Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.922
Filtrar
1.
Nat Commun ; 15(1): 3899, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724548

RESUMEN

The epitranscriptome embodies many new and largely unexplored functions of RNA. A significant roadblock hindering progress in epitranscriptomics is the identification of more than one modification in individual transcript molecules. We address this with CHEUI (CH3 (methylation) Estimation Using Ionic current). CHEUI predicts N6-methyladenosine (m6A) and 5-methylcytosine (m5C) in individual molecules from the same sample, the stoichiometry at transcript reference sites, and differential methylation between any two conditions. CHEUI processes observed and expected nanopore direct RNA sequencing signals to achieve high single-molecule, transcript-site, and stoichiometry accuracies in multiple tests using synthetic RNA standards and cell line data. CHEUI's capability to identify two modification types in the same sample reveals a co-occurrence of m6A and m5C in individual mRNAs in cell line and tissue transcriptomes. CHEUI provides new avenues to discover and study the function of the epitranscriptome.


Asunto(s)
5-Metilcitosina , Adenosina , Análisis de Secuencia de ARN , Transcriptoma , Adenosina/análogos & derivados , Adenosina/metabolismo , 5-Metilcitosina/metabolismo , 5-Metilcitosina/análogos & derivados , Humanos , Metilación , Análisis de Secuencia de ARN/métodos , Procesamiento Postranscripcional del ARN , ARN Mensajero/metabolismo , ARN Mensajero/genética , ARN/metabolismo , ARN/genética
2.
Front Immunol ; 15: 1380697, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38715608

RESUMEN

The Corona Virus Disease (COVID-19), caused by the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), has quickly spread worldwide and resulted in significant morbidity and mortality. Although most infections are mild, some patients can also develop severe and fatal myocarditis. In eukaryotic RNAs, 5-methylcytosine (m5C) is a common kind of post-transcriptional modification, which is involved in regulating various biological processes (such as RNA export, translation, and stability maintenance). With the rapid development of m5C modification detection technology, studies related to viral m5C modification are ever-increasing. These studies have revealed that m5C modification plays an important role in various stages of viral replication, including transcription and translation. According to recent studies, m5C methylation modification can regulate SARS-CoV-2 infection by modulating innate immune signaling pathways. However, the specific role of m5C modification in SARS-CoV-2-induced myocarditis remains unclear. Therefore, this review aims to provide insights into the molecular mechanisms of m5C methylation in SARS-CoV-2 infection. Moreover, the regulatory role of NSUN2 in viral infection and host innate immune response was also highlighted. This review may provide new directions for developing therapeutic strategies for SARS-CoV-2-associated myocarditis.


Asunto(s)
COVID-19 , Miocarditis , SARS-CoV-2 , Miocarditis/virología , Miocarditis/inmunología , Miocarditis/terapia , Miocarditis/genética , Humanos , COVID-19/inmunología , COVID-19/genética , COVID-19/terapia , SARS-CoV-2/fisiología , Metilación , 5-Metilcitosina/metabolismo , Inmunidad Innata , Tratamiento Farmacológico de COVID-19 , Animales , ARN Viral/genética , ARN Viral/metabolismo , Procesamiento Postranscripcional del ARN
3.
Clin Transl Med ; 14(4): e1644, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38572667

RESUMEN

RNA methylation is widespread in nature. Abnormal expression of proteins associated with RNA methylation is strongly associated with a number of human diseases including cancer. Increasing evidence suggests that targeting RNA methylation holds promise for cancer treatment. This review specifically describes several common RNA modifications, such as the relatively well-studied N6-methyladenosine, as well as 5-methylcytosine and pseudouridine (Ψ). The regulatory factors involved in these modifications and their roles in RNA are also comprehensively discussed. We summarise the diverse regulatory functions of these modifications across different types of RNAs. Furthermore, we elucidate the structural characteristics of these modifications along with the development of specific inhibitors targeting them. Additionally, recent advancements in small molecule inhibitors targeting RNA modifications are presented to underscore their immense potential and clinical significance in enhancing therapeutic efficacy against cancer. KEY POINTS: In this paper, several important types of RNA modifications and their related regulatory factors are systematically summarised. Several regulatory factors related to RNA modification types were associated with cancer progression, and their relationships with cancer cell migration, invasion, drug resistance and immune environment were summarised. In this paper, the inhibitors targeting different regulators that have been proposed in recent studies are summarised in detail, which is of great significance for the development of RNA modification regulators and cancer treatment in the future.


Asunto(s)
Neoplasias , Metilación de ARN , Humanos , 5-Metilcitosina , Adenosina , Movimiento Celular , ARN/genética , Neoplasias/tratamiento farmacológico , Neoplasias/genética
4.
PLoS One ; 19(4): e0297008, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38635731

RESUMEN

Methylation and hydroxymethylation of cytosine moieties in CpG islands of specific genes are epigenetic processes shown to be involved in the development of cervical (pre)neoplastic lesions. We studied global (hydroxy)methylation during the subsequent steps in the carcinogenic process of the uterine cervix by using immunohistochemical protocols for the detection of 5-methylcytosine (5-mC) and 5-hydroxymethylcytosine (5-hmC) in paraffin-embedded tissues of the normal epithelia and (pre)malignant lesions. This approach allowed obtaining spatially resolved information of (epi)genetic alterations for individual cell populations in morphologically heterogeneous tissue samples. The normal ectocervical squamous epithelium showed a high degree of heterogeneity for both modifications, with a major positivity for 5-mC in the basal and parabasal layers in the ectocervical region, while 5-hmC immunostaining was even more restricted to the cells in the basal layer. Immature squamous metaplasia, characterized by expression of SOX17, surprisingly showed a decrease of 5-hmC in the basal compartments and an increase in the more superficial layers of the epithelium. The normal endocervical glandular epithelium showed a strong immunostaining reactivity for both modifications. At the squamocolumnar junctions, a specific 5-hmC pattern was observed in the squamous epithelium, resembling that of metaplasia, with the typical weak to negative reaction for 5-hmC in the basal cell compartment. The reserve cells underlying the glandular epithelium were also largely negative for 5-hmC but showed immunostaining for 5-mC. While the overall methylation status remained relatively constant, about 20% of the high-grade squamous lesions showed a very low immunostaining reactivity for 5-hmC. The (pre)malignant glandular lesions, including adenocarcinoma in situ (AIS) and adenocarcinoma showed a progressive decrease of hydroxymethylation with advancement of the lesion, resulting in cases with regions that were negative for 5-hmC immunostaining. These data indicate that inhibition of demethylation, which normally follows cytosine hydroxymethylation, is an important epigenetic switch in the development of cervical cancer.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias del Cuello Uterino , Femenino , Humanos , Citosina/metabolismo , Neoplasias del Cuello Uterino/patología , Cuello del Útero/patología , 5-Metilcitosina/metabolismo , Metilación de ADN , Carcinoma de Células Escamosas/patología , Metaplasia/patología
5.
Methods Mol Biol ; 2757: 447-460, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38668978

RESUMEN

Epigenomic regulation and dynamic DNA methylation, in particular, are widespread mechanisms orchestrating the genome operation across time and species. Whole-genome bisulfite sequencing (WGBS) is currently the only method for unbiasedly capturing the presence of 5-methylcytosine (5-mC) DNA methylation patterns across an entire genome with single-nucleotide resolution. Bisulfite treatment converts unmethylated cytosines to uracils but leaves methylated cytosines intact, thereby creating a map of all methylated cytosines across a genome also known as a methylome. These epigenomic patterns of DNA methylation have been found to regulate gene expression and influence gene evolution rates between species. While protocols have been optimized for vertebrate methylome production, little adaptation has been done for invertebrates. Creating a methylome reference allows comparisons to be made between rates of transcription and epigenomic patterning in animals. Here we present a method of library construction for bisulfite sequencing optimized for non-bilateral metazoans such as the ctenophore, Mnemiopsis leidyi. We have improved upon our previously published method by including spike-in genomic DNA controls to measure methylation conversion rates. By pooling two bisulfite conversion reactions from the same individual, we also produced sequencing libraries that yielded a higher percentage of sequenced reads uniquely mapping to the reference genome. We successfully detected 5-mC in whole-animal methylomes at CpG, CHG, and CHH sites and visualized datasets using circos diagrams. The proof-of-concept tests were performed both under control conditions and following injury tests with changes in methylation patterns of genes encoding innexins, toxins and neuropeptides. Our approach can be easily adapted to produce epigenomes from other fragile marine animals.


Asunto(s)
Ctenóforos , Metilación de ADN , Animales , Ctenóforos/genética , Sulfitos/química , Epigenómica/métodos , Epigénesis Genética , Epigenoma , 5-Metilcitosina/metabolismo , Análisis de Secuencia de ADN/métodos , Secuenciación Completa del Genoma/métodos , Genoma
6.
Cells ; 13(8)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38667328

RESUMEN

Immune checkpoint inhibitors (ICIs) drastically improve therapeutic outcomes for lung cancer, but accurately predicting individual patient responses to ICIs remains a challenge. We performed the genome-wide profiling of 5-hydroxymethylcytosine (5hmC) in 85 plasma cell-free DNA (cfDNA) samples from lung cancer patients and developed a 5hmC signature that was significantly associated with progression-free survival (PFS). We built a 5hmC predictive model to quantify the 5hmC level and validated the model in the validation, test, and control sets. Low weighted predictive scores (wp-scores) were significantly associated with a longer PFS compared to high wp-scores in the validation [median 7.6 versus 1.8 months; p = 0.0012; hazard ratio (HR) 0.12; 95% confidence interval (CI), 0.03-0.54] and test (median 14.9 versus 3.3 months; p = 0.00074; HR 0.10; 95% CI, 0.02-0.50) sets. Objective response rates in patients with a low or high wp-score were 75.0% (95% CI, 42.8-94.5%) versus 0.0% (95% CI, 0.0-60.2%) in the validation set (p = 0.019) and 80.0% (95% CI, 44.4-97.5%) versus 0.0% (95% CI, 0.0-36.9%) in the test set (p = 0.0011). The wp-scores were also significantly associated with PFS in patients receiving single-agent ICI treatment (p < 0.05). In addition, the 5hmC predictive signature demonstrated superior predictive capability to tumor programmed death-ligand 1 and specificity to ICI treatment response prediction. Moreover, we identified novel 5hmC-associated genes and signaling pathways integral to ICI treatment response in lung cancer. This study provides proof-of-concept evidence that the cfDNA 5hmC signature is a robust biomarker for predicting ICI treatment response in lung cancer.


Asunto(s)
5-Metilcitosina , 5-Metilcitosina/análogos & derivados , Ácidos Nucleicos Libres de Células , Inmunoterapia , Neoplasias Pulmonares , Humanos , 5-Metilcitosina/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Ácidos Nucleicos Libres de Células/genética , Ácidos Nucleicos Libres de Células/sangre , Masculino , Femenino , Inmunoterapia/métodos , Anciano , Persona de Mediana Edad , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Resultado del Tratamiento
7.
Dev Cell ; 59(8): 1010-1027.e8, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38569549

RESUMEN

Ten-eleven translocation (TET) enzymes iteratively oxidize 5-methylcytosine (5mC) to generate 5-hydroxymethylcytosine (5hmC), 5-formylcytosine, and 5-carboxylcytosine to facilitate active genome demethylation. Whether these bases are required to promote replication-coupled dilution or activate base excision repair during mammalian germline reprogramming remains unresolved due to the inability to decouple TET activities. Here, we generated two mouse lines expressing catalytically inactive TET1 (Tet1-HxD) and TET1 that stalls oxidation at 5hmC (Tet1-V). Tet1 knockout and catalytic mutant primordial germ cells (PGCs) fail to erase methylation at select imprinting control regions and promoters of meiosis-associated genes, validating the requirement for the iterative oxidation of 5mC for complete germline reprogramming. TET1V and TET1HxD rescue most hypermethylation of Tet1-/- sperm, suggesting the role of TET1 beyond its oxidative capability. We additionally identify a broader class of hypermethylated regions in Tet1 mutant mouse sperm that depend on TET oxidation for reprogramming. Our study demonstrates the link between TET1-mediated germline reprogramming and sperm methylome patterning.


Asunto(s)
5-Metilcitosina , 5-Metilcitosina/análogos & derivados , Metilación de ADN , Proteínas de Unión al ADN , Impresión Genómica , Oxidación-Reducción , Proteínas Proto-Oncogénicas , Espermatozoides , Animales , Masculino , Ratones , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Espermatozoides/metabolismo , 5-Metilcitosina/metabolismo , Reprogramación Celular/genética , Ratones Noqueados , Ratones Endogámicos C57BL
8.
Sci Rep ; 14(1): 9116, 2024 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643305

RESUMEN

RNA modifications are pivotal in the development of newly synthesized structures, showcasing a vast array of alterations across various RNA classes. Among these, 5-hydroxymethylcytosine (5HMC) stands out, playing a crucial role in gene regulation and epigenetic changes, yet its detection through conventional methods proves cumbersome and costly. To address this, we propose Deep5HMC, a robust learning model leveraging machine learning algorithms and discriminative feature extraction techniques for accurate 5HMC sample identification. Our approach integrates seven feature extraction methods and various machine learning algorithms, including Random Forest, Naive Bayes, Decision Tree, and Support Vector Machine. Through K-fold cross-validation, our model achieved a notable 84.07% accuracy rate, surpassing previous models by 7.59%, signifying its potential in early cancer and cardiovascular disease diagnosis. This study underscores the promise of Deep5HMC in offering insights for improved medical assessment and treatment protocols, marking a significant advancement in RNA modification analysis.


Asunto(s)
5-Metilcitosina/análogos & derivados , Algoritmos , Redes Neurales de la Computación , Teorema de Bayes , Máquina de Vectores de Soporte , ARN
9.
Sci Rep ; 14(1): 7554, 2024 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-38555324

RESUMEN

There is a correlation between DNA methylation and the diseased stage and poor survival. 5-methylcytosine (5-mC) is one of the epigenetic modifications of bases that researchers focus on. Staining with 5-mC immunohistochemistry was used to examine pathological samples taken from individuals diagnosed with cutaneous melanoma. Between Breslow levels 2 and 4, there was a significant difference in the H-score of 5-mC expression (p = 0.046). A significant reduction in 5-mC expression H-scores was seen in patients who were diagnosed with ulcers (p = 0.039). It was shown that patients with low 5-mC had a significantly worse overall survival rate (p = 0.027).


Asunto(s)
Melanoma , Neoplasias Cutáneas , Humanos , Melanoma/genética , Neoplasias Cutáneas/genética , 5-Metilcitosina/metabolismo , Inmunohistoquímica , Pronóstico , Metilación de ADN
10.
BMB Rep ; 57(3): 135-142, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38449301

RESUMEN

DNA methylation is one of the most extensively studied epigenetic regulatory mechanisms, known to play crucial roles in various organisms. It has been implicated in the regulation of gene expression and chromatin changes, ranging from global alterations during cell state transitions to locus-specific modifications. 5-hydroxymethylcytosine (5hmC) is produced by a major oxidation, from 5-methylcytosine (5mC), catalyzed by the ten-eleven translocation (TET) enzymes, and is gradually being recognized for its significant role in genome regulation. With the development of state-of-the-art experimental techniques, it has become possible to detect and distinguish 5mC and 5hmC at base resolution. Various techniques have evolved, encompassing chemical and enzymatic approaches, as well as thirdgeneration sequencing techniques. These advancements have paved the way for a thorough exploration of the role of 5hmC across a diverse array of cell types, from embryonic stem cells (ESCs) to various differentiated cells. This review aims to comprehensively report on recent techniques and discuss the emerging roles of 5hmC. [BMB Reports 2024; 57(3): 135-142].


Asunto(s)
Metilación de ADN , Epigénesis Genética , Metilación de ADN/genética , Epigénesis Genética/genética , 5-Metilcitosina/metabolismo , Genoma , Diferenciación Celular , ADN/genética , ADN/metabolismo
11.
BMC Genomics ; 25(1): 242, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38443802

RESUMEN

BACKGROUND: 5-Methylcytosine (5mC) plays a very important role in gene stability, transcription, and development. Therefore, accurate identification of the 5mC site is of key importance in genetic and pathological studies. However, traditional experimental methods for identifying 5mC sites are time-consuming and costly, so there is an urgent need to develop computational methods to automatically detect and identify these 5mC sites. RESULTS: Deep learning methods have shown great potential in the field of 5mC sites, so we developed a deep learning combinatorial model called i5mC-DCGA. The model innovatively uses the Convolutional Block Attention Module (CBAM) to improve the Dense Convolutional Network (DenseNet), which is improved to extract advanced local feature information. Subsequently, we combined a Bidirectional Gated Recurrent Unit (BiGRU) and a Self-Attention mechanism to extract global feature information. Our model can learn feature representations of abstract and complex from simple sequence coding, while having the ability to solve the sample imbalance problem in benchmark datasets. The experimental results show that the i5mC-DCGA model achieves 97.02%, 96.52%, 96.58% and 85.58% in sensitivity (Sn), specificity (Sp), accuracy (Acc) and matthews correlation coefficient (MCC), respectively. CONCLUSIONS: The i5mC-DCGA model outperforms other existing prediction tools in predicting 5mC sites, and it is currently the most representative promoter 5mC site prediction tool. The benchmark dataset and source code for the i5mC-DCGA model can be found in https://github.com/leirufeng/i5mC-DCGA .


Asunto(s)
5-Metilcitosina , Benchmarking , Regiones Promotoras Genéticas , Proyectos de Investigación , Programas Informáticos
12.
Cancer Sci ; 115(5): 1706-1717, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38433527

RESUMEN

The majority of low-grade isocitrate dehydrogenase-mutant (IDHmt) gliomas undergo malignant progression (MP), but their underlying mechanism remains unclear. IDHmt gliomas exhibit global DNA methylation, and our previous report suggested that MP could be partly attributed to passive demethylation caused by accelerated cell cycles. However, during MP, there is also active demethylation mediated by ten-eleven translocation, such as DNA hydroxymethylation. Hydroxymethylation is reported to potentially contribute to gene expression regulation, but its role in MP remains under investigation. Therefore, we conducted a comprehensive analysis of hydroxymethylation during MP of IDHmt astrocytoma. Five primary/malignantly progressed IDHmt astrocytoma pairs were analyzed with oxidative bisulfite and the Infinium EPIC methylation array, detecting 5-hydroxymethyl cytosine at over 850,000 locations for region-specific hydroxymethylation assessment. Notably, we observed significant sharing of hydroxymethylated genomic regions during MP across the samples. Hydroxymethylated CpGs were enriched in open sea and intergenic regions (p < 0.001), and genes undergoing hydroxymethylation were significantly associated with cancer-related signaling pathways. RNA sequencing data integration identified 91 genes with significant positive/negative hydroxymethylation-expression correlations. Functional analysis suggested that positively correlated genes are involved in cell-cycle promotion, while negatively correlated ones are associated with antineoplastic functions. Analyses of The Cancer Genome Atlas clinical data on glioma were in line with these findings. Motif-enrichment analysis suggested the potential involvement of the transcription factor KLF4 in hydroxymethylation-based gene regulation. Our findings shed light on the significance of region-specific DNA hydroxymethylation in glioma MP and suggest its potential role in cancer-related gene expression and IDHmt glioma malignancy.


Asunto(s)
Neoplasias Encefálicas , Metilación de ADN , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Glioma , Isocitrato Deshidrogenasa , Factor 4 Similar a Kruppel , Mutación , Humanos , Isocitrato Deshidrogenasa/genética , Glioma/genética , Glioma/patología , Glioma/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Islas de CpG/genética , Femenino , Masculino , Astrocitoma/genética , Astrocitoma/patología , Astrocitoma/metabolismo , Persona de Mediana Edad , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Adulto
13.
Proc Natl Acad Sci U S A ; 121(14): e2321611121, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38547058

RESUMEN

Malignant glioma exhibits immune evasion characterized by highly expressing the immune checkpoint CD47. RNA 5-methylcytosine(m5C) modification plays a pivotal role in tumor pathogenesis. However, the mechanism underlying m5C-modified RNA metabolism remains unclear, as does the contribution of m5C-modified RNA to the glioma immune microenvironment. In this study, we demonstrate that the canonical 28SrRNA methyltransferase NSUN5 down-regulates ß-catenin by promoting the degradation of its mRNA, leading to enhanced phagocytosis of tumor-associated macrophages (TAMs). Specifically, the NSUN5-induced suppression of ß-catenin relies on its methyltransferase activity mediated by cysteine 359 (C359) and is not influenced by its localization in the nucleolus. Intriguingly, NSUN5 directly interacts with and deposits m5C on CTNNB1 caRNA (chromatin-associated RNA). NSUN5-induced recruitment of TET2 to chromatin is independent of its methyltransferase activity. The m5C modification on caRNA is subsequently oxidized into 5-hydroxymethylcytosine (5hmC) by TET2, which is dependent on its binding affinity for Fe2+ and α-KG. Furthermore, NSUN5 enhances the chromatin recruitment of RBFOX2 which acts as a 5hmC-specific reader to recognize and facilitate the degradation of 5hmC caRNA. Notably, hmeRIP-seq analysis reveals numerous mRNA substrates of NSUN5 that potentially undergo this mode of metabolism. In addition, NSUN5 is epigenetically suppressed by DNA methylation and is negatively correlated with IDH1-R132H mutation in glioma patients. Importantly, pharmacological blockage of DNA methylation or IDH1-R132H mutant and CD47/SIRPα signaling synergistically enhances TAM-based phagocytosis and glioma elimination in vivo. Our findings unveil a general mechanism by which NSUN5/TET2/RBFOX2 signaling regulates RNA metabolism and highlight NSUN5 targeting as a potential strategy for glioma immune therapy.


Asunto(s)
5-Metilcitosina , 5-Metilcitosina/análogos & derivados , Proteínas de Unión al ADN , Dioxigenasas , Glioma , Proteínas Musculares , Humanos , 5-Metilcitosina/metabolismo , beta Catenina/metabolismo , Cromatina , Antígeno CD47/genética , ARN , Evasión Inmune , Glioma/patología , ARN Mensajero/metabolismo , Metiltransferasas/metabolismo , ARN Nuclear Pequeño , Microambiente Tumoral , Factores de Empalme de ARN/genética , Proteínas Represoras/metabolismo
14.
Talanta ; 273: 125895, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38508130

RESUMEN

5-methylcytosine (5 mC) DNA methylation is a prominent epigenetic modification ubiquitous in the genome. It plays a critical role in the regulation of gene expression, maintenance of genome stability, and disease control. The potential of 5 mC DNA methylation for disease detection, prognostic information, and prediction of response to therapy is enormous. However, the quantification of DNA methylation from clinical samples remains a considerable challenge due to its low abundance (only 1% of total bases). To overcome this challenge, scientists have recently developed various signal amplification strategies to enhance the sensitivity of DNA methylation biosensors. These strategies include isothermal nucleic acid amplification and enzyme-assisted target cycling amplification, among others. This review summarizes the applications, advantages, and limitations of these signal amplification strategies over the past six years (2018-2023). Our goal is to provide new insights into the selection and establishment of DNA methylation analysis. We hope that this review will offer valuable insights to researchers in the field and facilitate further advancements in this area.


Asunto(s)
Técnicas Biosensibles , Metilación de ADN , Técnicas de Amplificación de Ácido Nucleico , 5-Metilcitosina
15.
Epigenetics ; 19(1): 2326869, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38507502

RESUMEN

5-hydroxymethylcystosine (5hmC), is an intermediate product in the DNA demethylation pathway, but may act as a functional epigenetic modification. We have conducted the largest study of site-specific 5hmC in placenta to date using parallel bisulphite and oxidative bisulphite modification with array-based assessment. Incorporating parallel RNA-sequencing data allowed us to assess associations between 5hmC and gene expression, using expression quantitative trait hydroxymethylation (eQTHM) analysis. We identified ~ 47,000 loci with consistently elevated (systematic) 5hmC proportions. Systematic 5hmC was significantly depleted (p < 0.0001) at CpG islands (CGI), and enriched (p < 0.0001) in 'open sea' regions (CpG >4 kb from CGI). 5hmC was most and least abundant at CpGs in enhancers and active transcription start sites (TSS), respectively (p < 0.05). We identified 499 significant (empirical-p <0.05) eQTHMs within 1 MB of the assayed gene. At most (75.4%) eQTHMs, the proportion of 5hmC was positively correlated with transcript abundance. eQTHMs were significantly enriched among enhancer CpGs and depleted among CpGs in active TSS (p < 0.05 for both). Finally, we identified 107 differentially hydroxymethylated regions (DHMRs, p < 0.05) across 100 genes. Our study provides insight into placental distribution of 5hmC, and sheds light on the functional capacity of this epigenetic modification in placenta.


Asunto(s)
5-Metilcitosina/análogos & derivados , Metilación de ADN , Placenta , Sulfitos , Femenino , Embarazo , Humanos , Placenta/metabolismo , 5-Metilcitosina/metabolismo , Epigénesis Genética , Expresión Génica
16.
Sci Rep ; 14(1): 6481, 2024 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-38499584

RESUMEN

The active DNA demethylation process, which involves TET proteins, can affect DNA methylation pattern. TET dependent demethylation results in DNA hypomethylation by oxidation 5-methylcytosine (5-mC) to 5-hydroxymethylcytosine (5-hmC) and its derivatives. Moreover, TETs' activity may be upregulated by ascorbate. Given that aberrant DNA methylation of genes implicated in breast carcinogenesis may be involved in tumor progression, we wanted to determine whether breast cancer patients exert changes in the active DNA demethylation process. The study included blood samples from breast cancer patients (n = 74) and healthy subjects (n = 71). We analyzed the expression of genes involved in the active demethylation process (qRT-PCR), and 5-mC and its derivatives level (2D-UPLC MS/MS). The ascorbate level was determined using UPLC-MS. Breast cancer patients had significantly higher TET3 expression level, lower 5-mC and 5-hmC DNA levels. TET3 was significantly increased in luminal B breast cancer patients with expression of hormone receptors. Moreover, the ascorbate level in the plasma of breast cancer patients was decreased with the accompanying increase of sodium-dependent vitamin C transporters (SLC23A1 and SLC23A2). The presented study indicates the role of TET3 in DNA demethylation in breast carcinogenesis.


Asunto(s)
Neoplasias de la Mama , Dioxigenasas , Humanos , Femenino , Desmetilación del ADN , Neoplasias de la Mama/genética , Cromatografía Liquida , Espectrometría de Masas en Tándem , 5-Metilcitosina/metabolismo , Metilación de ADN , Biomarcadores/metabolismo , ADN/metabolismo , Epigénesis Genética , Leucocitos/metabolismo , Carcinogénesis/genética , Dioxigenasas/genética
17.
Proc Natl Acad Sci U S A ; 121(11): e2312596121, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38437555

RESUMEN

Self-assembled DNA crystals offer a precise chemical platform at the ångström-scale for DNA nanotechnology, holding enormous potential in material separation, catalysis, and DNA data storage. However, accurately controlling the crystallization kinetics of such DNA crystals remains challenging. Herein, we found that atomic-level 5-methylcytosine (5mC) modification can regulate the crystallization kinetics of DNA crystal by tuning the hybridization rates of DNA motifs. We discovered that by manipulating the axial and combination of 5mC modification on the sticky ends of DNA tensegrity triangle motifs, we can obtain a series of DNA crystals with controllable morphological features. Through DNA-PAINT and FRET-labeled DNA strand displacement experiments, we elucidate that atomic-level 5mC modification enhances the affinity constant of DNA hybridization at both the single-molecule and macroscopic scales. This enhancement can be harnessed for kinetic-driven control of the preferential growth direction of DNA crystals. The 5mC modification strategy can overcome the limitations of DNA sequence design imposed by limited nucleobase numbers in various DNA hybridization reactions. This strategy provides a new avenue for the manipulation of DNA crystal structure, valuable for the advancement of DNA and biomacromolecular crystallography.


Asunto(s)
5-Metilcitosina , ADN , Cristalización , Catálisis , Cristalografía
18.
Anal Chem ; 96(11): 4726-4735, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38450632

RESUMEN

DNA cytosine methylation (5-methylcytosine, 5mC) is a predominant epigenetic modification that plays a critical role in a variety of biological and pathological processes in mammals. In active DNA demethylation, the 10-11 translocation (TET) dioxygenases can sequentially oxidize 5mC to generate three modified forms of cytosine, 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). Beyond being a demethylation intermediate, recent studies have shown that 5fC has regulatory functions in gene expression and chromatin organization. While some methods have been developed to detect 5fC, genome-wide mapping of 5fC at base resolution is still highly desirable. Herein, we propose a chemical labeling enrichment and deamination sequencing (CLED-seq) method for detecting 5fC in genomic DNA at single-base resolution. The CLED-seq method utilizes selective labeling and enrichment of 5fC-containing DNA fragments, followed by deamination mediated by apolipoprotein B mRNA-editing catalytic polypeptide-like 3A (APOBEC3A or A3A) and sequencing. In the CLED-seq process, while all C, 5mC, and 5hmC are interpreted as T during sequencing, 5fC is still read as C, enabling the precise detection of 5fC in DNA. Using the proposed CLED-seq method, we accomplished genome-wide mapping of 5fC in mouse embryonic stem cells. The mapping study revealed that promoter regions enriched with 5fC overlapped with H3K4me1, H3K4me3, and H3K27ac marks. These findings suggest a correlation between 5fC marks and active gene expression in mESCs. In conclusion, CLED-seq is a straightforward, bisulfite-free method that offers a valuable tool for detecting 5fC in genomes at a single-base resolution.


Asunto(s)
Citidina Desaminasa , Citosina , Citosina/análogos & derivados , Epigénesis Genética , Proteínas , Animales , Ratones , Desaminación , Citosina/metabolismo , 5-Metilcitosina/metabolismo , Mapeo Cromosómico , ADN/genética , ADN/metabolismo , Metilación de ADN , Mamíferos/metabolismo
19.
BMC Womens Health ; 24(1): 188, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38515066

RESUMEN

BACKGROUND: Aberrant DNA methylation is a vital molecular alteration commonly detected in type I endometrial cancers (EC), and tet methylcytosine dioxygenase 2 (TET2) and 5-hydroxymethylcytosine (5hmC) play significant roles in DNA demethylation. However, little is known about the function and correlation of TET2 and 5hmC co-expressed in EC. This study intended to investigate the clinical significance of TET2 and 5hmC in EC. METHODS: The levels of TET2 and 5hmC were detected in 326 endometrial tissues by immumohistochemistry, and the correlation of their level was detected by Pearson analysis. The association between the levels of TET2 and 5hmC and clinicopathologic characteristics was analyzed. Prognostic value of TET2 and 5hmC was explored by Kaplan-Meier analysis. The Cox proportional hazard regression model was used for univariate and multivariate analyses. RESULTS: Based on the analysis results, TET2 protein level was positively correlated with 5hmC level in EC tissues (r = 0.801, P < 0.001). TET2+5hmC+ (high TET2 and high 5hmC) association was significantly associated with well differentiation, myometrial invasion, negative lymph node metastasis, and tumor stage in EC. Association of TET2 and 5hmC was confirmed as a prognostic factor (HR = 2.843, 95%CI = 1.226-3.605, P = 0.007) for EC patients, and EC patients with TET2-5hmC- level had poor overall survival. CONCLUSIONS: In summary, the association of TET2 and 5hmC was downregulated in EC tissues, and may be a potential poor prognostic indicator for EC patients. Combined detection of TET2 and 5hmC may be valuable for the diagnosis and prognosis of EC.


Asunto(s)
5-Metilcitosina , Carcinoma Endometrioide , Dioxigenasas , Neoplasias Endometriales , Femenino , Humanos , 5-Metilcitosina/análogos & derivados , Carcinoma Endometrioide/genética , Relevancia Clínica , Dioxigenasas/genética , Dioxigenasas/metabolismo , Metilación de ADN , Proteínas de Unión al ADN
20.
Anal Chim Acta ; 1300: 342463, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38521572

RESUMEN

BACKGROUND: 5-hydroxymethylcytosine (5hmC) as an epigenetic modification can regulate gene expression, and its abnormal level is related with various tumor invasiveness and poor prognosis. Nevertheless, the current methods for 5hmC assay usually involve expensive instruments/antibodies, radioactive risk, high background, laborious bisulfite treatment procedures, and non-specific/long amplification time. RESULTS: We develop a glycosylation-mediated fluorescent biosensor based on helicase-dependent amplification (HDA) for label-free detection of site-specific 5hmC in cancer cells with zero background signal. The glycosylated 5hmC-DNA (5ghmC) catalyzed by ß-glucosyltransferase (ß-GT) can be cleaved by AbaSI restriction endonuclease to generate two dsDNA fragments with sticky ends. The resultant dsDNA fragments are complementary to the biotinylated probes and ligated by DNA ligases, followed by being captured by magnetic beads. After magnetic separation, the eluted ligation products act as the templates to initiate HDA reaction, generating abundant double-stranded DNA (dsDNA) products within 20 min. The dsDNA products are measured in a label-free manner with SYBR Green I as an indicator. This biosensor can measure 5hmC with a detection limit of 2.75 fM and a wide linear range from 1 × 10-14 to 1 × 10-8 M, and it can discriminate as low as 0.001% 5hmC level in complex mixture. Moreover, this biosensor can measure site-specific 5hmC in cancer cells, and distinguish tumor cells from normal cells. SIGNIFICANCE: This biosensor can achieve a zero-background signal without the need of either 5hmC specific antibody or bisulfite treatment, and it holds potential applications in biological research and disease diagnosis.


Asunto(s)
5-Metilcitosina/análogos & derivados , Técnicas Biosensibles , Neoplasias , Sulfitos , Glicosilación , ADN/genética , 5-Metilcitosina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA