Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76.010
Filtrar
1.
Invest Ophthalmol Vis Sci ; 65(5): 22, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38743414

RESUMEN

Purpose: To describe the clinical, electrophysiological and genetic spectrum of inherited retinal diseases associated with variants in the PRPH2 gene. Methods: A total of 241 patients from 168 families across 15 sites in 9 countries with pathogenic or likely pathogenic variants in PRPH2 were included. Records were reviewed for age at symptom onset, visual acuity, full-field ERG, fundus colour photography, fundus autofluorescence (FAF), and SD-OCT. Images were graded into six phenotypes. Statistical analyses were performed to determine genotype-phenotype correlations. Results: The median age at symptom onset was 40 years (range, 4-78 years). FAF phenotypes included normal (5%), butterfly pattern dystrophy, or vitelliform macular dystrophy (11%), central areolar choroidal dystrophy (28%), pseudo-Stargardt pattern dystrophy (41%), and retinitis pigmentosa (25%). Symptom onset was earlier in retinitis pigmentosa as compared with pseudo-Stargardt pattern dystrophy (34 vs 44 years; P = 0.004). The median visual acuity was 0.18 logMAR (interquartile range, 0-0.54 logMAR) and 0.18 logMAR (interquartile range 0-0.42 logMAR) in the right and left eyes, respectively. ERG showed a significantly reduced amplitude across all components (P < 0.001) and a peak time delay in the light-adapted 30-Hz flicker and single-flash b-wave (P < 0.001). Twenty-two variants were novel. The central areolar choroidal dystrophy phenotype was associated with 13 missense variants. The remaining variants showed marked phenotypic variability. Conclusions: We described six distinct FAF phenotypes associated with variants in the PRPH2 gene. One FAF phenotype may have multiple ERG phenotypes, demonstrating a discordance between structure and function. Given the vast spectrum of PRPH2 disease our findings are useful for future clinical trials.


Asunto(s)
Electrorretinografía , Periferinas , Fenotipo , Distrofias Retinianas , Agudeza Visual , Humanos , Periferinas/genética , Persona de Mediana Edad , Adulto , Masculino , Femenino , Adolescente , Distrofias Retinianas/genética , Distrofias Retinianas/fisiopatología , Distrofias Retinianas/diagnóstico , Anciano , Agudeza Visual/fisiología , Niño , Adulto Joven , Preescolar , Tomografía de Coherencia Óptica , Mutación , Angiografía con Fluoresceína , Estudios de Asociación Genética , Estudios Retrospectivos , Análisis Mutacional de ADN , ADN/genética , Linaje
2.
Nat Commun ; 15(1): 4057, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744910

RESUMEN

With just four building blocks, low sequence information density, few functional groups, poor control over folding, and difficulties in forming compact folds, natural DNA and RNA have been disappointing platforms from which to evolve receptors, ligands, and catalysts. Accordingly, synthetic biology has created "artificially expanded genetic information systems" (AEGIS) to add nucleotides, functionality, and information density. With the expected improvements seen in AegisBodies and AegisZymes, the task for synthetic biologists shifts to developing for expanded DNA the same analytical tools available to natural DNA. Here we report one of these, an enzyme-assisted sequencing of expanded genetic alphabet (ESEGA) method to sequence six-letter AEGIS DNA. We show how ESEGA analyses this DNA at single base resolution, and applies it to optimized conditions for six-nucleotide PCR, assessing the fidelity of various DNA polymerases, and extending this to AEGIS components with functional groups. This supports the renewed exploitation of expanded DNA alphabets in biotechnology.


Asunto(s)
ADN , Secuenciación de Nucleótidos de Alto Rendimiento , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , ADN/genética , ADN/metabolismo , Biología Sintética/métodos , ADN Polimerasa Dirigida por ADN/metabolismo , ADN Polimerasa Dirigida por ADN/genética , Reacción en Cadena de la Polimerasa/métodos , Secuencia de Bases , Análisis de Secuencia de ADN/métodos
3.
Nat Methods ; 21(5): 748, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38745075
4.
Proc Natl Acad Sci U S A ; 121(20): e2403871121, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38717857

RESUMEN

DNA base damage is a major source of oncogenic mutations and disruption to gene expression. The stalling of RNA polymerase II (RNAP) at sites of DNA damage and the subsequent triggering of repair processes have major roles in shaping the genome-wide distribution of mutations, clearing barriers to transcription, and minimizing the production of miscoded gene products. Despite its importance for genetic integrity, key mechanistic features of this transcription-coupled repair (TCR) process are controversial or unknown. Here, we exploited a well-powered in vivo mammalian model system to explore the mechanistic properties and parameters of TCR for alkylation damage at fine spatial resolution and with discrimination of the damaged DNA strand. For rigorous interpretation, a generalizable mathematical model of DNA damage and TCR was developed. Fitting experimental data to the model and simulation revealed that RNA polymerases frequently bypass lesions without triggering repair, indicating that small alkylation adducts are unlikely to be an efficient barrier to gene expression. Following a burst of damage, the efficiency of transcription-coupled repair gradually decays through gene bodies with implications for the occurrence and accurate inference of driver mutations in cancer. The reinitation of transcription from the repair site is not a general feature of transcription-coupled repair, and the observed data is consistent with reinitiation never taking place. Collectively, these results reveal how the directional but stochastic activity of TCR shapes the distribution of mutations following DNA damage.


Asunto(s)
Daño del ADN , Reparación del ADN , ARN Polimerasa II , Transcripción Genética , ARN Polimerasa II/metabolismo , ARN Polimerasa II/genética , Animales , Procesos Estocásticos , Ratones , ADN/metabolismo , ADN/genética , Humanos , Alquilación , Mutación , Reparación por Escisión
5.
Methods Cell Biol ; 186: 25-49, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38705603

RESUMEN

One of the earliest applications of flow cytometry was the measurement of DNA content in cells. This method is based on the ability to stain DNA in a stoichiometric manner (i.e., the amount of stain is directly proportional to the amount of DNA within the cell). For more than 40years, a number of studies have consistently demonstrated the utility of DNA flow cytometry as a potential diagnostic and/or prognostic tool in patients with most epithelial tumors, including pre-invasive lesions (such as dysplasia) in the gastrointestinal tract. However, its availability as a clinical test has been limited to few medical centers due to the requirement for fresh tissue in earlier studies and perceived technical demands. However, more recent studies have successfully utilized formalin-fixed paraffin-embedded (FFPE) tissue to generate high-quality DNA content histograms, demonstrating the feasibility of this methodology. This review summarizes step-by-step methods on how to perform DNA flow cytometry using FFPE tissue and analyze DNA content histograms based on the published consensus guidelines in order to assist in the diagnosis and/or risk stratification of many different epithelial tumors, with particular emphasis on dysplasia associated with Barrett's esophagus and inflammatory bowel disease.


Asunto(s)
Citometría de Flujo , Neoplasias Gastrointestinales , Inestabilidad Genómica , Humanos , Citometría de Flujo/métodos , Neoplasias Gastrointestinales/genética , Neoplasias Gastrointestinales/diagnóstico , Neoplasias Gastrointestinales/patología , Inestabilidad Genómica/genética , Lesiones Precancerosas/genética , Lesiones Precancerosas/diagnóstico , Lesiones Precancerosas/patología , Fijación del Tejido/métodos , Adhesión en Parafina/métodos , ADN/genética , ADN/análisis , Tracto Gastrointestinal/patología , Tracto Gastrointestinal/metabolismo , Esófago de Barrett/genética , Esófago de Barrett/patología , Esófago de Barrett/diagnóstico
6.
Hereditas ; 161(1): 16, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38711122
7.
PeerJ ; 12: e17071, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38711623

RESUMEN

Adipose tissue in the human body occurs in various forms with different functions. It is an energy store, a complex endocrine organ, and a source of cells used in medicine. Many molecular analyses require the isolation of nucleic acids, which can cause some difficulties connected with the large amount of lipids in adipocytes. Ribonucleic acid isolation is particularly challenging due to its low stability and easy degradation by ribonucleases. The study aimed to compare and evaluate five RNA and DNA isolation methods from adipose tissue. The tested material was subcutaneous porcine adipose tissue subjected to different homogenization methods and RNA or DNA purification. A mortar and liquid nitrogen or ceramic beads were used for homogenization. The organic extraction (TriPure Reagent), spin columns with silica-membrane (RNeasy Mini Kit or High Pure PCR Template Preparation Kit), and the automatic MagNA Pure system were used for the purification. Five combinations were compared for RNA and DNA isolation. Obtained samples were evaluated for quantity and quality. The methods were compared in terms of yield (according to tissue mass), purity (A260/280 and A260/230), and nucleic acid degradation (RNA Integrity Number, RIN; DNA Integrity Number, DIN). The results were analyzed statistically. The average RNA yield was highest in method I, which used homogenization with ceramic beads and organic extraction. Low RNA concentration didn't allow us to measure degradation for all samples in method III (homogenization with ceramic beads and spin-column purification). The highest RNA quality was achieved with method IV using homogenization in liquid nitrogen and spin column purification, which makes it the most effective for RNA isolation from adipose tissue. Required values of DNA yield, purity, and integrity were achieved only with spin column-based methods (III and IV). The most effective method for DNA isolation from adipose tissue is method III, using spin-columns without additional homogenization.


Asunto(s)
Tejido Adiposo , ADN , ARN , Animales , ARN/aislamiento & purificación , ARN/genética , Porcinos , ADN/aislamiento & purificación , ADN/genética , Tejido Adiposo/metabolismo
8.
ACS Nano ; 18(19): 12401-12411, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38701333

RESUMEN

Accurate identification of single nucleotide variants (SNVs) in key driver genes holds a significant value for disease diagnosis and treatment. Fluorescent probes exhibit tremendous potential in specific, high-resolution, and rapid detection of SNVs. However, additional steps are required in most post-PCR assays to convert double-stranded DNA (dsDNA) products into single-stranded DNA (ssDNA), enabling them to possess hybridization activity to trigger subsequent reactions. This process not only prolongs the complexity of the experiment but also introduces the risk of losing target information. In this study, we proposed two strategies for enriching active double-stranded DNA, involving PCR based on obstructive groups and cleavable units. Building upon this, we explored the impact of modified units on the strand displacement reaction (SDR) and assessed their discriminatory efficacy for mutations. The results showed that detection of low variant allele frequencies (VAF) as low as 0.1% can be achieved. The proposed strategy allowed orthogonal identification of 45 clinical colorectal cancer tissue samples with 100% specificity, and the results were generally consistent with sequencing results. Compared to existing methods for enriching active targets, our approach offers a more diverse set of enrichment strategies, characterized by the advantage of being simple and fast and preserving original information to the maximum extent. The objective of this study is to offer an effective solution for the swift and facile acquisition of active double-stranded DNA. We anticipate that our work will facilitate the practical applications of SDR based on dsDNA.


Asunto(s)
ADN , Polimorfismo de Nucleótido Simple , Polimorfismo de Nucleótido Simple/genética , Humanos , ADN/genética , ADN/química , Neoplasias Colorrectales/genética , Reacción en Cadena de la Polimerasa , Colorantes Fluorescentes/química , ADN de Cadena Simple/genética , ADN de Cadena Simple/química
9.
Proc Natl Acad Sci U S A ; 121(19): e2318438121, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38696464

RESUMEN

Alternative lengthening of telomeres (ALT) is a telomere maintenance mechanism mediated by break-induced replication, evident in approximately 15% of human cancers. A characteristic feature of ALT cancers is the presence of C-circles, circular single-stranded telomeric DNAs composed of C-rich sequences. Despite the fact that extrachromosomal C-rich single-stranded DNAs (ssDNAs), including C-circles, are unique to ALT cells, their generation process remains undefined. Here, we introduce a method to detect single-stranded telomeric DNA, called 4SET (Strand-Specific Southern-blot for Single-stranded Extrachromosomal Telomeres) assay. Utilizing 4SET, we are able to capture C-rich single-stranded DNAs that are near 200 to 1500 nucleotides in size. Both linear C-rich ssDNAs and C-circles are abundant in the fractions of cytoplasm and nucleoplasm, which supports the idea that linear and circular C-rich ssDNAs are generated concurrently. We also found that C-rich ssDNAs originate during Okazaki fragment processing during lagging strand DNA synthesis. The generation of C-rich ssDNA requires CST-PP (CTC1/STN1/TEN1-PRIMASE-Polymerase alpha) complex-mediated priming of the C-strand DNA synthesis and subsequent excessive strand displacement of the C-rich strand mediated by the DNA Polymerase delta and the BLM helicase. Our work proposes a model for the generation of C-rich ssDNAs and C-circles during ALT-mediated telomere elongation.


Asunto(s)
ADN de Cadena Simple , Homeostasis del Telómero , Telómero , Telómero/genética , Telómero/metabolismo , Humanos , ADN de Cadena Simple/metabolismo , ADN de Cadena Simple/genética , Replicación del ADN , ADN/genética , ADN/metabolismo , ADN Circular/genética , ADN Circular/metabolismo , Southern Blotting , ADN Polimerasa III/metabolismo , ADN Polimerasa III/genética
10.
J Mol Biol ; 436(10): 168550, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38575054

RESUMEN

The class 2 CRISPR-Cas9 and CRISPR-Cas12a systems, originally described as adaptive immune systems of bacteria and archaea, have emerged as versatile tools for genome-editing, with applications in biotechnology and medicine. However, significantly less is known about their substrate specificity, but such knowledge may provide instructive insights into their off-target cleavage and previously unrecognized mechanism of action. Here, we document that the Acidaminococcus sp. Cas12a (AsCas12a) binds preferentially, and independently of crRNA, to a suite of branched DNA structures, such as the Holliday junction (HJ), replication fork and D-loops, compared with single- or double-stranded DNA, and promotes their degradation. Further, our study revealed that AsCas12a binds to the HJ, specifically at the crossover region, protects it from DNase I cleavage and renders a pair of thymine residues in the HJ homologous core hypersensitive to KMnO4 oxidation, suggesting DNA melting and/or distortion. Notably, these structural changes enabled AsCas12a to resolve HJ into nonligatable intermediates, and subsequently their complete degradation. We further demonstrate that crRNA impedes HJ cleavage by AsCas12a, and that of Lachnospiraceae bacterium Cas12a, without affecting their DNA-binding ability. We identified a separation-of-function variant, which uncouples DNA-binding and DNA cleavage activities of AsCas12a. Importantly, we found robust evidence that AsCas12a endonuclease also has 3'-to-5' and 5'-to-3' exonuclease activity, and that these two activities synergistically promote degradation of DNA, yielding di- and mononucleotides. Collectively, this study significantly advances knowledge about the substrate specificity of AsCas12a and provides important insights into the degradation of different types of DNA substrates.


Asunto(s)
Acidaminococcus , Proteínas Asociadas a CRISPR , Sistemas CRISPR-Cas , Especificidad por Sustrato , Proteínas Asociadas a CRISPR/metabolismo , Proteínas Asociadas a CRISPR/genética , Proteínas Asociadas a CRISPR/química , Acidaminococcus/enzimología , Acidaminococcus/genética , Endodesoxirribonucleasas/metabolismo , Endodesoxirribonucleasas/química , Endodesoxirribonucleasas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Exonucleasas/metabolismo , Exonucleasas/genética , ADN Cruciforme/metabolismo , ADN Cruciforme/genética , ADN/metabolismo , ADN/genética
11.
Analyst ; 149(10): 3026-3033, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38618891

RESUMEN

Alkaline phosphatase (ALP) is a class of hydrolase that catalyzes the dephosphorylation of phosphorylated species in biological tissues, playing an important role in many physiological and pathological processes. Sensitive imaging of ALP activity in living cells is contributory to the research on these processes. Herein, we propose an acid-responsive DNA hydrogel to deliver a cascaded enzymatic nucleic acid amplification system into cells for the sensitive imaging of intracellular ALP activity. The DNA hydrogel is formed by two kinds of Y-shaped DNA monomers and acid-responsive cytosine-rich linkers. The amplification system contained Bst DNA polymerase (Bst DP), Nt.BbvCI endonuclease, a Recognition Probe (RP, containing a DNAzyme sequence, a Nt.BbvCI recognition sequence, and a phosphate group at the 3'-end), and a Signal Probe (SP, containing a cleavage site for DNAzyme, Cy3 and BHQ2 at the two ends). The amplification system was trapped into the DNA hydrogel and taken up by cells, and the cytosine-rich linkers folded into a quadruplex i-motif in the acidic lysosomes, leading to the collapse of the hydrogel and releasing the amplification system. The phosphate groups on RPs were recognized and removed by the target ALP, triggering a polymerization-nicking cycle to produce large numbers of DNAzyme sequences, which then cleaved multiple SPs, restoring Cy3 fluorescence to indicate the ALP activity. This strategy achieved sensitive imaging of ALP in living HeLa, MCF-7, and NCM460 cells, and realized the sensitive detection of ALP in vitro with a detection limit of 2.0 × 10-5 U mL-1, providing a potential tool for the research of ALP-related physiological and pathological processes.


Asunto(s)
Fosfatasa Alcalina , ADN Catalítico , ADN , Técnicas de Amplificación de Ácido Nucleico , Humanos , Fosfatasa Alcalina/metabolismo , Fosfatasa Alcalina/química , Técnicas de Amplificación de Ácido Nucleico/métodos , ADN/química , ADN/genética , ADN Catalítico/química , ADN Catalítico/metabolismo , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/metabolismo , Límite de Detección , Concentración de Iones de Hidrógeno , Hidrogeles/química , Células HeLa
12.
Genes (Basel) ; 15(4)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38674373

RESUMEN

The polymerase chain reaction (PCR) has played a fundamental role in our understanding of the world, and has applications across a broad range of disciplines. The introduction of PCR into forensic science marked the beginning of a new era of DNA profiling. This era has pushed PCR to its limits and allowed genetic data to be generated from trace DNA. Trace samples contain very small amounts of degraded DNA associated with inhibitory compounds and ions. Despite significant development in the PCR process since it was first introduced, the challenges of profiling inhibited and degraded samples remain. This review examines the evolution of the PCR from its inception in the 1980s, through to its current application in forensic science. The driving factors behind PCR evolution for DNA profiling are discussed along with a critical comparison of cycling conditions used in commercial PCR kits. Newer PCR methods that are currently used in forensic practice and beyond are examined, and possible future directions of PCR for DNA profiling are evaluated.


Asunto(s)
Dermatoglifia del ADN , Ciencias Forenses , Reacción en Cadena de la Polimerasa , Humanos , Reacción en Cadena de la Polimerasa/métodos , Ciencias Forenses/métodos , Dermatoglifia del ADN/métodos , ADN/genética , ADN/análisis , Genética Forense/métodos
13.
Nucleic Acids Res ; 52(8): 4137-4150, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38572749

RESUMEN

DNA motifs are crucial patterns in gene regulation. DNA-binding proteins (DBPs), including transcription factors, can bind to specific DNA motifs to regulate gene expression and other cellular activities. Past studies suggest that DNA shape features could be subtly involved in DNA-DBP interactions. Therefore, the shape motif annotations based on intrinsic DNA topology can deepen the understanding of DNA-DBP binding. Nevertheless, high-throughput tools for DNA shape motif discovery that incorporate multiple features altogether remain insufficient. To address it, we propose a series of methods to discover non-redundant DNA shape motifs with the generalization to multiple motifs in multiple shape features. Specifically, an existing Gibbs sampling method is generalized to multiple DNA motif discovery with multiple shape features. Meanwhile, an expectation-maximization (EM) method and a hybrid method coupling EM with Gibbs sampling are proposed and developed with promising performance, convergence capability, and efficiency. The discovered DNA shape motif instances reveal insights into low-signal ChIP-seq peak summits, complementing the existing sequence motif discovery works. Additionally, our modelling captures the potential interplays across multiple DNA shape features. We provide a valuable platform of tools for DNA shape motif discovery. An R package is built for open accessibility and long-lasting impact: https://zenodo.org/doi/10.5281/zenodo.10558980.


Asunto(s)
ADN , Motivos de Nucleótidos , ADN/química , ADN/genética , ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Algoritmos , Conformación de Ácido Nucleico , Secuenciación de Inmunoprecipitación de Cromatina/métodos , Sitios de Unión , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/química , Humanos , Unión Proteica
14.
Mol Cell ; 84(8): 1398-1400, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38640891

RESUMEN

The DNA topological challenges generated by cellular manipulation of extremely long DNA fibers remain poorly understood. In this issue of Molecular Cell, Hildebrand et al.1 describe how mitotic chromosomes are self entangled and that disentanglement requires TOP2 activity in late mitosis.


Asunto(s)
Cromosomas , ADN-Topoisomerasas de Tipo II , ADN-Topoisomerasas de Tipo II/genética , Cromosomas/genética , ADN/genética , Mitosis/genética
15.
Indian J Ophthalmol ; 72(Suppl 3): S509-S513, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38648460

RESUMEN

PURPOSE: Mutations of G protein-coupled receptor 143 (GPR143) and FERM domain containing 7 (FRMD7) may result in congenital nystagmus (CN) in the first 6 months of life. We aimed to compare the differences in ocular oscillations between patients with these two gene mutations as well as the functional and structural changes in their retinas and visual pathways. METHODS: Medical records were retrospectively reviewed to identify patients of congenital nystagmus with confirmed mutations in either GPR143 or FMRD7 genes from January 2018 to May 2023. The parameters of the ocular oscillations were recorded using Eyelink 1000 Plus. The retinal structure and function were evaluated using optical coherence tomography and multi-focal electroretinography (mERG). The visual pathway and optical nerve projection were evaluated using visual evoked potentials. The next-generation sequencing technique was used to identify the pathogenic variations in the disease-causing genes for CN. RESULTS: Twenty nystagmus patients of GPR143 and 21 patients of FMRD7 who had been confirmed by molecular testing between January 2018 and May 2023 were included. Foveal hypoplasia was detected only in patients with the GPR143 pathogenic variant. mERG examination showed a flat response topography in the GPR143 group compared to the FRMD7 group. VEP showed that bilateral amplitude inconsistency was detected only in the patients with GPR143 gene mutation. The amplitude and frequency of the ocular oscillations were not found to differ between patients with two different genetic mutations. CONCLUSIONS: Although the etiology and molecular mechanisms are completely different between CN patients, they may have similar ocular oscillations. A careful clinical examination and electrophysiological test will be helpful in making a differential diagnosis. Our novel identified variants will further expand the spectrum of the GPR143 and FRMD7 variants.


Asunto(s)
Proteínas del Citoesqueleto , Proteínas de la Membrana , Nistagmo Congénito , Femenino , Humanos , Masculino , Proteínas del Citoesqueleto/genética , ADN/genética , Análisis Mutacional de ADN , Electrorretinografía , Potenciales Evocados Visuales/fisiología , Movimientos Oculares/fisiología , Proteínas del Ojo/genética , Glicoproteínas de Membrana/genética , Proteínas de la Membrana/genética , Mutación , Nistagmo Congénito/genética , Nistagmo Congénito/fisiopatología , Nistagmo Congénito/diagnóstico , Retina/fisiopatología , Estudios Retrospectivos , Tomografía de Coherencia Óptica/métodos
16.
Int J Mol Sci ; 25(8)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38673769

RESUMEN

Base excision repair (BER), which involves the sequential activity of DNA glycosylases, apurinic/apyrimidinic endonucleases, DNA polymerases, and DNA ligases, is one of the enzymatic systems that preserve the integrity of the genome. Normal BER is effective, but due to single-nucleotide polymorphisms (SNPs), the enzymes themselves-whose main function is to identify and eliminate damaged bases-can undergo amino acid changes. One of the enzymes in BER is DNA polymerase ß (Polß), whose function is to fill gaps in DNA. SNPs can significantly affect the catalytic activity of an enzyme by causing an amino acid substitution. In this work, pre-steady-state kinetic analyses and molecular dynamics simulations were used to examine the activity of naturally occurring variants of Polß that have the substitutions L19P and G66R in the dRP-lyase domain. Despite the substantial distance between the dRP-lyase domain and the nucleotidyltransferase active site, it was found that the capacity to form a complex with DNA and with an incoming dNTP is significantly altered by these substitutions. Therefore, the lower activity of the tested polymorphic variants may be associated with a greater number of unrepaired DNA lesions.


Asunto(s)
Sustitución de Aminoácidos , ADN Polimerasa beta , Simulación de Dinámica Molecular , Polimorfismo de Nucleótido Simple , ADN Polimerasa beta/química , ADN Polimerasa beta/genética , ADN Polimerasa beta/metabolismo , Humanos , Reparación del ADN , Cinética , Dominio Catalítico , ADN/metabolismo , ADN/genética , ADN/química , Dominios Proteicos
17.
Sci Adv ; 10(15): eadk8791, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38608016

RESUMEN

Reverse transcriptase-Cas1 (RT-Cas1) fusion proteins found in some CRISPR systems enable spacer acquisition from both RNA and DNA, but the mechanism of RNA spacer acquisition has remained unclear. Here, we found that Marinomonas mediterranea RT-Cas1/Cas2 adds short 3'-DNA (dN) tails to RNA protospacers, enabling their direct integration into CRISPR arrays as 3'-dN-RNAs or 3'-dN-RNA/cDNA duplexes at rates comparable to similarly configured DNAs. Reverse transcription of RNA protospacers is initiated at 3' proximal sites by multiple mechanisms, including recently described de novo initiation, protein priming with any dNTP, and use of short exogenous or synthesized DNA oligomer primers, enabling synthesis of near full-length cDNAs of diverse RNAs without fixed sequence requirements. The integration of 3'-dN-RNAs or single-stranded DNAs (ssDNAs) is favored over duplexes at higher protospacer concentrations, potentially relevant to spacer acquisition from abundant pathogen RNAs or ssDNA fragments generated by phage defense nucleases. Our findings reveal mechanisms for site-specifically integrating RNA into DNA genomes with potential biotechnological applications.


Asunto(s)
ADN Polimerasa Dirigida por ARN , ARN , ADN Complementario/genética , ARN/genética , ADN Polimerasa Dirigida por ARN/genética , ADN/genética , ADN de Cadena Simple
18.
Biosens Bioelectron ; 256: 116278, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38608497

RESUMEN

The DNA-based logic circuit, constructed to mimic biochemical reaction networks, is highly significant in detecting biomarkers at the molecular level. The differences in the expression levels of microRNAs (miRNAs) within different types of cells provide hope for distinguishing cell subtypes. However, reliance on a single miRNA often leads to unreliable results. Herein, we constructed an enzyme-triggered cascade logic circuit based on the AND gate, which is capable of generating corresponding fluorescence signals in the presence of target miRNAs. The introduction of apurinic/apyrimidinic (AP) sites effectively reduces the likelihood of false signal generation. Amplification of the fluorescence signal relies on the catalytic hairpin assembly and the repetitive reuse of the multicomponent nucleic acid enzyme (MNAzyme). We demonstrated that the logic circuit can not only distinguish cancer cells from normal cells but also identify different types of cancer cells. The programmability of the logic circuits and the simplicity of the assay system allow us to modify the functional sequences to recognize different types of biomarkers, thus providing a reference for the identification of various cell subtypes.


Asunto(s)
Técnicas Biosensibles , ADN , MicroARNs , Humanos , Técnicas Biosensibles/métodos , MicroARNs/genética , ADN/genética , ADN/química , Neoplasias/genética , Computadores Moleculares , Línea Celular Tumoral , Biomarcadores de Tumor/genética , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética
19.
Commun Biol ; 7(1): 491, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654143

RESUMEN

Ribonucleotides represent the most common non-canonical nucleotides found in eukaryotic genomes. The sources of chromosome-embedded ribonucleotides and the mechanisms by which unrepaired rNMPs trigger genome instability and human pathologies are not fully understood. The available sequencing technologies only allow to indirectly deduce the genomic location of rNMPs. Oxford Nanopore Technologies (ONT) may overcome such limitation, revealing the sites of rNMPs incorporation in genomic DNA directly from raw sequencing signals. We synthesized two types of DNA molecules containing rNMPs at known or random positions and we developed data analysis pipelines for DNA-embedded ribonucleotides detection by ONT. We report that ONT can identify all four ribonucleotides incorporated in DNA by capturing rNMPs-specific alterations in nucleotide alignment features, current intensity, and dwell time. We propose that ONT may be successfully employed to directly map rNMPs in genomic DNA and we suggest a strategy to build an ad hoc basecaller to analyse native genomes.


Asunto(s)
ADN , Secuenciación de Nanoporos , Ribonucleótidos , Secuenciación de Nanoporos/métodos , Ribonucleótidos/genética , ADN/genética , Humanos , Análisis de Secuencia de ADN/métodos , Nanoporos
20.
Elife ; 132024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38656237

RESUMEN

The organization of nucleosomes into chromatin and their accessibility are shaped by local DNA mechanics. Conversely, nucleosome positions shape genetic variations, which may originate from mismatches during replication and chemical modification of DNA. To investigate how DNA mismatches affect the mechanical stability and the exposure of nucleosomal DNA, we used an optical trap combined with single-molecule FRET and a single-molecule FRET cyclization assay. We found that a single base-pair C-C mismatch enhances DNA bendability and nucleosome mechanical stability for the 601-nucleosome positioning sequence. An increase in force required for DNA unwrapping from the histone core is observed for single base-pair C-C mismatches placed at three tested positions: at the inner turn, at the outer turn, or at the junction of the inner and outer turn of the nucleosome. The results support a model where nucleosomal DNA accessibility is reduced by mismatches, potentially explaining the preferred accumulation of single-nucleotide substitutions in the nucleosome core and serving as the source of genetic variation during evolution and cancer progression. Mechanical stability of an intact nucleosome, that is mismatch-free, is also dependent on the species as we find that yeast nucleosomes are mechanically less stable and more symmetrical in the outer turn unwrapping compared to Xenopus nucleosomes.


Asunto(s)
Disparidad de Par Base , ADN , Nucleosomas , Nucleosomas/metabolismo , Nucleosomas/química , Nucleosomas/genética , ADN/química , ADN/metabolismo , ADN/genética , Disparidad de Par Base/genética , Animales , Transferencia Resonante de Energía de Fluorescencia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA