this metabolic regulatory response is influenced by gender as demonstrated by the observation that male PPARalpha-/- mice are more susceptible to the metabolic stress compared to female animals. These results identify an important role for PPARalpha in the control of cardiac lipid metabolism.


Asunto(s)
Metabolismo de los Lípidos , Microcuerpos/fisiología , Miocardio/metabolismo , Receptores Citoplasmáticos y Nucleares/fisiología , Factores de Transcripción/fisiología , 3-Hidroxiacil-CoA Deshidrogenasas/biosíntesis , 3-Hidroxiacil-CoA Deshidrogenasas/fisiología , Acetil-CoA C-Aciltransferasa/biosíntesis , Acetil-CoA C-Aciltransferasa/fisiología , Animales , Isomerasas de Doble Vínculo Carbono-Carbono/biosíntesis , Isomerasas de Doble Vínculo Carbono-Carbono/fisiología , Proteínas de Unión al ADN/fisiología , Enoil-CoA Hidratasa/biosíntesis , Enoil-CoA Hidratasa/fisiología , Inhibidores Enzimáticos/farmacología , Femenino , Hígado/química , Masculino , Ratones , Mitocondrias/enzimología , Mitocondrias/metabolismo , Mitocondrias/fisiología , Miocardio/química , Miocardio/enzimología , Proteínas Nucleares/fisiología , ARN/biosíntesis , Racemasas y Epimerasas/biosíntesis , Racemasas y Epimerasas/fisiología , Dedos de Zinc/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...