Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 402
Filtrar
1.
J Agric Food Chem ; 72(20): 11321-11330, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38714361

RESUMEN

4-Hydroxyphenylpyruvate dioxygenase (HPPD) is a crucial target enzyme in albino herbicides. The inhibition of HPPD activity interferes with the synthesis of carotenoids, blocking photosynthesis and resulting in bleaching and necrosis. To develop herbicides with excellent activity, a series of 3-hydroxy-2-(6-substituted phenoxynicotinoyl)-2-cyclohexen-1-one derivatives were designed via active substructure combination. The title compounds were characterized via infrared spectroscopy, 1H and 13C nuclear magnetic resonance spectroscopies, and high-resolution mass spectrometry. The structure of compound III-17 was confirmed via single-crystal X-ray diffraction. Preliminary tests demonstrated that some compounds had good herbicidal activity. Crop safety tests revealed that compound III-29 was safer than the commercial herbicide mesotrione in wheat and peanuts. Moreover, the compound exhibited the highest inhibitory activity against Arabidopsis thaliana HPPD (AtHPPD), with a half-maximal inhibitory concentration of 0.19 µM, demonstrating superior activity compared with mesotrione (0.28 µM) in vitro. A three-dimensional quantitative structure-activity relationship study revealed that the introduction of smaller groups to the 5-position of cyclohexanedione and negative charges to the 3-position of the benzene ring enhanced the herbicidal activity. A molecular structure comparison demonstrated that compound III-29 was beneficial to plant absorption and conduction. Molecular docking and molecular dynamics simulations further verified the stability of the complex formed by compound III-29 and AtHPPD. Thus, this study may provide insights into the development of green and efficient herbicides.


Asunto(s)
4-Hidroxifenilpiruvato Dioxigenasa , Arabidopsis , Diseño de Fármacos , Inhibidores Enzimáticos , Herbicidas , Simulación del Acoplamiento Molecular , Herbicidas/química , Herbicidas/farmacología , Herbicidas/síntesis química , 4-Hidroxifenilpiruvato Dioxigenasa/antagonistas & inhibidores , 4-Hidroxifenilpiruvato Dioxigenasa/química , 4-Hidroxifenilpiruvato Dioxigenasa/metabolismo , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Relación Estructura-Actividad , Estructura Molecular , Cetonas/química , Cetonas/farmacología , Cetonas/síntesis química , Ciclohexanonas/química , Ciclohexanonas/farmacología , Ciclohexanonas/síntesis química , Triticum/química , Proteínas de Arabidopsis/antagonistas & inhibidores , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo
2.
Hepatol Commun ; 8(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38668730

RESUMEN

BACKGROUND: We previously demonstrated the successful use of in vivo CRISPR gene editing to delete 4-hydroxyphenylpyruvate dioxygenase (HPD) to rescue mice deficient in fumarylacetoacetate hydrolase (FAH), a disorder known as hereditary tyrosinemia type 1 (HT1). The aim of this study was to develop an ex vivo gene-editing protocol and apply it as a cell therapy for HT1. METHODS: We isolated hepatocytes from wild-type (C57BL/6J) and Fah-/- mice and then used an optimized electroporation protocol to deliver Hpd-targeting CRISPR-Cas9 ribonucleoproteins into hepatocytes. Next, hepatocytes were transiently incubated in cytokine recovery media formulated to block apoptosis, followed by splenic injection into recipient Fah-/- mice. RESULTS: We observed robust engraftment and expansion of transplanted gene-edited hepatocytes from wild-type donors in the livers of recipient mice when transient incubation with our cytokine recovery media was used after electroporation and negligible engraftment without the media (mean: 46.8% and 0.83%, respectively; p=0.0025). Thus, the cytokine recovery medium was critical to our electroporation protocol. When hepatocytes from Fah-/- mice were used as donors for transplantation, we observed 35% and 28% engraftment for Hpd-Cas9 ribonucleoproteins and Cas9 mRNA, respectively. Tyrosine, phenylalanine, and biochemical markers of liver injury normalized in both Hpd-targeting Cas9 ribonucleoprotein and mRNA groups independent of induced inhibition of Hpd through nitisinone, indicating correction of disease indicators in Fah-/- mice. CONCLUSIONS: The successful liver cell therapy for HT1 validates our protocol and, despite the known growth advantage of HT1, showcases ex vivo gene editing using electroporation in combination with liver cell therapy to cure a disease model. These advancements underscore the potential impacts of electroporation combined with transplantation as a cell therapy.


