Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Physiol Plant ; 147(2): 218-33, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22651245

RESUMEN

The nature and importance of the DNA repair system in the chloroplasts of higher plants under oxidative stress or UV radiation-induced genotoxicity was investigated via gain-of-functional approaches exploiting bacterial RecAs. For this purpose, transgenic tobacco (Nicotiana tabacum) plants and cell suspensions overexpressing Escherichia coli or Pseudomonas aeruginosa RecA fused to a chloroplast-targeting transit peptide were first produced. The transgenic tobacco plants maintained higher amounts of chloroplast DNA compared with wild-type (WT) upon treatments with methyl viologen (MV), a herbicide that generates reactive oxygen species (ROS) in chloroplasts. Consistent with these results, the transgenic tobacco leaves showed less bleaching than WT following MV exposure. Similarly, the MV-treated transgenic Arabidopsis plants overexpressing the chloroplast RecA homologue RECA1 showed weak bleaching, while the recA1 mutant showed opposite results upon MV treatment. In addition, when exposed to UV-C radiation, the dark-grown E. coli RecA-overexpressing transgenic tobacco cell suspensions, but not their WT counterparts, resumed growth and greening after the recovery period under light conditions. Measurements of UV radiation-induced chloroplast DNA damage using DraI assays (Harlow et al. 1994) with the chloroplast rbcL DNA probe and quantitative PCR analyses showed that the transgenic cell suspensions better repaired their UV-C radiation-induced chloroplast DNA lesions compared with WT. Taken all together, it was concluded that RecA-overexpressing transgenic plants are endowed with an increased chloroplast DNA maintenance capacity and enhanced repair activities, and consequently have a higher survival tolerance to genotoxic stresses. These observations are made possible by the functional compatibility of the bacterial RecAs in chloroplasts.


Asunto(s)
Daño del ADN , ADN de Cloroplastos/genética , Nicotiana/genética , Paraquat/farmacología , Rec A Recombinasas/metabolismo , Rayos Ultravioleta , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Reparación del ADN , ADN de Cloroplastos/efectos de los fármacos , ADN de Cloroplastos/efectos de la radiación , Datos de Secuencia Molecular , Plantas Modificadas Genéticamente/efectos de los fármacos , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/efectos de la radiación , Rec A Recombinasas/genética , Alineación de Secuencia , Nicotiana/efectos de los fármacos , Nicotiana/efectos de la radiación
2.
Plant J ; 66(3): 433-42, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21251107

RESUMEN

Plants use sunlight as energy for photosynthesis; however, plant DNA is exposed to the harmful effects of ultraviolet-B (UV-B) radiation (280-320 nm) in the process. UV-B radiation damages nuclear, chloroplast and mitochondrial DNA by the formation of cyclobutane pyrimidine dimers (CPDs), which are the primary UV-B-induced DNA lesions, and are a principal cause of UV-B-induced growth inhibition in plants. Repair of CPDs is therefore essential for plant survival while exposed to UV-B-containing sunlight. Nuclear repair of the UV-B-induced CPDs involves the photoreversal of CPDs, photoreactivation, which is mediated by CPD photolyase that monomerizes the CPDs in DNA by using the energy of near-UV and visible light (300-500 nm). To date, the CPD repair processes in plant chloroplasts and mitochondria remain poorly understood. Here, we report the photoreactivation of CPDs in chloroplast and mitochondrial DNA in rice. Biochemical and subcellular localization analyses using rice strains with different levels of CPD photolyase activity and transgenic rice strains showed that full-length CPD photolyase is encoded by a single gene, not a splice variant, and is expressed and targeted not only to nuclei but also to chloroplasts and mitochondria. The results indicate that rice may have evolved a CPD photolyase that functions in chloroplasts, mitochondria and nuclei, and that contains DNA to protect cells from the harmful effects of UV-B radiation.


Asunto(s)
ADN de Cloroplastos/efectos de la radiación , ADN Mitocondrial/efectos de la radiación , Desoxirribodipirimidina Fotoliasa/metabolismo , Oryza/genética , Hojas de la Planta/efectos de la radiación , Dímeros de Pirimidina/efectos de la radiación , Rayos Ultravioleta , Núcleo Celular/efectos de la radiación , Reparación del ADN , ADN de Plantas/efectos de la radiación , Desoxirribodipirimidina Fotoliasa/análisis , Desoxirribodipirimidina Fotoliasa/efectos de la radiación , Luz , Oryza/efectos de la radiación , Proteínas de Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...