Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
BMC Microbiol ; 23(1): 68, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36918804

RESUMEN

At particular stages during their life cycles, fungi use multiple strategies to form specialized structures to survive unfavorable environmental conditions. These strategies encompass sporulation, as well as cell-wall melanization, multicellular tissue formation or even dimorphism. The resulting structures are not only used to disperse to other environments, but also to survive long periods of time awaiting favorable growth conditions. As a result, these specialized fungal structures are part of the microbial seed bank, which is known to influence the microbial community composition and contribute to the maintenance of diversity. Despite the importance of the microbial seed bank in the environment, methods to study the diversity of fungal structures with improved resistance only target spores dispersing in the air, omitting the high diversity of these structures in terms of morphology and environmental distribution. In this study, we applied a separation method based on cell lysis to enrich lysis-resistant fungal structures (for instance, spores, sclerotia, melanized yeast) to obtain a proxy of the composition of the fungal seed bank. This approach was first evaluated in-vitro in selected species. The results obtained showed that DNA from fungal spores and from yeast was only obtained after the application of the enrichment method, while mycelium was always lysed. After validation, we compared the diversity of the total and lysis-resistant fractions in the polyextreme environment of the Salar de Huasco, a high-altitude athalassohaline wetland in the Chilean Altiplano. Environmental samples were collected from the salt flat and from microbial mats in small surrounding ponds. Both the lake sediments and microbial mats were dominated by Ascomycota and Basidiomycota, however, the diversity and composition of each environment differed at lower taxonomic ranks. Members of the phylum Chytridiomycota were enriched in the lysis-resistant fraction, while members of the phylum Rozellomycota were never detected in this fraction. Moreover, we show that the community composition of the lysis-resistant fraction reflects the diversity of life cycles and survival strategies developed by fungi in the environment. To the best of our knowledge this is the first time that the fungal diversity is explored in the Salar de Huasco. In addition, the method presented here provides a simple and culture independent approach to assess the diversity of fungal lysis-resistant cells in the environment.


Asunto(s)
ADN de Hongos , Hongos , Sedimentos Geológicos , Micobioma , Esporas Fúngicas , Ascomicetos/genética , Ascomicetos/fisiología , Basidiomycota/genética , Basidiomycota/fisiología , Chile , Hongos/genética , Hongos/fisiología , Sedimentos Geológicos/microbiología , Lagos/microbiología , Microbiota/fisiología , Micelio/genética , Micelio/aislamiento & purificación , Micelio/fisiología , Micobioma/fisiología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiología , Esporas Fúngicas/genética , Esporas Fúngicas/aislamiento & purificación , Esporas Fúngicas/fisiología , Humedales , ADN de Hongos/genética , ADN de Hongos/aislamiento & purificación , ADN de Hongos/fisiología
2.
PLoS One ; 12(5): e0177147, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28467467

RESUMEN

Dpb11 is required for the initiation of DNA replication in budding yeast. We found that Dpb11 binds tightly to single-stranded DNA (ssDNA) or branched DNA structures, while its human homolog, TopBP1, binds tightly to branched-DNA structures. We also found that Dpb11 binds stably to CDK-phosphorylated RPA, the eukaryotic ssDNA binding protein, in the presence of branched DNA. A Dpb11 mutant specifically defective for DNA binding did not exhibit tight binding to RPA in the presence of DNA, suggesting that Dpb11-interaction with DNA may promote the recruitment of RPA to melted DNA. We then characterized a mutant of Dpb11 that is specifically defective in DNA binding in budding yeast cells. Expression of dpb11-m1,2,3,5,ΔC results in a substantial decrease in RPA recruitment to origins, suggesting that Dpb11 interaction with DNA may be required for RPA recruitment to origins. Expression of dpb11-m1,2,3,5,ΔC also results in diminished GINS interaction with Mcm2-7 during S phase, while Cdc45 interaction with Mcm2-7 is like wild-type. The reduced GINS interaction with Mcm2-7 may be an indirect consequence of diminished origin melting. We propose that the tight interaction between Dpb11, CDK-phosphorylated RPA, and branched-DNA may be required for the essential function of stabilizing melted origin DNA in vivo. We also propose an alternative model, wherein Dpb11-DNA interaction is required for some other function in DNA replication initiation, such as helicase activation.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Replicación del ADN/fisiología , ADN de Hongos/fisiología , Proteína de Replicación A/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Inmunoprecipitación de Cromatina , Ensayo de Cambio de Movilidad Electroforética , Citometría de Flujo , Inmunoprecipitación , Saccharomyces cerevisiae/metabolismo
3.
Nucleic Acids Res ; 45(11): 6362-6374, 2017 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-28379497

RESUMEN

RNA polymerase II (RNAPII) passes through the nucleosome in a coordinated manner, generating several intermediate nucleosomal states as it breaks and then reforms histone-DNA contacts ahead of and behind it, respectively. Several studies have defined transcription-induced nucleosome intermediates using only RNA Polymerase. However, RNAPII is decorated with elongation factors as it transcribes the genome. One such factor, Spt4/5, becomes an integral component of the elongation complex, making direct contact with the 'jaws' of RNAPII and nucleic acids in the transcription scaffold. We have characterized the effect of incorporating Spt4/5 into the elongation complex on transcription through the 601R nucleosome. Spt4/5 suppressed RNAPII pausing at the major H3/H4-induced arrest point, resulting in downstream re-positioning of RNAPII further into the nucleosome. Using a novel single molecule FRET system, we found that Spt4/5 affected the kinetics of DNA re-wrapping and stabilized a nucleosomal intermediate with partially unwrapped DNA behind RNAPII. Comparison of nucleosomes of different sequence polarities suggest that the strength of the DNA-histone interactions behind RNAPII specifies the Spt4/5 requirement. We propose that Spt4/5 may be important to coordinate the mechanical movement of RNAPII through the nucleosome with co-transcriptional chromatin modifications during transcription, which is affected by the strength of histone-DNA interactions.


Asunto(s)
Proteínas Cromosómicas no Histona/fisiología , Proteínas Nucleares/fisiología , ARN Polimerasa II/genética , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/enzimología , Factores de Elongación Transcripcional/fisiología , ADN de Hongos/fisiología , Regulación Fúngica de la Expresión Génica , Nucleosomas/fisiología , Unión Proteica , ARN Polimerasa II/metabolismo , Saccharomyces cerevisiae/genética , Transcripción Genética
4.
J Cell Biol ; 210(4): 553-64, 2015 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-26283798

RESUMEN

The centromere is the DNA locus that dictates kinetochore formation and is visibly apparent as heterochromatin that bridges sister kinetochores in metaphase. Sister centromeres are compacted and held together by cohesin, condensin, and topoisomerase-mediated entanglements until all sister chromosomes bi-orient along the spindle apparatus. The establishment of tension between sister chromatids is essential for quenching a checkpoint kinase signal generated from kinetochores lacking microtubule attachment or tension. How the centromere chromatin spring is organized and functions as a tensiometer is largely unexplored. We have discovered that centromere chromatin loops generate an extensional/poleward force sufficient to release nucleosomes proximal to the spindle axis. This study describes how the physical consequences of DNA looping directly underlie the biological mechanism for sister centromere separation and the spring-like properties of the centromere in mitosis.


Asunto(s)
Centrómero/fisiología , Mitosis , Saccharomyces cerevisiae/genética , Centrómero/ultraestructura , Cromatina/fisiología , Cromatina/ultraestructura , ADN de Hongos/fisiología , ADN de Hongos/ultraestructura , Microtúbulos/metabolismo , Conformación de Ácido Nucleico , Saccharomyces cerevisiae/citología , Huso Acromático
5.
BMC Res Notes ; 8: 275, 2015 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-26122007

RESUMEN

BACKGROUND: Histone H1, referred to as the linker histone, associates with the nucleosome core particle. While there is indication that the budding yeast version of histone H1 (Hho1) contributes to regulation of chromatin structure and certain chromatin-related processes, such as DNA double-strand break repair, cells lacking Hho1 are healthy and display subtle phenotypes. A recent report has revealed that Hho1 is required for optimal sporulation. The studies described here were conducted to determine whether Hho1 influences meiotic recombination, an event that occurs during sporulation, involves generation and repair of DNA double-strand breaks, and is critical for spore viability. FINDINGS: Through tetrad analysis, cells with or without Hho1 were compared for meiotic reciprocal recombination events within several chromosome XV intervals. Parameters investigated included crossover frequency (genetic map distance) and crossover interference. No significant differences were detected between the two cell types. In agreement with earlier studies, spore viability was not affected by Hho1 absence. CONCLUSION: These data suggest that complete absence of Hho1 from chromatin does not affect reciprocal recombination between homologous chromosomes during meiosis. Therefore, the basal level of Hho1 that remains after its reported depletion early in meiosis is unlikely to be important for regulating recombination. Furthermore, the subsequent accumulation of Hho1 as the haploid products mature does not appear to be crucial for spore viability.


Asunto(s)
ADN de Hongos/fisiología , Histonas/fisiología , Meiosis/fisiología , Recombinación Genética/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/crecimiento & desarrollo , ADN de Hongos/genética , Meiosis/genética , Recombinación Genética/genética , Saccharomyces cerevisiae/genética
6.
Elife ; 3: e02190, 2014 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-24843019

RESUMEN

Pif1 family helicases are conserved from bacteria to humans. Here, we report a novel DNA patrolling activity which may underlie Pif1's diverse functions: a Pif1 monomer preferentially anchors itself to a 3'-tailed DNA junction and periodically reel in the 3' tail with a step size of one nucleotide, extruding a loop. This periodic patrolling activity is used to unfold an intramolecular G-quadruplex (G4) structure on every encounter, and is sufficient to unwind RNA-DNA heteroduplex but not duplex DNA. Instead of leaving after G4 unwinding, allowing it to refold, or going beyond to unwind duplex DNA, Pif1 repeatedly unwinds G4 DNA, keeping it unfolded. Pif1-induced unfolding of G4 occurs in three discrete steps, one strand at a time, and is powerful enough to overcome G4-stabilizing drugs. The periodic patrolling activity may keep Pif1 at its site of in vivo action in displacing telomerase, resolving R-loops, and keeping G4 unfolded during replication, recombination and repair.DOI: http://dx.doi.org/10.7554/eLife.02190.001.


Asunto(s)
ADN Helicasas/fisiología , ADN de Hongos/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/fisiología , ADN Helicasas/química , ADN de Hongos/química , G-Cuádruplex , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química
7.
Elife ; 3: e02854, 2014 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-24843031

RESUMEN

By removing various obstacles from single strands of DNA, an enzyme called Pif1 clears the way for other enzymes that act on DNA.


Asunto(s)
ADN Helicasas/fisiología , ADN de Hongos/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/fisiología
8.
PLoS Biol ; 11(12): e1001750, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24391470

RESUMEN

Morphological development of fungi and their combined production of secondary metabolites are both acting in defence and protection. These processes are mainly coordinated by velvet regulators, which contain a yet functionally and structurally uncharacterized velvet domain. Here we demonstrate that the velvet domain of VosA is a novel DNA-binding motif that specifically recognizes an 11-nucleotide consensus sequence consisting of two motifs in the promoters of key developmental regulatory genes. The crystal structure analysis of the VosA velvet domain revealed an unforeseen structural similarity with the Rel homology domain (RHD) of the mammalian transcription factor NF-κB. Based on this structural similarity several conserved amino acid residues present in all velvet domains have been identified and shown to be essential for the DNA binding ability of VosA. The velvet domain is also involved in dimer formation as seen in the solved crystal structures of the VosA homodimer and the VosA-VelB heterodimer. These findings suggest that defence mechanisms of both fungi and animals might be governed by structurally related DNA-binding transcription factors.


Asunto(s)
Proteínas de Unión al ADN/genética , Regulación Fúngica de la Expresión Génica/fisiología , FN-kappa B/genética , Aspergillus nidulans/genética , Aspergillus nidulans/fisiología , Secuencia de Consenso/genética , Secuencia de Consenso/fisiología , ADN de Hongos/genética , ADN de Hongos/fisiología , Proteínas de Unión al ADN/fisiología , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Regulación Fúngica de la Expresión Génica/genética , Genes Fúngicos/genética , Genes Fúngicos/fisiología , Genes rel/genética , Genes rel/fisiología , FN-kappa B/fisiología
9.
Biochemistry ; 51(30): 5873-5, 2012 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-22794311

RESUMEN

We have recently demonstrated the formation of an atypical histone H2A-H2B dimer-enriched chromatin at the coding sequence of the active gene in the absence of Rad26p in vivo. However, the mechanisms for such a surprising observation remain unknown. Here, using a ChIP assay, we demonstrate that Rad26p promotes the eviction of histone H2A-H2B dimer and prevents the reassociation of the dimer with naked DNA in the wake of elongating RNA polymerase II at the coding sequence of the active GAL1 gene. Thus, the absence of Rad26p leads to the generation of an atypical histone H2A-H2B dimer-enriched chromatin at the active coding sequence in vivo.


Asunto(s)
Adenosina Trifosfatasas/genética , Proteínas Bacterianas/fisiología , Reparación del ADN/genética , Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/fisiología , Factores de Elongación Transcripcional/genética , Proteínas Bacterianas/genética , Cromatina/genética , Cromatina/metabolismo , ADN de Hongos/genética , ADN de Hongos/metabolismo , ADN de Hongos/fisiología , Histonas/antagonistas & inhibidores , Histonas/genética , Multimerización de Proteína , Factores de Transcripción/genética , Factores de Elongación Transcripcional/metabolismo
10.
Mutat Res ; 737(1-2): 34-42, 2012 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-22709919

RESUMEN

The Saccharomyces cerevisiae DNA polymerase epsilon holoenzyme (Pol ɛ HE) is composed of four subunits: Pol2p, Dpb2p, Dpb3p and Dpb4p. The biological functions of Pol2p, the catalytic subunit of Pol ɛ, are subject of active investigation, while the role of the other three, noncatalytic subunits, is not well defined. We showed previously that mutations in Dpb2p, a noncatalytic but essential subunit of Pol ɛ HE, influence the fidelity of DNA replication in yeast cells. The strength of the mutator phenotype due to the different dpb2 alleles was inversely proportional to the strength of protein-protein interactions between Pol2p and the mutated forms of Dpb2p. To understand better the mechanisms of the contribution of Dpb2p to the controlling of the level of spontaneous mutagenesis we undertook here a further genetic analysis of the mutator phenotype observed in dpb2 mutants. We demonstrate that the presence of mutated forms of Dpb2p in the cell not only influences the intrinsic fidelity of Pol ɛ but also facilitates more frequent participation of error-prone DNA polymerase zeta (Pol ζ) in DNA replication. The obtained results suggest that the structural integrity of Pol ɛ HE is a crucial contributor to accurate chromosomal DNA replication and, when compromised, favors participation of error prone DNA Pol ζ in this process.


Asunto(s)
ADN Polimerasa II/química , Replicación del ADN , Mutagénesis , Proteínas de Saccharomyces cerevisiae/fisiología , ADN Polimerasa II/fisiología , ADN de Hongos/fisiología , ADN Polimerasa Dirigida por ADN/metabolismo , Saccharomyces cerevisiae/genética
11.
Mycopathologia ; 169(5): 323-31, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20012895

RESUMEN

DNA has been described as a structural component of the extracellular matrix (ECM) in bacterial biofilms. In Candida albicans, there is a scarce knowledge concerning the contribution of extracellular DNA (eDNA) to biofilm matrix and overall structure. This work examined the presence and quantified the amount of eDNA in C. albicans biofilm ECM and the effect of DNase treatment and the addition of exogenous DNA on C. albicans biofilm development as indicators of a role for eDNA in biofilm development. We were able to detect the accumulation of eDNA in biofilm ECM extracted from C. albicans biofilms formed under conditions of flow, although the quantity of eDNA detected differed according to growth conditions, in particular with regards to the medium used to grow the biofilms. Experiments with C. albicans biofilms formed statically using a microtiter plate model indicated that the addition of exogenous DNA (>160 ng/ml) increases biofilm biomass and, conversely, DNase treatment (>0.03 mg/ml) decreases biofilm biomass at later time points of biofilm development. We present evidence for the role of eDNA in C. albicans biofilm structure and formation, consistent with eDNA being a key element of the ECM in mature C. albicans biofilms and playing a predominant role in biofilm structural integrity and maintenance.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Candida albicans/fisiología , ADN de Hongos/fisiología , Biopelículas/efectos de los fármacos , ADN de Hongos/aislamiento & purificación , ADN de Hongos/farmacología , Desoxirribonucleasas/farmacología , Líquido Extracelular/metabolismo
12.
Nat Struct Mol Biol ; 16(10): 1010-5, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19809492

RESUMEN

To maintain linear DNA genomes, organisms have evolved numerous means of solving problems associated with DNA ends (telomeres), including telomere-associated retrotransposons, palindromes, hairpins, covalently bound proteins and the addition of arrays of simple DNA repeats. Telomeric arrays can be maintained through various mechanisms such as telomerase activity or recombination. The recombination-dependent maintenance pathways may include telomeric loops (t-loops) and telomeric circles (t-circles). The potential involvement of t-circles in telomere maintenance was first proposed for linear mitochondrial genomes. The occurrence of t-circles in a wide range of organisms, spanning yeasts, plants and animals, suggests the involvement of t-circles in many phenomena including the alternative-lengthening of telomeres (ALT) pathway and telomere rapid deletion (TRD). In this Perspective, we summarize these findings and discuss how t-circles may be related to t-loops and how t-circles may have initiated the evolution of telomeres.


Asunto(s)
Candida/genética , Mitocondrias/metabolismo , Telómero/ultraestructura , Animales , Núcleo Celular/metabolismo , Cromosomas/ultraestructura , ADN de Hongos/genética , ADN de Hongos/fisiología , Eliminación de Gen , Técnicas Genéticas , Genoma , Genoma Fúngico , Modelos Biológicos , Modelos Genéticos , Recombinación Genética , Retroelementos , Telómero/genética
13.
DNA Repair (Amst) ; 8(6): 720-31, 2009 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-19269260

RESUMEN

Chk1 is a protein kinase that acts as a key signal transducer within the complex network responsible of the cellular response to different DNA damages. It is a conserved element along the eukaryotic kingdom, together with a second checkpoint kinase, called Chk2/Rad53. In fact, all organisms studied so far carried at least one copy of each kind of checkpoint kinase. Since the relative contribution to the DNA-damage response of each type of kinase varies from one organism to other, the current view about the roles of Chk1 and Chk2/Rad53 during DNA-damage response is one of mutual complementation and intimate cooperation. However, in this work it is reported that Ustilago maydis - a phytopathogenic fungus exhibiting extreme resistance to UV and ionizing radiation - have a single kinase belonging to the Chk1 family but strikingly no kinases related to Chk2/Rad53 family are apparent. The U. maydis Chk1 kinase is able to respond to different classes of DNA damages and its activity is required for the cellular adaptation to such damages. As other described components of the Chk1 family of kinases, U. maydis Chk1 is phosphorylated and translocated to nucleus in response to DNA-damage signals. Interestingly subtle differences in this response depending on the kind of DNA damage are apparent, suggesting that in U. maydis the sole Chk1 kinase recapitulates the roles that in other organisms are shared by Chk1 and the Chk2/Rad53 family of protein kinases.


Asunto(s)
Núcleo Celular/genética , Daño del ADN , ADN de Hongos/fisiología , Proteínas Quinasas/fisiología , Ustilago/enzimología , Ustilago/genética , Antibióticos Antineoplásicos/farmacología , Núcleo Celular/efectos de los fármacos , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Quinasa de Punto de Control 2 , Ensayo de Cambio de Movilidad Electroforética , Inhibidores Enzimáticos/farmacología , Fase G2/efectos de los fármacos , Proteínas Fluorescentes Verdes/metabolismo , Hidroxiurea/farmacología , Fleomicinas/farmacología , Fosforilación/efectos de los fármacos , Filogenia , Proteínas Serina-Treonina Quinasas/fisiología , Transporte de Proteínas , Ustilago/crecimiento & desarrollo
14.
DNA Repair (Amst) ; 8(5): 627-36, 2009 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-19185548

RESUMEN

We identified two predicted proteins in Schizosaccharomyces pombe, Rrp1 (SPAC17A2.12) and Rrp2 (SPBC23E6.02) that share 34% and 36% similarity to Saccharomyces cerevisiae Ris1p, respectively. Ris1p is a DNA-dependent ATP-ase involved in gene silencing and DNA repair. Rrp1 and Rrp2 also share similarity with S. cerevisiae Rad5 and S. pombe Rad8, containing SNF2-N, RING finger and Helicase-C domains. To investigate the function of the Rrp proteins, we studied the DNA damage sensitivities and genetic interactions of null mutants with known DNA repair mutants. Single Deltarrp1 and Deltarrp2 mutants were not sensitive to CPT, 4NQO, CDPP, MMS, HU, UV or IR. The double mutants Deltarrp1 Deltarhp51 and Deltarrp2 Deltarhp51 plus the triple Deltarrp1 Deltarrp2 Deltarhp51 mutant did not display significant additional sensitivity. However, the double mutants Deltarrp1 Deltarhp57 and Deltarrp2 Deltarhp57 were significantly more sensitive to MMS, CPT, HU and IR than the Deltarhp57 single mutant. The checkpoint response in these strains was functional. In S. pombe, Rhp55/57 acts in parallel with a second mediator complex, Swi5/Sfr1, to facilitate Rhp51-dependent DNA repair. Deltarrp1 Deltasfr1 and Deltarrp2 Deltasfr1 double mutants did not show significant additional sensitivity, suggesting a function for Rrp proteins in the Swi5/Sfr1 pathway of DSB repair. Consistent with this, Deltarrp1 Deltarhp57 and Deltarrp2 Deltarhp57 mutants, but not Deltarrp1 Deltasfr1 or Deltarrp2 Deltasfr1 double mutants, exhibited slow growth and aberrations in cell and nuclear morphology that are typical of Deltarhp51.


Asunto(s)
Daño del ADN/fisiología , Reparación del ADN/fisiología , ADN de Hongos/fisiología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Schizosaccharomyces pombe/fisiología , Schizosaccharomyces/genética , Secuencia de Aminoácidos , Antineoplásicos Alquilantes/farmacología , Clonación Molecular , Daño del ADN/efectos de los fármacos , Daño del ADN/efectos de la radiación , Reparación del ADN/efectos de los fármacos , Reparación del ADN/efectos de la radiación , Rayos gamma , Peróxido de Hidrógeno/farmacología , Metilmetanosulfonato/farmacología , Mitomicina/farmacología , Datos de Secuencia Molecular , Mutación/genética , Inhibidores de la Síntesis del Ácido Nucleico/farmacología , Oxidantes/farmacología , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Homología de Secuencia de Aminoácido , Rayos Ultravioleta
15.
Gene ; 414(1-2): 32-40, 2008 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-18372119

RESUMEN

The Cdc7-Dbf4 complex is a conserved serine/threonine protein kinase essential for the initiation of eukaryotic DNA replication. Although an mcm5-bob1 mutation bypasses lethality conferred by mutations in CDC7 or DBF4, the Deltacdc7 mcm5-bob1 mutant is sensitive to hydroxyurea (HU), which induces replication stress. To elucidate the reasons for HU sensitivity conferred by deletion of CDC7, we examined the role of Cdc7-Dbf4 in the replication checkpoint. We found that in Cdc7-Dbf4-deficient cells exposed to replication stress, Rad53 remains in a hypophosphorylated form, anaphase spindle is elongated, and checkpoint-specific transcription is not induced. The hypophosphorylated Rad53 exhibits a low autophosphorylation activity, and recombinant Cdc7-Dbf4 phosphorylates Rad53 in vitro. These results suggest that Cdc7-Dbf4 is required for full activation of Rad53 in response to replication stress.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiología , Replicación del ADN , ADN de Hongos/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/genética , Anafase , Western Blotting , Proteínas de Ciclo Celular/genética , Quinasa de Punto de Control 2 , Eliminación de Gen , Regulación Fúngica de la Expresión Génica , Hidroxiurea/farmacología , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Fase S/fisiología , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , beta-Galactosidasa/metabolismo
16.
J Immunol ; 180(6): 4067-74, 2008 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-18322216

RESUMEN

The mechanism of host cell recognition of Cryptococcus neoformans, an opportunistic fungal pathogen in immunocompromised patients, remains poorly understood. In the present study, we asked whether the DNA of this yeast activates mouse bone marrow-derived myeloid dendritic cells (BM-DCs). BM-DCs released IL-12p40 and expressed CD40 upon stimulation with cryptococcal DNA, and the response was abolished by treatment with DNase, but not with RNase. IL-12p40 production and CD40 expression were attenuated by chloroquine, bafilomycin A, and inhibitory oligodeoxynucleotides (ODN) that suppressed the responses caused by CpG-ODN. Activation of BM-DCs by cryptococcal DNA was almost completely abrogated in TLR9 gene-disrupted (TLR9(-/-)) mice and MyD88(-/-) mice, similar to that by CpG-ODN. In addition, upon stimulation with whole yeast cells of acapsular C. neoformans, TLR9(-/-) BM-DCs produced a lower amount of IL-12p40 than those from wild-type mice, and TLR9(-/-) mice were more susceptible to pulmonary infection with this fungal pathogen than wild-type mice, as shown by increased number of live colonies in lungs. Treatment of cryptococcal DNA with methylase resulted in reduced IL-12p40 synthesis by BM-DCs. Furthermore, using a luciferase reporter assay, cryptococcal DNA activated NF-kappaB in HEK293 cells transfected with the TLR9 gene. Finally, confocal microscopy showed colocalization of fluorescence-labeled cryptococcal DNA with CpG-ODN and the findings merged in part with the distribution of TLR9 in BM-DCs. Our results demonstrate that cryptococcal DNA causes activation of BM-DCs in a TLR9-dependent manner and suggest that the CpG motif-containing DNA may contribute to the development of inflammatory responses after infection with C. neoformans.


Asunto(s)
Cryptococcus neoformans/química , Cryptococcus neoformans/inmunología , ADN de Hongos/fisiología , Células Dendríticas/inmunología , Células Mieloides/inmunología , Transducción de Señal/inmunología , Receptor Toll-Like 9/fisiología , Animales , Células de la Médula Ósea/inmunología , Células de la Médula Ósea/metabolismo , Células Cultivadas , ADN de Hongos/metabolismo , Células Dendríticas/metabolismo , Femenino , Humanos , Subunidad p40 de la Interleucina-12/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células Mieloides/metabolismo , Oligodesoxirribonucleótidos/metabolismo , Oligodesoxirribonucleótidos/farmacología , Receptor Toll-Like 9/deficiencia , Receptor Toll-Like 9/genética
17.
Bioessays ; 30(1): 5-9, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18081005

RESUMEN

Cohesin establishes sister-chromatid cohesion during S phase to ensure proper chromosome segregation in mitosis. It also facilitates postreplicative homologous recombination repair of DNA double-strand breaks by promoting local pairing of damaged and intact sister chromatids. In G2 phase, cohesin that is not bound to chromatin is inactivated, but its reactivation can occur in response to DNA damage. Recent papers by Koshland's and Sjögren's groups describe the critical role of the known cohesin cofactor Eco1 (Ctf7) and ATR checkpoint kinase in damage-induced reactivation of cohesin, revealing an intricate mechanism that regulates sister-chromatid pairing to maintain genome integrity.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Daño del ADN/fisiología , Reparación del ADN/fisiología , Replicación del ADN/fisiología , ADN de Hongos/metabolismo , Proteínas Nucleares/metabolismo , Animales , Proteínas de Ciclo Celular/fisiología , Proteínas Cromosómicas no Histona/fisiología , Roturas del ADN de Doble Cadena , ADN de Hongos/fisiología , Genoma Fúngico , Humanos , Modelos Biológicos , Proteínas Nucleares/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Intercambio de Cromátides Hermanas/fisiología , Cohesinas
18.
BMC Mol Biol ; 8: 112, 2007 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-18093330

RESUMEN

BACKGROUND: In budding yeast, the replication checkpoint slows progress through S phase by inhibiting replication origin firing. In mammals, the replication checkpoint inhibits both origin firing and replication fork movement. To find out which strategy is employed in the fission yeast, Schizosaccharomyces pombe, we used microarrays to investigate the use of origins by wild-type and checkpoint-mutant strains in the presence of hydroxyurea (HU), which limits the pool of deoxyribonucleoside triphosphates (dNTPs) and activates the replication checkpoint. The checkpoint-mutant cells carried deletions either of rad3 (which encodes the fission yeast homologue of ATR) or cds1 (which encodes the fission yeast homologue of Chk2). RESULTS: Our microarray results proved to be largely consistent with those independently obtained and recently published by three other laboratories. However, we were able to reconcile differences between the previous studies regarding the extent to which fission yeast replication origins are affected by the replication checkpoint. We found (consistent with the three previous studies after appropriate interpretation) that, in surprising contrast to budding yeast, most fission yeast origins, including both early- and late-firing origins, are not significantly affected by checkpoint mutations during replication in the presence of HU. A few origins (approximately 3%) behaved like those in budding yeast: they replicated earlier in the checkpoint mutants than in wild type. These were located primarily in the heterochromatic subtelomeric regions of chromosomes 1 and 2. Indeed, the subtelomeric regions defined by the strongest checkpoint restraint correspond precisely to previously mapped subtelomeric heterochromatin. This observation implies that subtelomeric heterochromatin in fission yeast differs from heterochromatin at centromeres, in the mating type region, and in ribosomal DNA, since these regions replicated at least as efficiently in wild-type cells as in checkpoint-mutant cells. CONCLUSION: The fact that approximately 97% of fission yeast replication origins - both early and late - are not significantly affected by replication checkpoint mutations in HU-treated cells suggests that (i) most late-firing origins are restrained from firing in HU-treated cells by at least one checkpoint-independent mechanism, and (ii) checkpoint-dependent slowing of S phase in fission yeast when DNA is damaged may be accomplished primarily by the slowing of replication forks.


Asunto(s)
Replicación del ADN/fisiología , ADN de Hongos/fisiología , Origen de Réplica/genética , Schizosaccharomyces/genética , Proteínas de Ciclo Celular/genética , Quinasa de Punto de Control 2 , Cromosomas/genética , Replicación del ADN/efectos de los fármacos , ADN de Hongos/genética , Hidroxiurea/farmacología , Análisis por Micromatrices/métodos , Mutación , Inhibidores de la Síntesis del Ácido Nucleico/farmacología , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas de Schizosaccharomyces pombe/genética
19.
Cell Cycle ; 6(22): 2800-9, 2007 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-18032921

RESUMEN

Genetic studies in budding yeast have previously implicated SLX5 and SLX8 in the control of genome stability and sumoylation. These genes encode RING-finger domain proteins that form a complex of unknown function. Because RING-finger proteins comprise a large class of ubiquitin (Ub) ligases, Slx5 and Slx8 were tested for this activity. Here we show that the Slx5-Slx8 complex, but not its individual subunits, stimulates several human and yeast Ub conjugating enzymes, including Ubc1, 4, 5, and Ubc13-Mms2. The RING-finger domains of both subunits are genetically required for suppression of slx sgs1Delta synthetic-lethality, and point mutations that abolish Ub ligase activity in vitro also eliminate in vivo complementation. Targets of the in vitro ubiquitination reaction include the Slx5 and Slx8 subunits themselves, and the homologous recombination proteins Rad52 and Rad57. We propose that the Slx5-Slx8 complex functions as a two-component Ub ligase in vivo and that it controls genome stability and sumoylation via ubiquitination.


Asunto(s)
ADN de Hongos/fisiología , Proteínas de Unión al ADN/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Dedos de Zinc/fisiología , ADN de Hongos/genética , Proteínas de Unión al ADN/genética , Humanos , Dominios RING Finger/genética , Dominios RING Finger/fisiología , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/biosíntesis , Proteínas de Saccharomyces cerevisiae/genética , Complejos de Ubiquitina-Proteína Ligasa/genética , Complejos de Ubiquitina-Proteína Ligasa/fisiología , Ubiquitina-Proteína Ligasas
20.
Radiat Environ Biophys ; 46(4): 401-7, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17624540

RESUMEN

Checkpoints are components of signalling pathways involved in genome stability. We analysed the putative dual functions of Rad17 and Chk1 as checkpoints and in DNA repair using mutant strains of Saccharomyces cerevisiae. Logarithmic populations of the diploid checkpoint-deficient mutants, chk1Delta/chk1Delta and rad17Delta/rad17Delta, and an isogenic wild-type strain were exposed to the radiomimetic agent bleomycin (BLM). DNA double-strand breaks (DSBs) determined by pulsed-field electrophoresis, surviving fractions, and proliferation kinetics were measured immediately after treatments or after incubation in nutrient medium in the presence or absence of cycloheximide (CHX). The DSBs induced by BLM were reduced in the wild-type strain as a function of incubation time after treatment, with chromosomal repair inhibited by CHX. rad17Delta/rad17Delta cells exposed to low BLM concentrations showed no DSB repair, low survival, and CHX had no effect. Conversely, rad17Delta/rad17Delta cells exposed to high BLM concentrations showed DSB repair inhibited by CHX. chk1Delta/chk1Delta cells showed DSB repair, and CHX had no effect; these cells displayed the lowest survival following high BLM concentrations. Present results indicate that Rad17 is essential for inducible DSB repair after low BLM-concentrations (low levels of oxidative damage). The observations in the chk1Delta/chk1Delta mutant strain suggest that constitutive nonhomologous end-joining is involved in the repair of BLM-induced DSBs. The differential expression of DNA repair and survival in checkpoint mutants as compared to wild-type cells suggests the presence of a regulatory switch-network that controls and channels DSB repair to alternative pathways, depending on the magnitude of the DNA damage and genetic background.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Reparación del ADN/fisiología , ADN de Hongos/fisiología , ADN de Hongos/efectos de la radiación , Proteínas de Unión al ADN/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/fisiología , Ciclo Celular/fisiología , Ciclo Celular/efectos de la radiación , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Daño del ADN/fisiología , Reparación del ADN/efectos de la radiación , Genes cdc/fisiología , Genes cdc/efectos de la radiación , Saccharomyces cerevisiae/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...