Asunto(s)
Edición Génica , Hepatocitos , Hidrolasas , Ratones Endogámicos C57BL , Tirosinemias , Animales , Tirosinemias/terapia , Tirosinemias/genética , Edición Génica/métodos , Ratones , Hepatocitos/trasplante , Hepatocitos/metabolismo , Hidrolasas/genética , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Sistemas CRISPR-Cas , Electroporación/métodos , Ratones Noqueados , 4-Hidroxifenilpiruvato Dioxigenasa/genética , Modelos Animales de Enfermedad , Ciclohexanonas , Nitrobenzoatos
3.
J Agric Food Chem ; 72(11): 5595-5608, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38446412

RESUMEN

Metabolic resistance to the maize-selective, HPPD-inhibiting herbicide, mesotrione, occurs via Phase I ring hydroxylation in resistant waterhemp and Palmer amaranth; however, mesotrione detoxification pathways post-Phase I are unknown. This research aims to (1) evaluate Palmer amaranth populations for mesotrione resistance via survivorship, foliar injury, and aboveground biomass, (2) determine mesotrione metabolism rates in Palmer amaranth populations during a time course, and (3) identify mesotrione metabolites including and beyond Phase I oxidation. The Palmer amaranth populations, SYNR1 and SYNR2, exhibited higher survival rates (100%), aboveground biomass (c.a. 50%), and lower injury (25-30%) following mesotrione treatment than other populations studied. These two populations also metabolized mesotrione 2-fold faster than sensitive populations, PPI1 and PPI2, and rapidly formed 4-OH-mesotrione. Additionally, SYNR1 and SYNR2 formed 5-OH-mesotrione, which is not produced in high abundance in waterhemp or naturally tolerant maize. Metabolite features derived from 4/5-OH-mesotrione and potential Phase II mesotrione-conjugates were detected and characterized by liquid chromatography-mass spectrometry (LCMS).


Asunto(s)
4-Hidroxifenilpiruvato Dioxigenasa , Amaranthus , Ciclohexanonas , Herbicidas , Herbicidas/farmacología , Herbicidas/metabolismo , Amaranthus/metabolismo , 4-Hidroxifenilpiruvato Dioxigenasa/metabolismo , Resistencia a los Herbicidas , Colorante de Amaranto/metabolismo
4.
Aging (Albany NY) ; 16(5): 4327-4347, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38451188

RESUMEN

The 4-Hydroxyphenylpyruvate Dioxygenase-Like (HPDL) protein plays a crucial role in safeguarding cells from oxidative stress by orchestrating metabolic reprogramming. New research suggests that HPDL is considerably increased in pancreatic ductal adenocarcinoma, although its impact on cancer immunotherapy is still unclear. Pancancer transcriptional data were obtained from The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression datasets. The cBioPortal webtool was utilized to examine genomic changes in different cancer types. The prognostic significance of HPDL in pancancer was evaluated using univariate Cox regression analysis. Extensive utilization of the CTRP and PRISM databases was performed to forecast potential medications that specifically target HPDL in LUAD. In summary, studies were conducted to evaluate the impact of HPDL on the proliferation and movement of LUAD cells using loss-of-function experiments. HPDL is expressed excessively in a wide variety of cancer types, indicating its prognostic and predictive value. Moreover, we emphasized the strong correlation between HPDL and indicators of immune stimulation, infiltration of immune cells, and expression of immunoregulators. The remarkable finding of the HPDL was its capacity to precisely anticipate responses to cancer therapies using anti-PDL1 and anti-PD1 antibodies among individuals. Moreover, HPDL can function as a predictive marker for specific inhibitors in instances of cancer. Suppression of HPDL resulted in reduced growth and movement of LUAD cells. To summarize, our results suggest that HPDL acts as a prospective predictor of outcomes and a positive indication of response to immunotherapy in patients undergoing treatment with immune checkpoint inhibitors (ICIs).


Asunto(s)
4-Hidroxifenilpiruvato Dioxigenasa , Dioxigenasas , Neoplasias Pancreáticas , Humanos , 4-Hidroxifenilpiruvato Dioxigenasa/genética , Pronóstico , Inmunoterapia , Microambiente Tumoral
5.
Ecotoxicol Environ Saf ; 273: 116144, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38412630

RESUMEN

Mesotrione, topramezone, tembotrione, and sulcotrione are four types of 4-hydroxyphenylpyruvate dioxidase (HPPD) inhibitor herbicides that are extensively employed in agricultural practices, but their usage also leads to environmental pollution and poses risks to human health. A probe (E)-1-((2-(pyridin-2-yl) hydrazineylidene) methyl) naphthalen-2-ol (CHMN) based on chelation enhancement (CHEF) effect synthesized. CHMN was first chelated with Zn2+ to form a probe system with green, which can be further used to detect mesotrione, topramezone, tembotrione and sulcotrione in complicated environment. CHMN-Zn2+ detection of four pesticides was accurate, with an excellent linear relationship between 0 and 100 µM. The detection limits were LODmesotrione = 7.79 µM, LODtopramezone = 1.91 µM, LODtembotrione = 1.38 µM and LODsulcotrione = 2.43 µM. The detection time is 1 min, and it is successfully applied in real water sample and bioimaging. This work can provide a novel method for studying the migration and behavior of environmental pollutants.


Asunto(s)
4-Hidroxifenilpiruvato Dioxigenasa , Ciclohexanonas , Herbicidas , Mesilatos , Sulfonas , Humanos , Fluorescencia , Herbicidas/farmacología , Zinc , Inhibidores Enzimáticos/farmacología
6.
J Agric Food Chem ; 72(8): 3884-3893, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38375801

RESUMEN

4-Hydroxyphenylpyruvate dioxygenase (HPPD, EC 1.13.11.27) is one of the most valuable herbicide targets due to its unique biological functions. In search of HPPD inhibitors with promising biological performance, we designed and synthesized a series of novel tetrazolamide-benzimidazol-2-ones using a structure-based drug design strategy. Among the synthesized compounds, 1-(2-chlorobenzyl)-3-methyl-N-(1-methyl-1H-tetrazol-5-yl)-2-oxo-2,3-dihydro-1H-benzo[d]imidazole-4-carboxamide, 25, IC50 = 10 nM, was identified to be the most outstanding HPPD inhibitor, which showed more than 36-fold increased Arabidopsis thaliana HPPD (AtHPPD) inhibition potency than mesotrione (IC50 = 363 nM). Our AtHPPD-25 complex indicated that one nitrogen atom on the tetrazole ring and the oxygen atom on the amide group formed a classical bidentate chelation interaction with the metal ion, the benzimidazol-2-one ring created a tight π-π stacking interaction with Phe381 and Phe424, and some hydrophobic interactions were also found between the ortho-Cl-benzyl group and surrounding residues. Compound 32 showed more than 80% inhibition against all four tested weeds at 150 g ai/ha by the postemergence application. Our results indicated that the tetrazolamide-benzimidazol-2-one scaffold may be a new lead structure for herbicide discovery.


Asunto(s)
4-Hidroxifenilpiruvato Dioxigenasa , Arabidopsis , Bencimidazoles , Herbicidas , Estructura Molecular , Relación Estructura-Actividad , 4-Hidroxifenilpiruvato Dioxigenasa/química , Herbicidas/farmacología , Herbicidas/química , Arabidopsis/metabolismo , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química
7.
J Agric Food Chem ; 72(9): 4587-4595, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38408430

RESUMEN

4-Hydroxyphenylpyruvate dioxygenase (EC 1.13.11.27, HPPD) is one of the most widely studied herbicide targets and has gained significant attention. To identify potential effective HPPD inhibitors, a rational multistep virtual screening workflow was built, which included CBP models (based on the receptor-ligand interactions in the crystal complex), Hypogen models with activity prediction ability (according to the derivation of structure-activity relationships from a set of molecules with reported activity values), and a consensus docking procedure (consisting of LibDock, Glide, and CDOCKER). About 1 million molecules containing diketone or ß-keto-enol substructures were filtered by Lipinski's rules, CBP model, and Hypogen model. A total of 12 compounds with similar docking postures were generated by consensus docking. Eventually, four molecules were screened based on the specific binding pattern and affinity of the HPPD inhibitor. The biological evaluation in vivo displayed that compounds III-1 and III-2 exhibited comparable herbicidal activity to isoxaflutole and possessed superior safety on various crops (wheat, rice, sorghum, and maize). The ADMET prediction (absorption, distribution, metabolism, excretion, and toxicity) showed that compound III possessed relatively good toxicological results. This work provides a theoretical basis and valuable reference for the virtual screening and molecular design of novel HPPD inhibition herbicides.


Asunto(s)
4-Hidroxifenilpiruvato Dioxigenasa , Herbicidas , Herbicidas/farmacología , Herbicidas/química , Relación Estructura-Actividad , Cetonas/química , 4-Hidroxifenilpiruvato Dioxigenasa/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química
8.
Biochem Biophys Res Commun ; 704: 149672, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38401306

RESUMEN

4-hydroxyphenylpyruvate dioxygenase (HPPD) Inhibitor Sensitive 1 (HIS1) is an endogenous gene of rice, conferring broad-spectrum resistance to ß-triketone herbicides. Similar genes, known as HIS1-like genes (HSLs), exhibit analogous functions and can complement the herbicide-resistant characteristics endowed by HIS1. The identification of HIS1 and HSLs represents a valuable asset, as the intentional pairing of herbicides with resistance genes emerges as an effective strategy for crop breeding. Encoded by HIS1 is a Fe(II)/2-oxoglutarate-dependent oxygenase responsible for detoxifying ß-triketone herbicides through hydroxylation. However, the precise structure supporting this function remains unclear. This work, which determined the crystal structure of HIS1, reveals a conserved core motif of Fe(II)/2-oxoglutarate-dependent oxygenase and pinpoints the crucial residue dictating substrate preference between HIS1 and HSL.


Asunto(s)
4-Hidroxifenilpiruvato Dioxigenasa , Herbicidas , Oryza , Oryza/metabolismo , 4-Hidroxifenilpiruvato Dioxigenasa/química , 4-Hidroxifenilpiruvato Dioxigenasa/genética , 4-Hidroxifenilpiruvato Dioxigenasa/metabolismo , Ciclohexanonas/química , Ciclohexanonas/farmacología , Ácidos Cetoglutáricos , Oxigenasas , Herbicidas/farmacología , Compuestos Ferrosos , Inhibidores Enzimáticos/farmacología
9.
Biochim Biophys Acta Gen Subj ; 1868(2): 130504, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37967728

RESUMEN

The transgenic expression of rice triketone dioxygenase (TDO; also known as HIS1) can provide protection from triketone herbicides to susceptible dicot crops such as soybean. Triketones are phytotoxic inhibitors of plant hydroxyphenylpyruvate dioxygenases (HPPD). The TDO gene codes for an iron/2-oxoglutarate-dependent oxidoreductase. We obtained an X-ray crystal structure of TDO using SeMet-SAD phasing to 3.16 Å resolution. The structure reveals that TDO possesses a fold like that of Arabidopsis thaliana 2-oxoglutarate­iron-dependent oxygenase anthocyanidin synthase (ANS). Unlike ANS, this TDO structure lacks bound metals or cofactors, and we propose this is because the disordered flexible loop over the active site is sterically constrained from folding properly in the crystal lattice. A combination of mass spectrometry, nuclear magnetic resonance, and enzyme activity studies indicate that rice TDO oxidizes mesotrione in a series of steps; first producing 5-hydroxy-mesotrione and then oxy-mesotrione. Evidence suggests that 5-hydroxy-mesotrione is a much weaker inhibitor of HPPD than mesotrione, and oxy-mesotrione has virtually no inhibitory activity. Of the close homologues which have been tested, only corn and rice TDO have enzymatic activity and the ability to protect plants from mesotrione. Correlating sequence and structure has identified four amino acids necessary for TDO activity. Introducing these four amino acids imparts activity to a mesotrione-inactive TDO-like protein from sorghum, which may expand triketone herbicide resistance in new crop species.


Asunto(s)
4-Hidroxifenilpiruvato Dioxigenasa , Arabidopsis , Dioxigenasas , Oryza , Oryza/genética , Oryza/metabolismo , 4-Hidroxifenilpiruvato Dioxigenasa/química , 4-Hidroxifenilpiruvato Dioxigenasa/metabolismo , Ácidos Cetoglutáricos , Arabidopsis/metabolismo , Aminoácidos , Hierro
10.
Pest Manag Sci ; 80(3): 1645-1653, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37986260

RESUMEN

BACKGROUND: Tolpyralate, a relatively new inhibitor of 4-hydroxyphenylpyruvate dioxygenase (HPPD), is registered for postemergence use in all types of corn (Zea mays L.) and has a record of excellent crop tolerance. A report of severe crop injury to sweet corn inbred (XSEN187) led to the following objectives: (i) determine whether sensitivity to tolpyralate in XSEN187 exists, and if confirmed, (ii) determine the genetic basis of tolpyralate sensitivity, and (iii) screen other corn germplasm for sensitivity to tolpyralate. RESULTS: Inbred XSEN187 was confirmed sensitive to tolpyralate. Inclusion of methylated seed oil or nonionic surfactant in the spray volume was necessary for severe crop injury. Tolpyralate sensitivity in XSEN187 is not conferred by alleles at Nsf1, a cytochrome P450-encoding gene (CYP81A9) conferring tolerance to many corn herbicides. Evidence suggests that tolpyralate sensitivity in XSEN187 is conferred by a single gene mapped to the Chr05: 283 240-1 222 909 bp interval. Moreover, tolpyralate sensitivity was observed in 48 other sweet corn and field corn inbreds. CONCLUSIONS: Severe sensitivity to tolpyralate exists in sweet corn and field corn germplasm when the herbicide is applied according to label directions. Whereas the corn response to several other herbicides, including HPPD-inhibitors, is conferred by the Nsf1 locus, corn sensitivity to tolpyralate is the result of a different locus. The use of tolpyralate should consider herbicide tolerance in inbred lines from which corn hybrids were derived, whereas alleles that render corn germplasm sensitive to tolpyralate should be eliminated from breeding populations, inbreds, and commercial cultivars. © 2023 Illinois Foundation Seeds, Inc and The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Asunto(s)
4-Hidroxifenilpiruvato Dioxigenasa , Herbicidas , Humanos , Zea mays/genética , Herbicidas/farmacología , Fitomejoramiento , Illinois
11.
J Agric Food Chem ; 71(46): 17678-17688, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37946464

RESUMEN

4-Hydroxyphenylpyruvate dioxygenase inhibitors (Echinochloa crus-galli 1.13.11.27, HPPD) have gained significant popularity as one of the best-selling herbicides worldwide. To identify highly effective HPPD inhibitors, a rational design approach utilizing bioisosterism was employed to create a series of 2-(arylformyl)cyclohexane-1,3-dione derivatives. A total of 29 novel compounds were synthesized and characterized through various techniques, including IR, 1H NMR, 13C NMR, and HRMS. Evaluation of their inhibitory activity against Arabidopsis thaliana HPPD (AtHPPD) revealed that certain derivatives exhibited superior potency compared to mesotrione (IC50 = 0.204 µM). Initial herbicidal activity tests demonstrated that compounds 27 and 28 were comparable to mesotrione in terms of weed control and crop safety, with compound 28 exhibiting enhanced safety in canola crops. Molecular docking analyses indicated that the quinoline rings of compounds 27 and 28 formed more stable π-π interactions with the amino acid residues Phe-360 and Phe-403 in the active cavity of AtHPPD, surpassing the benzene ring of mesotrione. Molecular dynamics simulations and molecular structure comparisons confirmed the robust binding capabilities of compounds 27 and 28 to AtHPPD. This study provides a valuable reference for the development of novel triketone herbicide structures, serving as a blueprint for future advancements in this field.


Asunto(s)
4-Hidroxifenilpiruvato Dioxigenasa , Arabidopsis , Herbicidas , Relación Estructura-Actividad , Simulación del Acoplamiento Molecular , 4-Hidroxifenilpiruvato Dioxigenasa/química , Ciclohexanonas/farmacología , Herbicidas/química , Arabidopsis/metabolismo , Inhibidores Enzimáticos/química
12.
J Agric Food Chem ; 71(49): 19396-19407, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38035573

RESUMEN

Plant pathogenic fungi pose a significant threat to crop yields and quality, and the emergence of fungicide resistance has further exacerbated the problem in agriculture. Therefore, there is an urgent need for efficient and environmentally friendly fungicides. In this study, we investigated the antifungal activity of (+)-Usnic acid and its inhibitory effect on crop pathogenic fungal 4-hydroxyphenylpyruvate dioxygenases (HPPDs) and determined the structure of Zymoseptoria tritici HPPD (ZtHPPD)-(+)-Usnic acid complex. Thus, the antifungal target of (+)-Usnic acid and its inhibitory basis toward HPPD were uncovered. Additionally, we discovered a potential lead fungicide possessing a novel scaffold that displayed remarkable antifungal activities. Furthermore, our molecular docking analysis revealed the unique binding mode of this compound with ZtHPPD, explaining its high inhibitory effect. We concluded that HPPD represents a promising target for the control of phytopathogenic fungi, and the new compound serves as a novel starting point for the development of fungicides and dual-purpose pesticides.


Asunto(s)
4-Hidroxifenilpiruvato Dioxigenasa , Fungicidas Industriales , Herbicidas , Fungicidas Industriales/farmacología , 4-Hidroxifenilpiruvato Dioxigenasa/química , Herbicidas/química , Antifúngicos/farmacología , Simulación del Acoplamiento Molecular , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Relación Estructura-Actividad
13.
J Agric Food Chem ; 71(41): 15186-15193, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37788677

RESUMEN

4-Hydroxyphenylpyruvate dioxygenase (HPPD) is an ideal target for herbicide resistance genetic engineering. In this study, a mutant MFRR-2 with mesotrione resistance was screened from an Oryza sativa HPPD and mutant-Zea mays HPPD DNA shuffling library. The enzyme properties showed that although the stability of the mutant decreased in vitro, the enzyme activity of MFRR-2 at the optimum temperature of 25 °C was still equivalent to that of OsHPPD. Under 50 µM mesotrione treatment, MFRR-2 enzyme activity remained at approximately 90%, while the enzyme activity of OsHPPD decreased by approximately 50%. Surprisingly, Fe2+ was found to have an inhibitory effect on the enzyme activity. Then, the transgenic rice of the MFRR-2 gene showed approximately 1.5 times mesotrione resistance compared to OsHPPD transgenic rice. In conclusion, this study has conducted a beneficial exploration on the use of DNA shuffling for HPPD-directed evolution, and the mutant has potential application value for herbicide resistance genetic engineering.


Asunto(s)
4-Hidroxifenilpiruvato Dioxigenasa , Dioxigenasas , Herbicidas , Oryza , Resistencia a los Herbicidas/genética , 4-Hidroxifenilpiruvato Dioxigenasa/genética , Oryza/genética , Herbicidas/farmacología , Barajamiento de ADN , Inhibidores Enzimáticos/farmacología
14.
J Agric Food Chem ; 71(46): 17669-17677, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37889480

RESUMEN

The emergence of 4-hydroxyphenylpyruvate dioxygenase (HPPD) herbicides as efficacious target-site herbicides has been noteworthy. In recent years, only four species of broadleaf weeds have developed resistance due to the long-term widespread use of HPPD herbicides. This study represents the first reported instance of a grass weed exhibiting resistance to HPPD inhibitors. We identified a new HPPD-resistant Chinese sprangletop [Leptochloa chinensis (L.) Nees] population (R population). At the recommended dose of tripyrasulfone, the inhibition rate of the R population was only half that of the sensitive population (S). The mechanism underlying resistance does not involve target-site resistance triggered by amino acid mutations or depend on disparities within the HPPD INHIBITOR SENSITIVE 1 (HIS1) gene. The impetus for resistance appears to be interlinked with the metabolic activities of cytochrome P450 monooxygenase (P450) and glutathione S-transferase (GST) family genes. Following RNA sequencing (RNA-seq) and quantitative real-time PCR (qRT-PCR) validation, the study suggests that five P450 genes, CYP71C1, CYP74A2, CYP72A1, CYP84A1, and CYP714C2, alongside a single GST gene GSTF1, may be implicated in the process of metabolic detoxification.


Asunto(s)
4-Hidroxifenilpiruvato Dioxigenasa , Dioxigenasas , Herbicidas , Herbicidas/farmacología , Poaceae/genética , Poaceae/metabolismo , Resistencia a los Herbicidas/genética , 4-Hidroxifenilpiruvato Dioxigenasa/genética , 4-Hidroxifenilpiruvato Dioxigenasa/metabolismo
15.
Angew Chem Int Ed Engl ; 62(47): e202312618, 2023 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-37795547

RESUMEN

4-Hydroxyphenylpyruvate dioxygenase (HPPD) plays a crucial role in the synthesis of nutrients needed to maintain optimal plant growth. Its level is closely linked to the extent of abiotic stress experienced by plants. Moreover, it is also the target of commercial herbicides. Therefore, labeling of HPPD in plants not only enables visualization of its tissue distribution and cellular uptake, it also facilitates assessment of abiotic stress of plants and provides information needed for the development of effective environmentally friendly herbicides. In this study, we created a method for fluorescence labeling of HPPD that avoids interference with the normal growth of plants. In this strategy, a perylene-linked dibenzyl-cyclooctyne undergoes strain-promoted azide-alkyne cycloaddition with an azide-containing HPPD ligand. The activation-based labeling process results in a significant emission enhancement caused by the change in the fluorescent forms from an excimer to a monomer. Notably, this activated bioorthogonal strategy is applicable to visualizing HPPD in Arabidopsis thaliana, and assessing its response to multiple abiotic stresses. Also, it can be employed to monitor in vivo levels and locations of HPPD in crops. Consequently, the labeling strategy will be a significant tool in investigations of HPPD-related abiotic stress mechanisms, discovering novel herbicides, and uncovering unknown biological functions.


Asunto(s)
4-Hidroxifenilpiruvato Dioxigenasa , Herbicidas , Azidas , Fluorescencia , Productos Agrícolas , Inhibidores Enzimáticos
16.
Pestic Biochem Physiol ; 194: 105532, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37532340

RESUMEN

Inhibitors targeting the 4-hydroxyphenyl pyruvate dioxygenase (HPPD) enzyme are well established herbicides and HPPD is also a primary enzyme within the tyrosine metabolism pathway in hematophagous arthropods, which is an essential metaboilic pathway post-blood feeding to prevent tyrosine-mediated toxicity. The objective of this study was to characterize the toxicity of triketone, pyrazole, pyrazolone, isoxazole, and triazole herbicides that inhibit HPPD to blood-fed mosquitoes and ticks. Topical exposure of nitisinone to blood-fed Aedes aegypti yielded high toxicity with an LD50 of 3.81 ng/insect (95% CI: 3.09 to 4.67 ng; Hillslope: 0.97, r2: 0.99), yet was non-toxic to non-blood fed (NBF) mosquitoes. The rank order of toxicity was nitisinone > tembotrione > pyrazoxyfen > tebuconazole > mesotrione against blood-fed Ae. Aegypti, but nitisinone was approximately 30-fold more toxic than other chemicals tested. We also assessed the toxicity of HPPD-inhibiting herbicides to the lone star tick, Amblyomma americanum and similarly, nitisinone was toxic to Am. americanum with a lethal time to kill 50% of subjects (LT50) of 23 h at 10 µM. Knockdown of the gene encoding the HPPD enzyme was performed through RNA-interference led to significant mortality after blood feeding in both, Ae. aegypti and Am. americanum. Lastly, a fluorescence assay was developed to determine relative quantities of L-tyrosine in Ae. aegypti and Am. americanum treated with HPPD inhibitors. L-tyrosine levels correlated with toxicity with nitisinone exposure leading to increased tyrosine concentrations post-blood feeding. Taken together, these data support previous work suggesting HPPD-inhibitors represent a novel mode of toxicity to mosquitoes and ticks and may represent base scaffolds for development of novel insecticides specific for hematophagous arthropods.


Asunto(s)
4-Hidroxifenilpiruvato Dioxigenasa , Aedes , Herbicidas , Animales , Herbicidas/farmacología , Amblyomma , Aedes/metabolismo , Tirosina/metabolismo , Inhibidores Enzimáticos
17.
J Agric Food Chem ; 71(24): 9528-9537, 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37277962

RESUMEN

One widely known herbicide target is 4-hydroxyphenylpyruvate dioxygenase (HPPD). Avena sativa HPPD is less sensitive to mesotrione (herbicide) than Arabidopsis thaliana HPPD. HPPD inhibitor-sensitivity is governed by the dynamic behavior of the C-terminal α-helix of HPPD (H11) in closed and open forms. However, the specific relationship between the plant inhibitor sensitivity and H11 dynamic behavior remains unclear. Herein, we determined the conformational changes in H11 to understand the inhibitor-sensitivity mechanism based on free-energy calculations using molecular dynamics simulations. The calculated free-energy landscapes revealed that Arabidopsis thaliana HPPD preferred the open form of H11 in the apo form and the closed-like form in complex with mesotrione, whereas Avena sativa HPPD exhibited the opposite tendency. We also identified some important residues involved in the dynamic behavior of H11. Therefore, inhibitor sensitivity is governed by indirect interactions due to the protein flexibility caused by the conformational changes of H11.


Asunto(s)
4-Hidroxifenilpiruvato Dioxigenasa , Arabidopsis , Dioxigenasas , Herbicidas , 4-Hidroxifenilpiruvato Dioxigenasa/metabolismo , Arabidopsis/metabolismo , Ciclohexanonas/farmacología , Herbicidas/farmacología , Herbicidas/química , Inhibidores Enzimáticos/química
18.
J Agric Food Chem ; 71(23): 8825-8833, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37262424

RESUMEN

As a bleaching herbicide, cypyrafluone was applied postemergence in wheat fields for annual weed control; especially, this herbicide possesses high efficacy against cool-season grass weed species such as Alopecurus aequalis and Alopecurus japonicus. In this study, the target of action of cypyrafluone on 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibition was confirmed. This herbicide caused severe foliar whitening symptoms at 5-7 days after treatment (DAT) and death of the whole plant within 10 DAT. Significant increases in phytoene content and significant decreases in kinds of carotenoid and chlorophyll pigments were observed. The content of chlorophyll pigments in cypyrafluone-treated Spirodela polyrhiza decreased upon the addition of homogentisic acid (HGA), which indicated that cypyrafluone prevents the HGA production, possibly by inhibiting the catalytic activity of 4-HPPD. Indeed, cypyrafluone strongly inhibited the catalytic activity of Arabidopsis thaliana HPPD produced by Escherichia coli, which was approximately 2 times less effective than mesotrione. In addition, overexpression of Oryza sativa HPPD in rice and A. thaliana both conferred a high tolerance level to cypyrafluone on them. Molecular docking found that cypyrafluone bonded well to the active site of the HPPD and formed a bidentate coordination interaction with the Fe2+ atom, with distances of 2.6 and 2.7 Å between oxygen atoms and the Fe2+ atom and a binding energy of -8.0 kcal mol-1.


Asunto(s)
4-Hidroxifenilpiruvato Dioxigenasa , Arabidopsis , Herbicidas , Triticum/metabolismo , 4-Hidroxifenilpiruvato Dioxigenasa/química , Simulación del Acoplamiento Molecular , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Control de Malezas , Herbicidas/farmacología , Herbicidas/química , Poaceae/metabolismo , Arabidopsis/metabolismo
19.
J Agric Food Chem ; 71(24): 9302-9313, 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37170102

RESUMEN

A wild radish population (R) has been recently confirmed to be cross-resistant to 4-hydroxyphenylpyruvate dioxygenase (HPPD)-inhibiting herbicides without previous exposure to these herbicides. This cross-resistance is endowed by enhanced metabolism. Our study identified one 2-oxoglutarate/Fe(II)-dependent dioxygenase gene (Rr2ODD1) and two P450 genes (RrCYP704C1 and RrCYP709B1), which were significantly more highly expressed in R versus susceptible (S) plants. Gene functional characterization using Arabidopsis transformation showed that overexpression of RrCYP709B1 conferred a modest level of resistance to mesotrione. Ultra-performance liquid chromatography-tandem mass spectrometry analysis showed that tissue mesotrione levels in RrCYP709B1 transgenic Arabidopsis plants were significantly lower than that in the wild type. In addition, overexpression of Rr2ODD1 or RrCYP704C1 in Arabidopsis endowed resistance to tembotrione and isoxaflutole. Structural modeling indicated that mesotrione can bind to CYP709B1 and be easily hydroxylated to form 4-OH-mesotrione. Although each gene confers a modest level of resistance, overexpression of the multiple herbicide-metabolizing genes could contribute to HPPD-inhibiting herbicide resistance in this wild radish population.


Asunto(s)
4-Hidroxifenilpiruvato Dioxigenasa , Arabidopsis , Herbicidas , Raphanus , Herbicidas/química , 4-Hidroxifenilpiruvato Dioxigenasa/genética , 4-Hidroxifenilpiruvato Dioxigenasa/metabolismo , Raphanus/genética , Raphanus/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo
20.
J Sci Food Agric ; 103(11): 5547-5559, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37052266

RESUMEN

BACKGROUND: 4-Hydroxyphenylpyruvate dioxygenase (HPPD) herbicides control broadleaf and gramineous weeds with better crop safety for corn, sorghum and wheat. Multiple screening models in silico have been established to obtain novel lead compounds as HPPD inhibition herbicides. RESULTS: Topomer comparative molecular field analysis (CoMFA) combined with topomer search technology and Bayesian, genetic approximation functions (GFA) and multiple linear regression (MLR) models generated by calculating different descriptors were constructed for the quinazolindione derivatives of HPPD inhibitors. The coefficient of determination (r2 ) of topomer CoMFA, MLR and GFA were 0.975, 0.970 and 0.968, respectively; all the models established displayed excellent accuracy and high predictive capacity. Five compounds with potential HPPD inhibition were obtained via screening fragment library combined with the validation of the above models and molecular docking studies. After molecular dynamics (MD) validation and absorption, distribution, metabolism, excretion and toxicity (ADMET) prediction, the compound 2-(2-amino-4-(4H-1,2,4-triazol-4-yl) benzoyl)-3-hydroxycyclohex-2-en-1-one not only exhibited stable interactions with the protein but also high solubility and low toxicity, and has potential as a novel HPPD inhibition herbicide. CONCLUSION: In this study, five compounds were obtained through multiple quantitative structure-activity relationship screening. Molecular docking and MD experiments showed that the constructed approach had good screening ability for HPPD inhibitors. This work provided molecular structural information for developing novel, highly efficient and low-toxicity HPPD inhibitors. © 2023 Society of Chemical Industry.


Asunto(s)
4-Hidroxifenilpiruvato Dioxigenasa , Herbicidas , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , 4-Hidroxifenilpiruvato Dioxigenasa/metabolismo , Teorema de Bayes , Herbicidas/farmacología , Herbicidas/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA