Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33.485
Filtrar
1.
Nucleic Acids Res ; 52(8): 4295-4312, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38416579

RESUMEN

5-Fluorouracil (5-FU) is the first-line chemotherapeutic agent in colorectal cancer, and resistance to 5-FU easily emerges. One of the mechanisms of drug action and resistance of 5-FU is through DNA incorporation. Our quantitative reverse-transcription PCR data showed that one of the translesion synthesis (TLS) DNA polymerases, DNA polymerase η (polη), was upregulated within 72 h upon 5-FU administration at 1 and 10 µM, indicating that polη is one of the first responding polymerases, and the only TLS polymerase, upon the 5-FU treatment to incorporate 5-FU into DNA. Our kinetic studies revealed that 5-fluoro-2'-deoxyuridine triphosphate (5FdUTP) was incorporated across dA 41 and 28 times more efficiently than across dG and across inosine, respectively, by polη indicating that the mutagenicity of 5-FU incorporation is higher in the presence of inosine and that DNA lesions could lead to more mutagenic incorporation of 5-FU. Our polη crystal structures complexed with DNA and 5FdUTP revealed that dA:5FdUTP base pair is like dA:dTTP in the active site of polη, while 5FdUTP adopted 4-enol tautomer in the base pairs with dG and HX increasing the insertion efficiency compared to dG:dTTP for the incorrect insertions. These studies confirm that polη engages in the DNA incorporation and bypass of 5-FU.


Asunto(s)
Neoplasias Colorrectales , ADN Polimerasa Dirigida por ADN , Fluorouracilo , Fluorouracilo/farmacología , ADN Polimerasa Dirigida por ADN/metabolismo , ADN Polimerasa Dirigida por ADN/genética , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Humanos , Daño del ADN , ADN/metabolismo , ADN/química , ADN/biosíntesis , Reparación del ADN , Nucleótidos de Desoxiuracil/metabolismo , Nucleótidos de Desoxiuracil/química , Antimetabolitos Antineoplásicos/farmacología , Antimetabolitos Antineoplásicos/uso terapéutico , Antimetabolitos Antineoplásicos/química , Cinética , Replicación del ADN/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Síntesis Translesional de ADN
2.
J Biol Chem ; 300(1): 105572, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38110032

RESUMEN

Mutations in, or deficiency of, fragile X messenger ribonucleoprotein (FMRP) is responsible for the Fragile X syndrome (FXS), the most common cause for inherited intellectual disability. FMRP is a nucleocytoplasmic protein, primarily characterized as a translation repressor with poorly understood nuclear function(s). We recently reported that FXS patient cells lacking FMRP sustain higher level of DNA double-strand breaks (DSBs) than normal cells, specifically at sequences prone to forming R-loops, a phenotype further exacerbated by DNA replication stress. Moreover, expression of FMRP, and not an FMRPI304N mutant known to cause FXS, reduced R-loop-associated DSBs. We subsequently reported that recombinant FMRP directly binds R-loops, primarily through the carboxyl terminal intrinsically disordered region. Here, we show that FMRP directly interacts with an RNA helicase, DHX9. This interaction, which is mediated by the amino terminal structured domain of FMRP, is reduced with FMRPI304N. We also show that FMRP inhibits DHX9 helicase activity on RNA:DNA hybrids and the inhibition is also dependent on the amino terminus. Furthermore, the FMRPI304N mutation causes both FMRP and DHX9 to persist on the chromatin in replication stress. These results suggest an antagonistic relationship between FMRP and DHX9 at the chromatin, where their proper interaction leads to dissociation of both proteins from the fully resolved R-loop. We propose that the absence or the loss of function of FMRP leads to persistent presence of DHX9 or both proteins, respectively, on the unresolved R-loop, ultimately leading to DSBs. Our study sheds new light on our understanding of the genome functions of FMRP.


Asunto(s)
ARN Helicasas DEAD-box , Replicación del ADN , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Proteínas de Neoplasias , Estrés Fisiológico , Humanos , Cromatina/genética , Cromatina/metabolismo , ARN Helicasas DEAD-box/metabolismo , ADN/biosíntesis , ADN/química , ADN/metabolismo , Roturas del ADN de Doble Cadena , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Mutación , Proteínas de Neoplasias/metabolismo , Hibridación de Ácido Nucleico , Estructuras R-Loop , ARN/química , ARN/metabolismo
3.
Nature ; 626(7997): 194-206, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38096902

RESUMEN

The LINE-1 (L1) retrotransposon is an ancient genetic parasite that has written around one-third of the human genome through a 'copy and paste' mechanism catalysed by its multifunctional enzyme, open reading frame 2 protein (ORF2p)1. ORF2p reverse transcriptase (RT) and endonuclease activities have been implicated in the pathophysiology of cancer2,3, autoimmunity4,5 and ageing6,7, making ORF2p a potential therapeutic target. However, a lack of structural and mechanistic knowledge has hampered efforts to rationally exploit it. We report structures of the human ORF2p 'core' (residues 238-1061, including the RT domain) by X-ray crystallography and cryo-electron microscopy in several conformational states. Our analyses identified two previously undescribed folded domains, extensive contacts to RNA templates and associated adaptations that contribute to unique aspects of the L1 replication cycle. Computed integrative structural models of full-length ORF2p show a dynamic closed-ring conformation that appears to open during retrotransposition. We characterize ORF2p RT inhibition and reveal its underlying structural basis. Imaging and biochemistry show that non-canonical cytosolic ORF2p RT activity can produce RNA:DNA hybrids, activating innate immune signalling through cGAS/STING and resulting in interferon production6-8. In contrast to retroviral RTs, L1 RT is efficiently primed by short RNAs and hairpins, which probably explains cytosolic priming. Other biochemical activities including processivity, DNA-directed polymerization, non-templated base addition and template switching together allow us to propose a revised L1 insertion model. Finally, our evolutionary analysis demonstrates structural conservation between ORF2p and other RNA- and DNA-dependent polymerases. We therefore provide key mechanistic insights into L1 polymerization and insertion, shed light on the evolutionary history of L1 and enable rational drug development targeting L1.


Asunto(s)
Endonucleasas , Elementos de Nucleótido Esparcido Largo , ADN Polimerasa Dirigida por ARN , Transcripción Reversa , Humanos , Microscopía por Crioelectrón , Endonucleasas/química , Endonucleasas/genética , Endonucleasas/metabolismo , Elementos de Nucleótido Esparcido Largo/genética , ARN/genética , ADN Polimerasa Dirigida por ARN/química , ADN Polimerasa Dirigida por ARN/genética , ADN Polimerasa Dirigida por ARN/metabolismo , Cristalografía por Rayos X , ADN/biosíntesis , ADN/genética , Inmunidad Innata , Interferones/biosíntesis
4.
Nature ; 623(7988): 836-841, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37968395

RESUMEN

Timely repair of chromosomal double-strand breaks is required for genome integrity and cellular viability. The polymerase theta-mediated end joining pathway has an important role in resolving these breaks and is essential in cancers defective in other DNA repair pathways, thus making it an emerging therapeutic target1. It requires annealing of 2-6 nucleotides of complementary sequence, microhomologies, that are adjacent to the broken ends, followed by initiation of end-bridging DNA synthesis by polymerase θ. However, the other pathway steps remain inadequately defined, and the enzymes required for them are unknown. Here we demonstrate requirements for exonucleolytic digestion of unpaired 3' tails before polymerase θ can initiate synthesis, then a switch to a more accurate, processive and strand-displacing polymerase to complete repair. We show the replicative polymerase, polymerase δ, is required for both steps; its 3' to 5' exonuclease activity for flap trimming, then its polymerase activity for extension and completion of repair. The enzymatic steps that are essential and specific to this pathway are mediated by two separate, sequential engagements of the two polymerases. The requisite coupling of these steps together is likely to be facilitated by physical association of the two polymerases. This pairing of polymerase δ with a polymerase capable of end-bridging synthesis, polymerase θ, may help to explain why the normally high-fidelity polymerase δ participates in genome destabilizing processes such as mitotic DNA synthesis2 and microhomology-mediated break-induced replication3.


Asunto(s)
Reparación del ADN por Unión de Extremidades , ADN Polimerasa III , ADN Polimerasa Dirigida por ADN , ADN/biosíntesis , ADN/química , ADN/metabolismo , ADN Polimerasa III/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Inestabilidad Genómica , ADN Polimerasa theta
5.
Science ; 382(6669): 423-429, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37883544

RESUMEN

A DNA polymerase with a single mutation and a divalent calcium cofactor catalyzes the synthesis of unnatural N3'→P5' phosphoramidate (NP) bonds to form NP-DNA. However, this template-directed phosphoryl transfer activity remains orders of magnitude slower than native phosphodiester synthesis. Here, we used time-resolved x-ray crystallography to show that NP-DNA synthesis proceeds with a single detectable calcium ion in the active site. Using insights from isotopic and elemental effects, we propose that one-metal-ion electrophilic substrate activation is inferior to the native two-metal-ion mechanism. We found that this deficiency in divalent activation could be ameliorated by trivalent rare earth and post-transition metal cations, substantially enhancing NP-DNA synthesis. Scandium(III), in particular, confers highly specific NP activity with kinetics enhanced by more than 100-fold over calcium(II), yielding NP-DNA strands up to 100 nucleotides in length.


Asunto(s)
Proteínas Bacterianas , Calcio , Coenzimas , ADN Polimerasa Dirigida por ADN , ADN , Geobacillus stearothermophilus , Calcio/química , ADN/biosíntesis , ADN Polimerasa Dirigida por ADN/química , Nucleótidos/química , Coenzimas/química , Geobacillus stearothermophilus/enzimología , Proteínas Bacterianas/química , Activación Enzimática , Cristalografía por Rayos X , Conformación Proteica , Biocatálisis
6.
J Mol Biol ; 435(22): 168294, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37777152

RESUMEN

Faithful genome duplication is a challenging task for dividing mammalian cells, particularly under replication stress where timely resolution of late replication intermediates (LRIs) becomes crucial prior to cell division. In human cancer cells, mitotic DNA repair synthesis (MiDAS) is described as a final mechanism for the resolution of LRIs to avoid lethal chromosome mis-segregation. RAD52-driven MiDAS achieves this mission in part by generating gaps/breaks on metaphase chromosomes, which preferentially occur at common fragile sites (CFS). We previously demonstrated that a MiDAS mechanism also exists in untransformed and primary human cells, which is RAD52 independent but requires FANCD2. However, the properties of this form of MiDAS are not well understood. Here, we report that FANCD2-driven MiDAS in untransformed human cells: 1) requires a prerequisite step of FANCD2 mono-ubiquitination by a subset of Fanconi anemia (FA) proteins, 2) primarily acts to preserve CFS stability but not to prevent chromosome mis-segregation, and 3) depends on HELQ, which potentially functions at an early step. Hence, FANCD2-driven MiDAS in untransformed cells is built to protect CFS stability, whereas RAD52-driven MiDAS in cancer cells is likely adapted to prevent chromosome mis-segregation at the cost of CFS expression. Notably, we also identified a novel form of MiDAS, which surfaces to function when FANCD2 is absent in untransformed cells. Our findings substantiate the complex nature of MiDAS and a link between its deficiencies and the pathogenesis of FA, a human genetic disease.


Asunto(s)
ADN Helicasas , Reparación del ADN , Replicación del ADN , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi , Mitosis , Humanos , ADN/biosíntesis , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Línea Celular Tumoral
7.
Nature ; 620(7973): 426-433, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37468626

RESUMEN

The transcriptional machinery is thought to dissociate from DNA during replication. Certain proteins, termed epigenetic marks, must be transferred from parent to daughter DNA strands in order to maintain the memory of transcriptional states1,2. These proteins are believed to re-initiate rebuilding of chromatin structure, which ultimately recruits RNA polymerase II (Pol II) to the newly replicated daughter strands. It is believed that Pol II is recruited back to active genes only after chromatin is rebuilt3,4. However, there is little experimental evidence addressing the central questions of when and how Pol II is recruited back to the daughter strands and resumes transcription. Here we show that immediately after passage of the replication fork, Pol II in complex with other general transcription proteins and immature RNA re-associates with active genes on both leading and lagging strands of nascent DNA, and rapidly resumes transcription. This suggests that the transcriptionally active Pol II complex is retained in close proximity to DNA, with a Pol II-PCNA interaction potentially underlying this retention. These findings indicate that the Pol II machinery may not require epigenetic marks to be recruited to the newly synthesized DNA during the transition from DNA replication to resumption of transcription.


Asunto(s)
Cromatina , Replicación del ADN , ADN , Genes , ARN Polimerasa II , Transcripción Genética , Cromatina/genética , ADN/biosíntesis , ADN/genética , ADN/metabolismo , ADN Polimerasa II/metabolismo , Epigénesis Genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , ARN Polimerasa II/metabolismo , Factores Generales de Transcripción/metabolismo , ARN/genética , ARN/metabolismo
8.
Nature ; 614(7949): 767-773, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36755096

RESUMEN

Cancers arise through the accumulation of genetic and epigenetic alterations that enable cells to evade telomere-based proliferative barriers and achieve immortality. One such barrier is replicative crisis-an autophagy-dependent program that eliminates checkpoint-deficient cells with unstable telomeres and other cancer-relevant chromosomal aberrations1,2. However, little is known about the molecular events that regulate the onset of this important tumour-suppressive barrier. Here we identified the innate immune sensor Z-DNA binding protein 1 (ZBP1) as a regulator of the crisis program. A crisis-associated isoform of ZBP1 is induced by the cGAS-STING DNA-sensing pathway, but reaches full activation only when associated with telomeric-repeat-containing RNA (TERRA) transcripts that are synthesized from dysfunctional telomeres. TERRA-bound ZBP1 oligomerizes into filaments on the outer mitochondrial membrane of a subset of mitochondria, where it activates the innate immune adapter protein mitochondrial antiviral-signalling protein (MAVS). We propose that these oligomerization properties of ZBP1 serve as a signal amplification mechanism, where few TERRA-ZBP1 interactions are sufficient to launch a detrimental MAVS-dependent interferon response. Our study reveals a mechanism for telomere-mediated tumour suppression, whereby dysfunctional telomeres activate innate immune responses through mitochondrial TERRA-ZBP1 complexes to eliminate cells destined for neoplastic transformation.


Asunto(s)
Replicación del ADN , Mitocondrias , Transducción de Señal , Telómero , Humanos , ADN/biosíntesis , ADN/genética , ADN/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Neoplasias/genética , Neoplasias/patología , ARN Largo no Codificante/biosíntesis , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Telómero/genética , Telómero/metabolismo , Interferones , Inmunidad Innata , Autofagia
9.
J Biol Chem ; 299(3): 102938, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36702254

RESUMEN

DNA polymerases catalyze DNA synthesis with high efficiency, which is essential for all life. Extensive kinetic and structural efforts have been executed in exploring mechanisms of DNA polymerases, surrounding their kinetic pathway, catalytic mechanisms, and factors that dictate polymerase fidelity. Recent time-resolved crystallography studies on DNA polymerase η (Pol η) and ß have revealed essential transient events during the DNA synthesis reaction, such as mechanisms of primer deprotonation, separated roles of the three metal ions, and conformational changes that disfavor incorporation of the incorrect substrate. DNA-embedded ribonucleotides (rNs) are the most common lesion on DNA and a major threat to genome integrity. While kinetics of rN incorporation has been explored and structural studies have revealed that DNA polymerases have a steric gate that destabilizes ribonucleotide triphosphate binding, the mechanism of extension upon rN addition remains poorly characterized. Using steady-state kinetics, static and time-resolved X-ray crystallography with Pol η as a model system, we showed that the extra hydroxyl group on the primer terminus does alter the dynamics of the polymerase active site as well as the catalysis and fidelity of DNA synthesis. During rN extension, Pol η error incorporation efficiency increases significantly across different sequence contexts. Finally, our systematic structural studies suggest that the rN at the primer end improves primer alignment and reduces barriers in C2'-endo to C3'-endo sugar conformational change. Overall, our work provides further mechanistic insights into the effects of rN incorporation on DNA synthesis.


Asunto(s)
Replicación del ADN , ADN Polimerasa Dirigida por ADN , Ribonucleótidos , Dominio Catalítico , ADN/biosíntesis , ADN/metabolismo , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/metabolismo , Cinética , Ribonucleótidos/metabolismo , Conformación Proteica , Humanos , ADN Polimerasa theta
10.
Nature ; 608(7921): 217-225, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35896746

RESUMEN

Biological processes depend on the differential expression of genes over time, but methods to make physical recordings of these processes are limited. Here we report a molecular system for making time-ordered recordings of transcriptional events into living genomes. We do this through engineered RNA barcodes, based on prokaryotic retrons1, that are reverse transcribed into DNA and integrated into the genome using the CRISPR-Cas system2. The unidirectional integration of barcodes by CRISPR integrases enables reconstruction of transcriptional event timing based on a physical record through simple, logical rules rather than relying on pretrained classifiers or post hoc inferential methods. For disambiguation in the field, we will refer to this system as a Retro-Cascorder.


Asunto(s)
Sistemas CRISPR-Cas , ADN , Edición Génica , Expresión Génica , Almacenamiento y Recuperación de la Información , ARN , Transcripción Reversa , Sistemas CRISPR-Cas/genética , ADN/biosíntesis , ADN/genética , Edición Génica/métodos , Genoma/genética , Almacenamiento y Recuperación de la Información/métodos , Integrasas/metabolismo , Células Procariotas/metabolismo , ARN/genética , Factores de Tiempo
11.
Nature ; 606(7912): 204-210, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35585232

RESUMEN

Chromosome replication is performed by a complex and intricate ensemble of proteins termed the replisome, where the DNA polymerases Polδ and Polε, DNA polymerase α-primase (Polα) and accessory proteins including AND-1, CLASPIN and TIMELESS-TIPIN (respectively known as Ctf4, Mrc1 and Tof1-Csm3 in Saccharomyces cerevisiae) are organized around the CDC45-MCM-GINS (CMG) replicative helicase1-7. Because a functional human replisome has not been reconstituted from purified proteins, how these factors contribute to human DNA replication and whether additional proteins are required for optimal DNA synthesis are poorly understood. Here we report the biochemical reconstitution of human replisomes that perform fast and efficient DNA replication using 11 purified human replication factors made from 43 polypeptides. Polε, but not Polδ, is crucial for optimal leading-strand synthesis. Unexpectedly, Polε-mediated leading-strand replication is highly dependent on the sliding-clamp processivity factor PCNA and the alternative clamp loader complex CTF18-RFC. We show how CLASPIN and TIMELESS-TIPIN contribute to replisome progression and demonstrate that, in contrast to the budding yeast replisome8, AND-1 directly augments leading-strand replication. Moreover, although AND-1 binds to Polα9,10, the interaction is dispensable for lagging-strand replication, indicating that Polα is functionally recruited via an AND-1-independent mechanism for priming in the human replisome. Collectively, our work reveals how the human replisome achieves fast and efficient leading-strand and lagging-strand DNA replication, and provides a powerful system for future studies of the human replisome and its interactions with other DNA metabolic processes.


Asunto(s)
Replicación del ADN , ADN Polimerasa Dirigida por ADN , Complejos Multienzimáticos , ADN/biosíntesis , ADN Helicasas/aislamiento & purificación , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/aislamiento & purificación , Proteínas de Unión al ADN/metabolismo , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/aislamiento & purificación , Humanos , Complejos Multienzimáticos/química , Complejos Multienzimáticos/aislamiento & purificación , Factores de Tiempo
12.
J Mol Histol ; 53(2): 285-296, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35286539

RESUMEN

Osteoarthritis (OA) is a slow-progressing degenerative joint disease mainly characterized by progressive cartilage loss and subchondral bone remodeling. Osteopontin (OPN) is a matrix extracellular glyco-phosphoprotein capable of regulating the expression levels of multiple factors linked with OA pathogenesis. This study explores the upstream regulatory molecular mechanism of OPN on proliferation and apoptosis of human chondrocytes in OA. Chondrocytes were isolated from OA cartilage and identified by toluidine blue staining and immunofluorescent staining of type II collagen. An MTT assay was used for cell viability, and a BrdU assay was applied for DNA synthesis. Cell apoptosis was detected by a flow cytometry assay. A lncRNA MIAT/miR-181a-5p/OPN axis regulating OA chondrocyte proliferation and apoptosis were identified. miR-181a-5p directly targeted OPN and inhibited OPN expression in OA chondrocytes. miR-181a-5p overexpression inhibited OA chondrocyte viability, suppressed DNA synthesis, and promoted apoptosis. OPN overexpression exerted opposite effects on OA chondrocytes and significantly attenuated the roles of miR-181a-5p overexpression in OA chondrocytes. A total of six long non-coding RNAs (lncRNAs) were predicted to target miR-181a-5p, and MIAT was the most up-regulated in OA cartilage tissues among the six lncRNAs. Through direct targeting, MIAT inhibited miR-181a-5p expression. MIAT silencing inhibited cell viability, suppressed DNA synthesis, and promoted cell apoptosis. Moreover, miR-181a-5p inhibition partially reversed the effects of MIAT silencing on OA chondrocytes. The lncRNA MIAT/miR-181a-5p/OPN axis could modulate OA chondrocyte proliferation and apoptosis. The comprehensive function of this axis on OA requires further in vivo and clinical investigations.


Asunto(s)
Condrocitos , MicroARNs , Osteoartritis , Osteopontina , ARN Largo no Codificante , Apoptosis/genética , Proliferación Celular/genética , Condrocitos/citología , ADN/biosíntesis , Humanos , MicroARNs/metabolismo , Osteoartritis/patología , Osteopontina/genética , Osteopontina/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
14.
Parasit Vectors ; 15(1): 2, 2022 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-34980219

RESUMEN

BACKGROUND: Odorant-binding proteins (OBPs) play important roles in many physiological processes of mosquitoes. Previous high-throughput sequencing studies have revealed that some OBPs of Culex quinquefasciatus might be involved in the development of resistance to insecticides. METHODS: Based on the results of sequencing analyses, the OBP28 gene was selected for evaluation in this study. Three laboratory strains of Cx. quinquefasciatus [susceptible strain (SS), deltamethrin-resistant strain 1 (HN) and deltamethrin-resistant strain 2 (RR)] were first examined by using the Centers for Disease Control and Prevention bottle bioassay, after which the expression level of the OBP28 gene in the susceptible and deltamethrin-resistant strains was determined by real-time quantitative polymerase chain reaction. The OBP28 gene in deltamethrin-resistant strain RR was silenced using RNA interference technology. The expression level of OBP28 and the resistance level were tested in the silenced strain and control strain after microinjection of double-stranded RNA for a 48-h interference period. Four field-collected strains (henceforth 'field strains') of Cx. quinquefasciatus were also examined for their resistance to deltamethrin and levels of OBP28 expression. Finally, a correlation analysis between deltamethrin resistance and gene expression was carried out for all seven strains, i.e. the four field strains and the three laboratory strains. RESULTS: In the bioassay, the mortality of SS, HN and RR was 100%, 21.33% and 1.67%, respectively. The relative expression levels of OBP28 in strains HN and RR were 6.30- and 6.86-fold higher, respectively, than that of strain SS. After silencing of the OBP28 gene, the mortality of strain RR was 72.20% and that of the control strain 26.32%. The mortality of strain RR increased significantly after interference compared to that of the control strain. There was a negative correlation between OBP28 gene expression and mortality in adult mosquitoes after exposure to deltamethrin. CONCLUSIONS: To our knowledge, this study shows for the first time a correlation between the expression of a gene coding for OBP and insecticide resistance in mosquitoes. The potential resistance mechanism that was elucidated provides a new target gene for the surveillance of resistance in mosquitoes.


Asunto(s)
Culex/metabolismo , Resistencia a los Insecticidas/fisiología , Insecticidas/metabolismo , Nitrilos/metabolismo , Piretrinas/metabolismo , Receptores Odorantes/metabolismo , Animales , Bioensayo , Culex/clasificación , ADN/biosíntesis , ADN/química , Femenino , Dosificación Letal Mediana , ARN/genética , ARN/aislamiento & purificación , Interferencia de ARN/fisiología , ARN Bicatenario/biosíntesis , ARN Bicatenario/farmacología
15.
J Biol Chem ; 298(2): 101506, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34929163

RESUMEN

DNA polymerase eta (Polη) is a unique translesion DNA synthesis (TLS) enzyme required for the error-free bypass of ultraviolet ray (UV)-induced cyclobutane pyrimidine dimers in DNA. Therefore, its deficiency confers cellular sensitivity to UV radiation and an increased rate of UV-induced mutagenesis. Polη possesses a ubiquitin-binding zinc finger (ubz) domain and a PCNA-interacting-protein (pip) motif in the carboxy-terminal region. The role of the Polη pip motif in PCNA interaction required for DNA polymerase recruitment to the stalled replication fork has been demonstrated in earlier studies; however, the function of the ubz domain remains divisive. As per the current notion, the ubz domain of Polη binds to the ubiquitin moiety of the ubiquitinated PCNA, but such interaction is found to be nonessential for Polη's function. In this study, through amino acid sequence alignments, we identify three classes of Polη among different species based on the presence or absence of pip motif or ubz domain and using comprehensive mutational analyses, we show that the ubz domain of Polη, which intrinsically lacks the pip motif directly binds to the interdomain connecting loop (IDCL) of PCNA and regulates Polη's TLS activity. We further propose two distinct modes of PCNA interaction mediated either by pip motif or ubz domain in various Polη homologs. When the pip motif or ubz domain of a given Polη binds to the IDCL of PCNA, such interaction becomes essential, whereas the binding of ubz domain to PCNA through ubiquitin is dispensable for Polη's function.


Asunto(s)
Replicación del ADN , ADN Polimerasa Dirigida por ADN , ADN , ADN/biosíntesis , ADN/metabolismo , Daño del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Ubiquitina/metabolismo
16.
J Mol Biol ; 434(2): 167410, 2022 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-34929202

RESUMEN

DNA polymerases maintain genomic integrity by copying DNA with high fidelity, part of which relies on the polymerase fingers opening-closing transition, a series of conformational changes during the DNA synthesis reaction cycle. Fingers opening and closing has been challenging to study, mainly due to the need to synchronise molecular ensembles. We previously studied fingers opening-closing on single polymerase-DNA complexes using single-molecule FRET; however, our work was limited to pre-chemistry reaction steps. Here, we advance our analysis to extensible substrates, and observe DNA polymerase (Pol) conformational changes across the entire DNA polymerisation reaction in real-time, gaining direct access to an elusive post-chemistry step rate-limiting for DNA synthesis. Our results showed that Pol adopts the fingers-closed conformation during polymerisation, and that the post-chemistry rate-limiting step occurs in the fingers-closed conformation. We found that fingers-opening in the Pol-DNA binary complex in the absence of polymerisation is slow (∼5.3 s-1), and comparable to the rate of fingers-opening after polymerisation (3.4 s-1); this indicates that the fingers-opening step itself could be largely responsible for the slow post-chemistry step, with the residual rate potentially accounted for by pyrophosphase release. We also observed that DNA chain-termination of the 3' end of the primer increases substantially the rate of fingers-opening in the Pol-DNA binary complex (5.3 â†’ 29 s-1), demonstrating that the 3'-OH residue is important for the kinetics of fingers conformational changes. Our observations offer mechanistic insight and tools to offer mechanistic insight for all nucleic acid polymerases.


Asunto(s)
Replicación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , ADN/biosíntesis , Cristalografía por Rayos X , Escherichia coli , Cinética , Modelos Moleculares , Nucleótidos , Conformación Proteica
17.
Dev Biol ; 482: 67-81, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34896367

RESUMEN

Cell fate changes during development, differentiation, and reprogramming are largely controlled at the transcription level. The DNA-binding transcription factors (TFs) often act in a combinatorial fashion to alter chromatin states and drive cell type-specific gene expression. Recent advances in fluorescent microscopy technologies have enabled direct visualization of biomolecules involved in the process of transcription and its regulatory events at the single-molecule level in living cells. Remarkably, imaging and tracking individual TF molecules at high temporal and spatial resolution revealed that they are highly dynamic in searching and binding cognate targets, rather than static and binding constantly. In combination with investigation using techniques from biochemistry, structure biology, genetics, and genomics, a more well-rounded view of transcription regulation is emerging. In this review, we briefly cover the technical aspects of live-cell single-molecule imaging and focus on the biological relevance and interpretation of the single-molecule dynamic features of transcription regulatory events observed in the native chromatin environment of living eukaryotic cells. We also discuss how these dynamic features might shed light on mechanistic understanding of transcription regulation.


Asunto(s)
Cromatina/metabolismo , Regulación de la Expresión Génica/genética , Factores de Transcripción/metabolismo , Transcripción Genética/genética , Animales , ADN/biosíntesis , Imagen Individual de Molécula , Análisis de la Célula Individual
18.
J Gen Virol ; 102(12)2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34882533

RESUMEN

The shortcomings of current anti-human cytomegalovirus (HCMV) drugs has stimulated a search for anti-HCMV compounds with novel targets. We screened collections of bioactive compounds and identified a range of compounds with the potential to inhibit HCMV replication. Of these compounds, we selected bisbenzimide compound RO-90-7501 for further study. We generated analogues of RO-90-7501 and found that one compound, MRT00210423, had increased anti-HCMV activity compared to RO-90-7501. Using a combination of compound analogues, microscopy and biochemical assays we found RO-90-7501 and MRT00210423 interacted with DNA. In single molecule microscopy experiments we found RO-90-7501, but not MRT00210423, was able to compact DNA, suggesting that compaction of DNA was non-obligatory for anti-HCMV effects. Using bioinformatics analysis, we found that there were many putative bisbenzimide binding sites in the HCMV DNA genome. However, using western blotting, quantitative PCR and electron microscopy, we found that at a concentration able to inhibit HCMV replication our compounds had little or no effect on production of certain HCMV proteins or DNA synthesis, but did have a notable inhibitory effect on HCMV capsid production. We reasoned that these effects may have involved binding of our compounds to the HCMV genome and/or host cell chromatin. Therefore, our data expand our understanding of compounds with anti-HCMV activity and suggest targeting of DNA with bisbenzimide compounds may be a useful anti-HCMV strategy.


Asunto(s)
Antivirales/farmacología , Bisbenzimidazol/farmacología , Citomegalovirus/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Antivirales/química , Sitios de Unión , Bisbenzimidazol/química , Cápside/metabolismo , Línea Celular , Citomegalovirus/fisiología , ADN/biosíntesis , ADN/química , Replicación del ADN/efectos de los fármacos , Humanos , Estructura Molecular , Carga Viral/efectos de los fármacos
19.
Int J Mol Sci ; 22(19)2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34638525

RESUMEN

Vibrio cholerae represents a constant threat to public health, causing widespread infections, especially in developing countries with a significant number of fatalities and serious complications every year. The standard treatment by oral rehydration does not eliminate the source of infection, while increasing antibiotic resistance among pathogenic V. cholerae strains makes the therapy difficult. Thus, we assessed the antibacterial potential of plant-derived phytoncides, isothiocyanates (ITC), against V. cholerae O365 strain. Sulforaphane (SFN) and 2-phenethyl isothiocyanate (PEITC) ability to inhibit bacterial growth was assessed. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values indicate that these compounds possess antibacterial activity and are also effective against cells growing in a biofilm. Tested ITC caused accumulation of stringent response alarmone, ppGpp, which indicates induction of the global stress response. It was accompanied by bacterial cytoplasm shrinkage, the inhibition of the DNA, and RNA synthesis as well as downregulation of the expression of virulence factors. Most importantly, ITC reduced the toxicity of V. cholerae in the in vitro assays (against Vero and HeLa cells) and in vivo, using Galleria mellonella larvae as an infection model. In conclusion, our data indicate that ITCs might be considered promising antibacterial agents in V. cholerae infections.


Asunto(s)
Antibacterianos/farmacología , Cólera/dietoterapia , Isotiocianatos/farmacología , Mariposas Nocturnas/microbiología , Sulfóxidos/farmacología , Vibrio cholerae/efectos de los fármacos , Animales , Biopelículas/efectos de los fármacos , Línea Celular , Chlorocebus aethiops , ADN/biosíntesis , Modelos Animales de Enfermedad , Guanosina Tetrafosfato/biosíntesis , Células HeLa , Humanos , Pruebas de Sensibilidad Microbiana , Inhibidores de la Síntesis del Ácido Nucleico/farmacología , ARN/biosíntesis , Células Vero , Vibrio cholerae/patogenicidad , Virulencia/efectos de los fármacos , Factores de Virulencia/biosíntesis
20.
Int J Mol Sci ; 22(19)2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34639098

RESUMEN

Synchronous cell populations are commonly used for the analysis of various aspects of cellular metabolism at specific stages of the cell cycle. Cell synchronization at a chosen cell cycle stage is most frequently achieved by inhibition of specific metabolic pathway(s). In this respect, various protocols have been developed to synchronize cells in particular cell cycle stages. In this review, we provide an overview of the protocols for cell synchronization of mammalian cells based on the inhibition of synthesis of DNA building blocks-deoxynucleotides and/or inhibition of DNA synthesis. The mechanism of action, examples of their use, and advantages and disadvantages are described with the aim of providing a guide for the selection of suitable protocol for different studied situations.


Asunto(s)
Ciclo Celular , División Celular , Replicación del ADN , ADN/biosíntesis , Animales , ADN/antagonistas & inhibidores , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA