Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.065
Filtrar
1.
Mol Plant Pathol ; 25(8): e13467, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39099210

RESUMEN

Ralstonia solanacearum species complex (RSSC) includes soilborne bacterial plant pathogens with worldwide distribution and wide host ranges. Virulence factors are regulated via four hierarchically organized cell-cell contact independent quorum-sensing (QS) signalling systems: the Phc, which uses as signals (R)-methyl 3-hydroxypalmitate [(R)-3-OH PAME] or (R)-methyl 3-hydroxymyristate [(R)-3-OH MAME], the N-acyl homoserine lactone (AHL)-dependent RasI/R and SolI/R systems, and the recently identified anthranilic acid-dependent system. The unique Phc QS system has been extensively studied; however, the role of the two AHL QS systems has only recently been addressed. In this microreview, we present and discuss current data of the SolI/R and RasI/R QS systems in the RSSC. We also present the distribution and frequency of these AHL QS systems in the RSSC, discuss possible ecological roles and evolutive implications. The complex QS hierarchical networks emphasizes the crucial role of cell-cell signalling in the virulence of the RSSC.


Asunto(s)
Acil-Butirolactonas , Percepción de Quorum , Ralstonia solanacearum , Transducción de Señal , Ralstonia solanacearum/patogenicidad , Ralstonia solanacearum/metabolismo , Ralstonia solanacearum/fisiología , Acil-Butirolactonas/metabolismo , 4-Butirolactona/análogos & derivados , 4-Butirolactona/metabolismo
2.
Mikrobiyol Bul ; 58(3): 225-238, 2024 Jul.
Artículo en Turco | MEDLINE | ID: mdl-39046206

RESUMEN

In recent years, as the paradigm of communication between cells has been clarified, the ability of bacteria to change their gene expression patterns in response to various extracellular signals has attracted great interest. In particular, intracellular and intercellular communication between bacterial populations, called quorum sensing (QS), is essential for coordinating physiological and genetic activities. QS studies are critical, particularly in elucidating the regulatory mechanisms of infectious processes in food-borne pathogens. Elucidating the QS mechanisms in Salmonella is effective in silencing the virulence factors in the fight against this bacterium. The aims of this study were; to create luxS gene mutants that play a vital role in the QS activity of Salmonella and to determine the effect of this mutation on the expression of virulence genes in the bacteria and to determine the impact of synthetic N-hexanoyl-homoserine lactone (C6HSL) on biofilm formation and AI-2 signaling pathway of Salmonella wild strain and luxS gene mutants. luxS gene mutants were constructed by recombining the gene region with the chloramphenicol gene cassette based on homologous region recombination. In the luxS mutants obtained in this way, the expression of eight different virulence genes (hilA, invA, inv, glgC, fimF, fliF, lpfA, gyrA), which have essential roles in Salmonella pathogenicity, was determined by quantitative real-time reverse transcriptase polymerase chain reaction (rRT-qPCR) method and compared with natural strains. As a result of these studies, it was determined that the expression of each gene examined was significantly reduced in luxS mutant strains. The relative AI-2 activities of Salmonella strains were analyzed depending on time. It was determined that the highest activity occurred at the fourth hour and the AI-2 activities of luxS mutants were reduced compared to the wild strain. Finally, it was determined that C6HSL increased the biofilm activity of Salmonella Typhimurium DMC4, SL1344 wild strains, and mutants, mainly at the 72nd hour. In conclusion, our results proved that C6HSL stimulated QS communication in all strains and increased biofilm of Salmonella formation and autoinducer activity. This situation determines that Salmonella responds to external signals by using QS systems. In addition, this research contributed to provide additional information on interspecies communication mechanisms to develop strategies to prevent biofilm formation of this pathogen.


Asunto(s)
Proteínas Bacterianas , Biopelículas , Liasas de Carbono-Azufre , Regulación Bacteriana de la Expresión Génica , Homoserina , Percepción de Quorum , Biopelículas/crecimiento & desarrollo , Liasas de Carbono-Azufre/genética , Virulencia , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Homoserina/análogos & derivados , Mutación , Factores de Virulencia/genética , 4-Butirolactona/análogos & derivados , 4-Butirolactona/metabolismo , Animales , Salmonella/patogenicidad , Salmonella/genética
3.
Appl Microbiol Biotechnol ; 108(1): 418, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39012538

RESUMEN

Pseudomonas aeruginosa (P. aeruginosa) biofilm formation is a crucial cause of enhanced antibiotic resistance. Quorum sensing (QS) is involved in regulating biofilm formation; QS inhibitors block the QS signaling pathway as a new strategy to address bacterial resistance. This study investigated the potential and mechanism of L-HSL (N-(3-cyclic butyrolactone)-4-trifluorophenylacetamide) as a QS inhibitor for P. aeruginosa. The results showed that L-HSL effectively inhibited the biofilm formation and dispersed the pre-formed biofilm of P. aeruginosa. The production of extracellular polysaccharides and the motility ability of P. aeruginosa were suppressed by L-HSL. C. elegans infection experiment showed that L-HSL was non-toxic and provided protection to C. elegans against P. aeruginosa infection. Transcriptomic analysis revealed that L-HSL downregulated genes related to QS pathways and biofilm formation. L-HSL exhibits a promising potential as a therapeutic drug for P. aeruginosa infection. KEY POINTS: • Chemical synthesis of N-(3-cyclic butyrolactone)-4-trifluorophenylacetamide, named L-HSL. • L-HSL does not generate survival pressure on the growth of P. aeruginosa and can inhibit the QS system. • KEGG enrichment analysis found that after L-HSL treatment, QS-related genes were downregulated.


Asunto(s)
4-Butirolactona , Biopelículas , Caenorhabditis elegans , Pseudomonas aeruginosa , Percepción de Quorum , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/fisiología , Pseudomonas aeruginosa/genética , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Percepción de Quorum/efectos de los fármacos , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/microbiología , Animales , 4-Butirolactona/análogos & derivados , 4-Butirolactona/farmacología , 4-Butirolactona/metabolismo , Antibacterianos/farmacología , Perfilación de la Expresión Génica , Homoserina/análogos & derivados , Homoserina/metabolismo , Homoserina/farmacología , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos
4.
J Agric Food Chem ; 72(31): 17306-17316, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39054269

RESUMEN

Overexpression of carboxyl/cholinesterase (CCE) genes has been reported to be associated with many cases of pesticide resistance in arthropods. However, it has been rarely documented that CCE genes participate in spirodiclofen resistance in Panonychus citri. In previous research, we found that spirodiclofen resistance is related to increased P450 and CCE enzyme activities in P. citri. In this study, we identified two CCE genes, PcCCE3 and PcCCE5, which were significantly upregulated in spirodiclofen-resistant strain and after exposure to spirodiclofen. RNA interference of PcCCE3 and PcCCE5 increased the spirodiclofen susceptibility in P. citri. In vitro metabolism indicated that PcCCE3 and PcCCE5 could interact with spirodiclofen, but metabolites were detected only in the PcCCE3 treatment. Our results indicated that PcCCE3 participates in spirodiclofen resistance through direct metabolism, and PcCCE5 may be involved in the spirodiclofen resistance by passive binding and sequestration, which provides new insights into spirodiclofen resistance in P. citri.


Asunto(s)
Proteínas de Artrópodos , Compuestos de Espiro , Animales , Compuestos de Espiro/farmacología , Compuestos de Espiro/metabolismo , Compuestos de Espiro/química , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/metabolismo , Proteínas de Artrópodos/química , Resistencia a Medicamentos/genética , Carboxilesterasa/genética , Carboxilesterasa/metabolismo , 4-Butirolactona/análogos & derivados , 4-Butirolactona/metabolismo , 4-Butirolactona/farmacología
5.
Food Funct ; 15(14): 7305-7313, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38874113

RESUMEN

Aims: Plant-derived lignans may protect against obesity, while their bioactivity needs gut microbial conversion to enterolignans. We used repeated measures to identify enterolignan-predicting microbial species and investigate whether enterolignans and enterolignan-predicting microbial species are associated with obesity. Methods: Urinary enterolignans, fecal microbiota, body weight, height, and circumferences of the waist (WC) and hips (HC) were repeatedly measured at the baseline and after 1 year in 305 community-dwelling adults in Huoshan, China. Body composition and liver fat [indicated by the controlled attenuation parameter (CAP)] were measured after 1 year. Multivariate-adjusted linear models and linear mixed-effects models were used to analyze single and repeated measurements, respectively. Results: Enterolactone and enterodiol levels were both inversely associated with the waist-to-hip ratio, body fat mass (BFM), visceral fat level (VFL), and liver fat accumulation (all P < 0.05). Enterolactone levels were also associated with lower WC (ß = -0.0035 and P = 0.013) and HC (ß = -0.0028 and P = 0.044). We identified multiple bacterial genera whose relative abundance was positively associated with the levels of enterolactone (26 genera) and enterodiol (22 genera, all P false discovery rate < 0.05), and constructed the enterolactone-predicting microbial score and enterodiol-predicting microbial score to reflect the overall enterolignan-producing potential of the host gut microbiota. Both these scores were associated with lower body weight and CAP (all P < 0.05). The enterolactone-predicting microbial score was also inversely associated with the BFM (ß = -0.1128 and P = 0.027) and VFL (ß = -0.1265 and P = 0.044). Conclusion: Our findings support that modulating the host gut microbiome could be a potential strategy to prevent obesity by enhancing the production of enterolignans.


Asunto(s)
Microbioma Gastrointestinal , Lignanos , Obesidad , Humanos , Lignanos/orina , Masculino , Femenino , Adulto , Persona de Mediana Edad , Obesidad/microbiología , Obesidad/metabolismo , Obesidad/orina , China , Bacterias/clasificación , Bacterias/metabolismo , Bacterias/aislamiento & purificación , Heces/microbiología , Biomarcadores/orina , 4-Butirolactona/análogos & derivados , 4-Butirolactona/orina , 4-Butirolactona/metabolismo , Hígado/metabolismo
6.
Food Chem ; 457: 140077, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-38905833

RESUMEN

Human intestinal microbiota plays a crucial role in converting secoisolariciresinol diglucoside, a lignan found in flaxseed, to enterodiol, which has a range of health benefits: antioxidative, antitumor, and estrogenic/anti-estrogenic effects. Given the high secoisolariciresinol diglucoside content in flaxseed cake, this study investigated the potential of co-fermenting flaxseed cake with fermented soybean product to isolate bacterial strains that effectively convert secoisolariciresinol diglucoside to enterodiol in a controlled environment (in vitro). The co-fermentation process with stinky tofu microbiota significantly altered the lignan, generating 12 intermediate lignan metabolites as identified by targeted metabolomics. One particular promising strain, ZB26, demonstrated an impressive ability to convert secoisolariciresinol diglucoside. It achieved a conversion rate of 87.42 ± 0.33%, with secoisolariciresinol and enterodiol generation rates of 94.22 ± 0.51% and 2.91 ± 0.03%, respectively. Further optimization revealed, under specific conditions (0.5 mM secoisolariciresinol diglucoside, pH 8, 30 °C for 3 days), ZB26 could convert an even higher percentage (97.75 ± 0.05%) of the secoisolariciresinol diglucoside to generate secoisolariciresinol (103.02 ± 0.16%) and enterodiol (3.18 ± 0.31%). These findings suggest that the identified strains ZB26 have promising potential for developing functional foods and ingredients enriched with lignans.


Asunto(s)
Butileno Glicoles , Enterococcus faecium , Fermentación , Lino , Glucósidos , Lignanos , Lignanos/metabolismo , Lignanos/química , Lino/química , Lino/metabolismo , Lino/microbiología , Butileno Glicoles/metabolismo , Glucósidos/metabolismo , Glucósidos/química , Enterococcus faecium/metabolismo , Alimentos de Soja/análisis , Alimentos de Soja/microbiología , Biotransformación , Microbiota , Humanos , 4-Butirolactona/análogos & derivados , 4-Butirolactona/metabolismo
7.
ACS Synth Biol ; 13(2): 568-589, 2024 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-38206199

RESUMEN

Programmable intercellular signaling using components of naturally occurring quorum sensing can allow for coordinated functions to be engineered in microbial consortia. LuxR-type transcriptional regulators are widely used for this purpose and are activated by homoserine lactone (HSL) signals. However, they often suffer from imperfect molecular discrimination of structurally similar HSLs, causing misregulation within engineered consortia containing multiple HSL signals. Here, we studied one such example, the regulator LasR from Pseudomonas aeruginosa. We elucidated its sequence-function relationship for ligand specificity using targeted protein engineering and multiplexed high-throughput biosensor screening. A pooled combinatorial saturation mutagenesis library (9,486 LasR DNA sequences) was created by mutating six residues in LasR's ß5 sheet with single, double, or triple amino acid substitutions. Sort-seq assays were performed in parallel using cognate and noncognate HSLs to quantify each corresponding sensor's response to each HSL signal, which identified hundreds of highly specific variants. Sensor variants identified were individually assayed and exhibited up to 60.6-fold (p = 0.0013) improved relative activation by the cognate signal compared to the wildtype. Interestingly, we uncovered prevalent mutational epistasis and previously unidentified residues contributing to signal specificity. The resulting sensors with negligible signal crosstalk could be broadly applied to engineer bacteria consortia.


Asunto(s)
Proteínas Bacterianas , Transactivadores , Transactivadores/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Transducción de Señal , Pseudomonas aeruginosa/metabolismo , Mutación , Percepción de Quorum/genética , 4-Butirolactona/metabolismo , Regulación Bacteriana de la Expresión Génica
8.
Biofouling ; 40(1): 14-25, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38254292

RESUMEN

Acyl-homoserine lactones (AHLs) are quorum-sensing signaling molecules in Gram-negative bacteria and positively regulate biofilm formation in Salmonella under specific conditions. In this study, biofilm formation in Salmonella enterica was evaluated at 28 and 37 °C, under aerobic and anaerobic conditions. Additionally, the influence of the N-dodecanoyl-DL-homoserine lactone (C12-HSL) on biofilm formation and the expression of genes related to the synthesis of structural components, regulation, and quorum sensing was assessed under anaerobiosis at 28 and 37 °C. Biofilm formation was found not to be influenced by the atmospheric conditions at 28 °C. However, it was reduced at 37 °C under anaerobiosis. C12-HSL enhanced biofilm formation at 37 °C under anaerobiosis and increased the expression of the adrA and luxS genes, suggesting an increase in c-di-GMP, a second messenger that controls essential physiological functions in bacteria. These results provide new insights into the regulation of biofilm formation in Salmonella under anaerobic conditions.


Asunto(s)
Percepción de Quorum , Salmonella enteritidis , Percepción de Quorum/genética , Salmonella enteritidis/genética , Biopelículas , Anaerobiosis , 4-Butirolactona/farmacología , 4-Butirolactona/metabolismo , Acil-Butirolactonas
9.
ACS Synth Biol ; 13(1): 282-299, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38079538

RESUMEN

A universal biochemical signal for bacterial cell-cell communication could facilitate programming dynamic responses in diverse bacterial consortia. However, the classical quorum sensing paradigm is that Gram-negative and Gram-positive bacteria generally communicate via homoserine lactones (HSLs) or oligopeptide molecular signals, respectively, to elicit population responses. Here, we create synthetic HSL sensors for Gram-positive Bacillus subtilis 168 using allosteric LuxR-type regulators (RpaR, LuxR, RhlR, and CinR) and synthetic promoters. Promoters were combinatorially designed from different sequence elements (-35, -16, -10, and transcriptional start regions). We quantified the effects of these combinatorial promoters on sensor activity and determined how regulator expression affects its activation, achieving up to 293-fold activation. Using the statistical design of experiments, we identified significant effects of promoter regions and pairwise interactions on sensor activity, which helped to understand the sequence-function relationships for synthetic promoter design. We present the first known set of functional HSL sensors (≥20-fold dynamic range) in B. subtilis for four different HSL chemical signals: p-coumaroyl-HSL, 3-oxohexanoyl-HSL, n-butyryl-HSL, and n-(3-hydroxytetradecanoyl)-HSL. This set of synthetic HSL sensors for a Gram-positive bacterium can pave the way for designable interspecies communication within microbial consortia.


Asunto(s)
Proteínas Represoras , Transactivadores , Transactivadores/genética , Transactivadores/metabolismo , Proteínas Represoras/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , 4-Butirolactona/metabolismo , Percepción de Quorum/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica/genética , Homoserina/metabolismo
10.
mBio ; 14(5): e0092223, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37732738

RESUMEN

IMPORTANCE: The bacterium Pseudomonas aeruginosa colonizes and thrives in many environments, in which it is typically found in surface-associated polymicrobial communities known as biofilms. Adaptation to this social behavior is aided by quorum sensing (QS), an intercellular communication system pivotal in the expression of social traits. Regardless of its importance in QS regulation, the loss of function of the master regulator LasR is now considered a conserved adaptation of P. aeruginosa, irrespective of the origin of the strains. By investigating the QS circuitry in surface-grown cells, we found an accumulation of QS signal 3-oxo-C12-HSL in the absence of its cognate receptor and activator, LasR. The current understanding of the QS circuit, mostly based on planktonic growing cells, is challenged by investigating the QS circuitry of surface-grown cells. This provides a new perspective on the beneficial aspects that underline the frequency of LasR-deficient isolates.


Asunto(s)
Biopelículas , Pseudomonas aeruginosa , Pseudomonas aeruginosa/metabolismo , Percepción de Quorum , 4-Butirolactona/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
11.
Curr Microbiol ; 80(8): 268, 2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37402084

RESUMEN

The host transcriptional activator Early growth response 1 (EGR1) plays a vital role in cell cycle and differentiation, cell proliferation, and regulation of cytokines and several growth factors. It is an immediate-early gene that is expressed as an initial response to various environmental stimuli. Bacterial infection is one such factor that can trigger the expression of EGR1 in host. Therefore, it is imperative to understand expression of EGR1 during early stages of host-pathogen interaction. Streptococcus pyogenes is an opportunistic bacteria causing skin and respiratory tract infections in humans. The quorum-sensing molecule, N-(3-oxododecanoyl)-l-homoserine lactone (Oxo-C12), not synthesised by S. pyogenes, can be sensed by S. pyogenes leading to molecular changes in the pathogen. In this study, we investigated the role of Oxo-C12 on EGR1 regulation in lung epithelial and murine macrophage cell line upon S. pyogenes infection. We report that Oxo-C12 sensitised S. pyogenes upregulates the transcriptional expression of EGR1 through ERK1/2 pathway. It was observed that EGR1 was not involved in the intial attachment of S. pyogenes to A549 cells. However, inhibition of EGR1 in macrophage cell line, J774A.1, through the ERK1/2 pathway resulted in decreased adhesion of S. pyogenes. The EGR1 upregulation by Oxo-C12 sensitised S. pyogenes plays a vital role in enhancing the survival of S. pyogenes in murine macrophages, leading to persistent infection. Thus, understanding the molecular modulation in the host during bacterial infection will further help develop therapeutics to target specific sites.


Asunto(s)
Acil-Butirolactonas , Streptococcus pyogenes , Ratones , Humanos , Animales , Streptococcus pyogenes/genética , Streptococcus pyogenes/metabolismo , Macrófagos/metabolismo , Línea Celular , Percepción de Quorum , Homoserina/metabolismo , Homoserina/farmacología , 4-Butirolactona/metabolismo , Pseudomonas aeruginosa/metabolismo
12.
Environ Res ; 233: 116446, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37331555

RESUMEN

While pioneering methods have demonstrated that bacterial N-acyl homoserine lactone (AHL) signaling molecules can influence the growth and self-aggregation of suspended microalgae, whether AHLs can affect the initial adhesion to a carrier has remained an open question. Here we revealed that the microalgae exhibited different adhesion potential under AHL mediation, where the performance was affiliated to both AHL types and concentrations. The result can be well explained by the interaction energy theory, where the energy barrier between the carriers and the cells varied due to AHL mediation. Depth analyses revealed that AHL acted through modifying the properties of the surface electron donor of the cells, which were dependent upon three major components, i.e., extracellular protein (PN) secretion, the PN secondary structure, and the PN amino acid composition. These findings expand the known diversity of AHLs mediation on microalgal initial adhesion and metabolisms, which may interface with other major cycles and become helpful to theoretically guide the application of AHLs in microalgal culture and harvesting.


Asunto(s)
Acil-Butirolactonas , Microalgas , 4-Butirolactona/química , 4-Butirolactona/metabolismo , Transducción de Señal , Biopelículas
13.
Microbiology (Reading) ; 169(4)2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37018121

RESUMEN

In Pseudomonas aeruginosa, quorum sensing (QS) depends on an interconnected regulatory hierarchy involving the Las, Rhl and Pqs systems, which are collectively responsible for the co-ordinated synthesis of a diverse repertoire of N-acylhomoserine lactones (AHLs) and 2-alkyl-4-quinolones (AQs). Apparent population density-dependent phenomena such as QS may, however, be due to growth rate and/or nutrient exhaustion in batch culture. Using continuous culture, we show that growth rate and population density independently modulate the accumulation of AHLs and AQs such that the highest concentrations are observed at a slow growth rate and high population density. Carbon source (notably succinate), nutrient limitation (C, N, Fe, Mg) or growth at 25 °C generally reduces AHL and AQ levels, except for P and S limitation, which result in substantially higher concentrations of AQs, particularly AQ N-oxides, despite the lower population densities achieved. Principal component analysis indicates that ~26 % variation is due to nutrient limitation and a further 30 % is due to growth rate. The formation of N-(3-oxododecanoyl)-l-homoserine lactone (3OC12-HSL) turnover products such as the ring opened form and tetramic acid varies with the limiting nutrient limitation and anaerobiosis. Differential ratios of N-butanoyl-homoserine lactone (C4-HSL), 3OC12-HSL and the AQs as a function of growth environment are clearly apparent. Inactivation of QS by mutation of three key genes required for QS signal synthesis (lasI, rhlI and pqsA) substantially increases the concentrations of key substrates from the activated methyl cycle and aromatic amino acid biosynthesis, as well as ATP levels, highlighting the energetic drain that AHL and AQ synthesis and hence QS impose on P. aeruginosa.


Asunto(s)
Pseudomonas aeruginosa , Percepción de Quorum , Pseudomonas aeruginosa/genética , Lactonas/química , Lactonas/metabolismo , 4-Butirolactona/metabolismo , Acil-Butirolactonas/metabolismo , Proteínas Bacterianas/genética
14.
J Biotechnol ; 367: 1-10, 2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-36948403

RESUMEN

d-(-)-Pantolactone (DPL) is a key intermediate for the production of d-(+)-pantothenate (vitamin B5). Deracemization of d,l-pantolactone (D,L-PL) through oxidizing l-(+)-pantolactone (LPL) to ketopantoyl lactone (KPL) and subsequently reducing KPL to DPL is a promising route for synthesizing DPL. Herein, a newly mined l-pantolactone dehydrogenase from Rhodococcus hoagie (RhoLPLDH) was used for the oxidative dehydrogenation of LPL. To alleviate inclusion bodies formed by membrane-bound RhoLPLDH intracellular expression in E. coli, strategies involving chaperone assistance and decreasing induction temperature were used to achieve RhoLPLDH soluble expression. To enhance its activity, directed evolution and hydrophilicity-based engineering yielded increased catalytic activity and thermostability. 1 M LPL was efficiently converted to KPL by engineering strain CM5 co-expressing RhoLPLDHL254I/V241I/I156L/F224Q/N164K and chaperone. A "two stages in one-pot" method was employed in deracemization of 1 M D,L-PL with 91.2% yield. These results demonstrated that CM5 catalyst exhibits great potential in enzyme cascade deracemization for the production of DPL.


Asunto(s)
4-Butirolactona , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Catálisis , 4-Butirolactona/metabolismo , Oxidorreductasas/metabolismo
15.
Biophys J ; 122(7): 1219-1228, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36798027

RESUMEN

The parasitic weed Striga has led to billions of dollars' worth of agricultural productivity loss worldwide. Striga detects host plants using compounds of the strigolactone class of phytohormones. Early steps in the strigolactone signaling pathway involve substrate binding and hydrolysis followed by a conformational change to an "active" or "closed" state, after which it associates with a MAX2-family downstream signaling partner. The structures of the inactive and active states of strigolactone receptors are known through X-ray crystallography, and the transition pathway from the inactive to active state in apo receptors has previously been characterized using molecular dynamics simulations. However, it also has been suggested that a covalent butenolide modification of the receptor on the catalytic histidine through substrate hydrolysis promotes formation of the active state. Using molecular dynamics simulations, we show that the presence of the covalent butenolide enhances activation in both AtD14, a receptor found in Arabidopsis, and ShHTL7, a receptor found in Striga, but the enhancement is ∼50 times greater in ShHTL7. We also show that several conserved interactions with the covalent butenolide modification promote transition to the active state in both AtD14 (non-parasite) and ShHTL7 (parasite). Finally, we demonstrate that the enhanced activation of ShHTL7 likely results from disruption of ShHTL7-specific histidine interactions that inhibited activation in the apo case. These results provide a possible explanation for difference in strigolactone sensitivity seen between different strigolactone-sensitive proteins and can be used to aid the design of selective modulators to control Striga parasites.


Asunto(s)
Arabidopsis , Histidina , Lactonas/química , Lactonas/metabolismo , 4-Butirolactona/metabolismo , Arabidopsis/metabolismo , Proteínas Portadoras/metabolismo
16.
FEMS Microbiol Lett ; 3702023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36764667

RESUMEN

N-acyl homoserine lactones (N-HLs) are signaling molecules used by Gram-negative bacteria in a phenomenon called quorum sensing. Bacteria will detect N-HLs as a way of monitoring their population which, upon reaching a critical level, will express a specific phenotype. An example is the expression of bioluminescence by Vibrio fischeri. Most studies have not considered the chirality of these molecules nor have they used highly sensitive detection methods. Here, the production of d,l-N-HLs are monitored for V. fischeri, Burkholderia cepacia, Pseudomonas fluorescens, and P. putida, using highly sensitive tandem mass spectrometry analysis. Novel N-HLs are reported for both V. fischeri and B. cepacia, including a plethora of previously unknown d-N-HLs, including the first d-N-HLs containing oxo and hydroxy functionalities. Anomalously, N-HLs were not detected in any cultures of P. fluorescens and P. putida, which are species that previously were reported to produce N-HLs. However, it is apparent that differences in the reported occurrence and levels of N-HLs can result from (a) different strains of bacteria, (b) different growth media and environmental conditions, and (c) sometimes false-positive results from detection methodologies. Time studies of V. fischeri suggest the possibility that separate synthetic and elimination pathways exist between d- and l-N-HLs. Possible biological processes that could be the source of d-N-HL production are considered.


Asunto(s)
Aliivibrio fischeri , Burkholderia cepacia , Aliivibrio fischeri/química , Aliivibrio fischeri/metabolismo , Cromatografía Liquida , Espectrometría de Masas en Tándem , Percepción de Quorum , Burkholderia cepacia/metabolismo , Cromatografía de Gases y Espectrometría de Masas , 4-Butirolactona/metabolismo
17.
J Sep Sci ; 46(6): e2200805, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36630529

RESUMEN

The lichen Cetraria islandica is traditionally used as a demulcent for the symptomatic treatment of irritations of the mouth and throat and associated dry cough, as well as for the treatment of temporary loss of appetite. In addition to depsides and depsidones, thalli contain paraconic acids, a group of secondary metabolites commonly found in lichens and fungi. Among those, protolichesterinic acid has shown promising pharmacological activities. However, the efficient isolation of paraconic acids is quite complex due to their very similar chemical structures and their weak ultraviolet absorption. In the present work, a two-step isolation protocol of protolichesterinic acid and lichesterinic acid from a complex paraconic acid mixture is described using Sephadex LH20 column chromatography and fast centrifugal partition chromatography. Final purities higher than 95% and recoveries above 50% are achieved. Additionally, reliable qualitative techniques for detecting and differentiating paraconic acids are described. Finally, some data on compound stability and enantiomeric purity are shown.


Asunto(s)
Líquenes , Parmeliaceae , Parmeliaceae/química , 4-Butirolactona/metabolismo , Líquenes/química , Líquenes/metabolismo , Cromatografía Liquida
18.
Methods Mol Biol ; 2605: 227-240, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36520397

RESUMEN

Functional metagenomics is an essential and effective approach to recover new enzymes from the environment. In this chapter, we describe a procedure to construct metagenomic library to discover new N-acyl homoserine lactone (AHL) degrading enzymes based on a direct method or an indirect enrichment procedure. Applicable to any bacterial ecosystem, it enables rapid identification of functional enzymes effective to degrade AHLs.


Asunto(s)
Acil-Butirolactonas , Percepción de Quorum , 4-Butirolactona/metabolismo , Ensayos Analíticos de Alto Rendimiento/métodos , Ecosistema
19.
Appl Microbiol Biotechnol ; 107(2-3): 807-818, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36580089

RESUMEN

Bacterial expression systems play an indispensable role in the biosynthesis of recombinant proteins. Different proteins and the tasks associated with them may require different systems. The purpose of this work is to make an expression vector that allows switching on and off the expression of the target gene during cell incubation. Several expression vectors for use in Escherichia coli cells were developed using elements of the luxR/luxI type quorum sensing system of psychrophilic bacterium Aliivibrio logei. These vectors contain A. logei luxR2 and (optionally) luxI genes and LuxR2-regulated promoter, under the control of which a target gene is intended to be inserted. The synthesis of the target protein depends directly on the temperature: gene expression starts when the temperature drops to 22 °C and stops when it rises to 37 °C, which makes it possible to fix the desired amount of the target protein in the cell. At the same time, the expression of the target gene at a low temperature depends on the concentration of the autoinducer (L-homoserine N-(3-oxohexanoyl)-lactone, AI) in the culture medium in a wide range from 1 nM to 10 µM, which makes it possible to smoothly regulate the rate of target protein synthesis. Presence of luxI in the vector provides the possibility of autoinduction. Constructed expression vectors were tested with gfp, ardA, and ardB genes. At maximum, we obtained the target protein in an amount of up to 33% of the total cellular protein. KEY POINTS: • A. logei quorum sensing system elements were applied in new expression vectors • Expression of target gene is inducible at 22 °C and it is switched off at 37 °C • Target gene expression at 22 °C is tunable by use different AI concentrations.


Asunto(s)
Acil-Butirolactonas , Proteínas de Escherichia coli , Acil-Butirolactonas/metabolismo , Temperatura , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Lactonas/metabolismo , Regiones Promotoras Genéticas , Escherichia coli/genética , Escherichia coli/metabolismo , Percepción de Quorum , Regulación Bacteriana de la Expresión Génica , 4-Butirolactona/metabolismo , Proteínas de Escherichia coli/genética , Proteínas Represoras/genética
20.
J Agric Food Chem ; 70(45): 14510-14521, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36331356

RESUMEN

The N-acyl homoserine lactone (AHL) acylases are widely used as quorum sensing (QS) blockers to inhibit bacterial food spoilage. However, their substrate specificity for long-chain substrates weakens their efficiency. In this study, a computer-assisted design of AHL acylase PF2571 was performed to modify its substrate scope. The results showed that the variant PF2571H194Y, L221R could effectively quench N-hexanoyl-l-homoserine lactone and N-octanoyl-l-homoserine lactone without impairing its activity against long-chain AHLs. Kinetic analysis of the enzymatic activities further corroborated the observed substrate expansion. The inhibitory activities of this variant were significantly enhanced against the QS phenotype of Aeromonas veronii BY-8, with inhibition rates of 45.67, 78.25, 54.21, and 54.65% against proteases, motility, biofilms, and extracellular polysaccharides, respectively. Results for molecular dynamics simulation showed that the steric hindrance, induced by residue substitution, could have been responsible for the change in substrate scope. This study dramatically improves the practicability of AHL acylase in controlling food spoilage.


Asunto(s)
Acil-Butirolactonas , Amidohidrolasas , Acil-Butirolactonas/metabolismo , Cinética , Amidohidrolasas/química , Percepción de Quorum , 4-Butirolactona/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...