Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.935
Filtrar
1.
Mycopathologia ; 189(3): 44, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38734862

RESUMEN

A 50-year-old man, previously diagnosed with pulmonary tuberculosis and lung cavities, presented with symptoms including fever, shortness of breath, and cough. A pulmonary CT scan revealed multiple cavities, consolidation and tree-in-bud in the upper lungs. Further investigation through direct examination of bronchoalveolar lavage fluid showed septate hyphae with dichotomous acute branching. Subsequent isolation and morphological analysis identified the fungus as belonging to Aspergillus section Nigri. The patient was diagnosed with probable invasive pulmonary aspergillosis and successfully treated with a three-month oral voriconazole therapy. Phylogenetic analysis based on partial ß-tubulin, calmodulin and RNA polymerase second largest subunit sequences revealed that the isolate represents a putative new species related to Aspergillus brasiliensis, and is named Aspergillus hubkae here. Antifungal susceptibility testing demonstrated that the isolate is resistant to itraconazole but susceptible to voriconazole. This phenotypic and genetic characterization of A. hubkae, along with the associated case report, will serve as a valuable resource for future diagnoses of infections caused by this species. It will also contribute to more precise and effective patient management strategies in similar clinical scenarios.


Asunto(s)
Antifúngicos , Aspergillus , Aspergilosis Pulmonar Invasiva , Pruebas de Sensibilidad Microbiana , Filogenia , Análisis de Secuencia de ADN , Voriconazol , Humanos , Masculino , Persona de Mediana Edad , Antifúngicos/uso terapéutico , Antifúngicos/farmacología , Aspergillus/aislamiento & purificación , Aspergillus/genética , Aspergillus/clasificación , Aspergillus/efectos de los fármacos , Líquido del Lavado Bronquioalveolar/microbiología , Análisis por Conglomerados , ADN de Hongos/genética , ADN de Hongos/química , Aspergilosis Pulmonar Invasiva/microbiología , Aspergilosis Pulmonar Invasiva/tratamiento farmacológico , Aspergilosis Pulmonar Invasiva/diagnóstico , Itraconazol/farmacología , Microscopía , Tomografía Computarizada por Rayos X , Resultado del Tratamiento , Tubulina (Proteína)/genética , Voriconazol/uso terapéutico , Voriconazol/farmacología
2.
Nature ; 627(8005): 890-897, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38448592

RESUMEN

In eukaryotes, DNA compacts into chromatin through nucleosomes1,2. Replication of the eukaryotic genome must be coupled to the transmission of the epigenome encoded in the chromatin3,4. Here we report cryo-electron microscopy structures of yeast (Saccharomyces cerevisiae) replisomes associated with the FACT (facilitates chromatin transactions) complex (comprising Spt16 and Pob3) and an evicted histone hexamer. In these structures, FACT is positioned at the front end of the replisome by engaging with the parental DNA duplex to capture the histones through the middle domain and the acidic carboxyl-terminal domain of Spt16. The H2A-H2B dimer chaperoned by the carboxyl-terminal domain of Spt16 is stably tethered to the H3-H4 tetramer, while the vacant H2A-H2B site is occupied by the histone-binding domain of Mcm2. The Mcm2 histone-binding domain wraps around the DNA-binding surface of one H3-H4 dimer and extends across the tetramerization interface of the H3-H4 tetramer to the binding site of Spt16 middle domain before becoming disordered. This arrangement leaves the remaining DNA-binding surface of the other H3-H4 dimer exposed to additional interactions for further processing. The Mcm2 histone-binding domain and its downstream linker region are nested on top of Tof1, relocating the parental histones to the replisome front for transfer to the newly synthesized lagging-strand DNA. Our findings offer crucial structural insights into the mechanism of replication-coupled histone recycling for maintaining epigenetic inheritance.


Asunto(s)
Cromatina , Replicación del ADN , Epistasis Genética , Histonas , Saccharomyces cerevisiae , Sitios de Unión , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Cromatina/ultraestructura , Microscopía por Crioelectrón , Replicación del ADN/genética , ADN de Hongos/biosíntesis , ADN de Hongos/química , ADN de Hongos/metabolismo , ADN de Hongos/ultraestructura , Epistasis Genética/genética , Histonas/química , Histonas/metabolismo , Histonas/ultraestructura , Complejos Multienzimáticos/química , Complejos Multienzimáticos/metabolismo , Complejos Multienzimáticos/ultraestructura , Nucleosomas/química , Nucleosomas/metabolismo , Nucleosomas/ultraestructura , Unión Proteica , Dominios Proteicos , Multimerización de Proteína , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestructura
3.
Mycologia ; 116(2): 299-308, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38386714

RESUMEN

Gremmenia abietis (Dearn.) Crous (syn: Phacidium abietis) was originally described in North America to accommodate the species associated with snow blight of Abies and Pseudotsuga spp. In Japan, this species was first observed on the dead needles on Abies sachalinensis and Picea jezoensis var. jezoensis in 1969. However, the identity of Japanese species was unclear due to the lack of molecular data and the absence of anamorph description. In this study, we collected fresh specimens from various conifer species (A. sachalinensis, A. veitchii, Pic. jezoensis var. jezoensis, Pic. jezoensis var. hondoensis, Pinus koraiensis, and Pin. pumila) in Japan and revised the taxonomy based on morphological and phylogenetic analyses. Phylogenetic analyses based on nuc rDNA internal transcribed spacer ITS1-5.8S-ITS2 (ITS), nuc 28S rDNA (28S), and RNA polymerase II second largest subunit (RPB2) regions indicated that the species belongs to Phacidiaceae. Conidiomata formed in vitro produced pyriform, hyaline conidia without mucoid appendage, which distinguished the species from phylogenetically related genera. Consequently, we established Chionobium takahashii to accommodate the snow blight fungus in Japan. Further phylogenetic analyses also indicated that C. takahashii includes several distinct clades corresponding to the host genera (Abies, Picea, Pinus). Morphological differences among those clades were unclear, suggesting that C. takahashii may contain host-specific cryptic species.


Asunto(s)
Ascomicetos , Tracheophyta , Japón , Filogenia , Nieve , ADN Ribosómico/genética , ADN Ribosómico/química , Ascomicetos/genética , ADN Espaciador Ribosómico/genética , ADN Espaciador Ribosómico/química , ADN de Hongos/genética , ADN de Hongos/química
4.
Mycopathologia ; 188(6): 957-971, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37728680

RESUMEN

The majority of Candida species are known as non-pathogenic yeasts and rarely involved in human diseases. However, recently case reports of human infections caused by non-albicans Candida species have increased, mostly in immunocompromised hosts. Our study aimed to describe and characterize as thoroughly as possible, a new species of the Metschnikowia clade, named here Candida massiliensis (PMML0037), isolated from a clinical sample of human sputum. We targeted four discriminant genetic regions: "Internal Transcribed Spacers" of rRNA, D1/D2 domains (28S large subunit rRNA) and part of the genes encoding Translation Elongation Factor 1-α and ß-tubulin2. The genetic data were compared to morphological characters, from scanning electron microscopy (TM 4000 Plus, SU5000), physiological, including the results of oxidation and assimilation tests of different carbon sources by the Biolog system, and chemical mapping by Energy-Dispersive X-ray Spectroscopy. Lastly, the in vitro antifungal susceptibility profile was performed using the E-test™ exponential gradient method. The multilocus analysis supported the genetic position of Candida massiliensis (PMML0037) as a new species of the Metschnikowia clade, and the phenotypic analysis highlighted its unique morphological and chemical profile when compared to the other Candida/Metschnikowia species included in the study.


Asunto(s)
Candida , Metschnikowia , Humanos , ADN Espaciador Ribosómico/genética , ADN Espaciador Ribosómico/química , Filogenia , ADN de Hongos/genética , ADN de Hongos/química , Levaduras/genética , ARN Ribosómico/genética , Metschnikowia/genética , ARN Ribosómico 28S , Análisis de Secuencia de ADN , Técnicas de Tipificación Micológica
5.
Sci Rep ; 13(1): 11819, 2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37479715

RESUMEN

Four yeast strains were isolated from the gut of stingless bee, collected in Churdhar, Himachal Pradesh, India. Physiological characterization, morphological examination, and sequence analysis of small subunit ribosomal RNA (18S rRNA) genes, internal transcribed spacer (ITS) region, and D1/D2 domain of the large subunit rRNA gene revealed that the four strains isolated from the gut of stingless bee belonged to the Debaryomyces clade. Strain CIG-23HT showed sequence divergence of 7.5% from Debaryomyces nepalensis JCM 2095T, 7.8% from Debaryomyces udenii JCM 7855T, and Debaryomyces coudertii JCM 2387T in the D1/D2 domain. In the ITS region sequences, strain CIG-23HT showed a 15% sequence divergence from Debaryomyces nepalensis JCM 2095T and Debaryomyces coudertii JCM 2387T. In 18S rRNA gene sequence, the strain CIG-23HT showed 1.14% sequence divergence from Debaryomyces nepalensis JCM 2095 and and Debaryomyces coudertii JCM 2387, and 0.83% sequence divergence from Debaryomyces hansenii NRRL Y-7426. Strain CIG-23HT can utilize more carbon sources than closely related species. The findings suggest that strain CIG-23HT is a novel species of the genus Debaryomyces, and we propose to name it as Debaryomyces apis f.a., sp. nov. The holotype is CBS 16297T, and the isotypes are MTCC 12914T and KCTC 37024T. The MycoBank number of Debaryomyces apis f.a., sp. nov. is MB836065. Additionally, a method using cresol red and Bromothymol blue pH indicator dyes was developed to screen for lipase producers, which is more sensitive and efficient than the currently used phenol red and rhodamine B dye-based screening methods, and avoids the problem of less differentiable zone of hydrolysis.


Asunto(s)
Debaryomyces , Abejas/genética , Animales , Debaryomyces/genética , Colorantes , Filogenia , Lipasa/genética , ARN Ribosómico/genética , Concentración de Iones de Hidrógeno , Análisis de Secuencia de ADN , ADN de Hongos/genética , ADN de Hongos/química , Técnicas de Tipificación Micológica , ADN Espaciador Ribosómico/genética , ADN Espaciador Ribosómico/química
6.
Anal Chim Acta ; 1273: 341528, 2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37423662

RESUMEN

Efficient DNA sample preparation from fungi with the rigid cell walls is still critical for successful polymerase chain reaction (PCR), one of the basic platforms in molecular diagnostics of fungi, especially in medical mycology. Common methods that involve different chaotropes to yield DNA samples have found a limited application for fungi. Here we describe a novel procedure for efficient production of permeable fungal cell envelopes with DNA inside as suitable templates for PCR. This procedure is facile, relies on boiling of fungal cells in aqueous solutions of selected chaotropic agents and additives and enables to remove RNA and proteins from PCR template samples. The use of chaotropic solutions containing 7 M urea, 1% sodium dodecyl sulfate (SDS), up to100 mM ammonia and/or 25 mM sodium citrate was the best option to yield highly purified DNA-containing cell envelopes from all fungal strains under study, including clinical Candida and Cryptococcusisolates. After treatment with the selected chaotropic mixtures, the fungal cell walls had undergone loosening and were no longer a barrier to release DNA in PCR as evident from electron microscopy examinations and successful target gene amplifications. Overall, the developed simple, fast, and low-cost approach to produce PCR-suitable templates in the form of DNA encased by permeable cell walls can find application in molecular diagnostics.


Asunto(s)
Pared Celular , Reacción en Cadena de la Polimerasa , ADN de Hongos/química , ADN de Hongos/genética , ADN de Hongos/aislamiento & purificación , Reacción en Cadena de la Polimerasa/métodos , ARN de Hongos/química , ARN de Hongos/genética , ARN de Hongos/aislamiento & purificación , Pared Celular/química
7.
mBio ; 14(4): e0131323, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37486265

RESUMEN

Environmental DNA analyses of fungal communities typically reveal a much larger diversity than can be ascribed to known species. Much of this hidden diversity lies within undescribed fungal lineages, especially the early diverging fungi (EDF). Although these EDF often represent new lineages even at the phylum level, they have never been cultured, making their morphology and ecology uncertain. One of the methods to characterize these uncultured fungi is a single-cell DNA sequencing approach. In this study, we established a large data set of single-cell sequences of EDF by manually isolating and photographing parasitic fungi on various hosts such as algae, protists, and micro-invertebrates, combined with subsequent long-read sequencing of the ribosomal DNA locus (rDNA). We successfully obtained rDNA sequences of 127 parasitic fungal cells, which clustered into 71 phylogenetic lineages belonging to seven phylum-level clades of EDF: Blastocladiomycota, Chytridiomycota, Aphelidiomycota, Rozellomycota, and three unknown phylum-level clades. Most of our single cells yielded novel sequences distinguished from both described taxa and existing metabarcoding data, indicating an expansive and hidden diversity of parasitic taxa of EDF. We also revealed an unexpected diversity of endobiotic Olpidium-like chytrids and hyper-parasitic lineages. Overall, by combining photographs of parasitic fungi with phylogenetic analyses, we were able to better understand the ecological function and morphology of many of the branches on the fungal tree of life known only from DNA sequences. IMPORTANCE Much of the diversity of microbes from natural habitats, such as soil and freshwater, comprise species and lineages that have never been isolated into pure culture. In part, this stems from a bias of culturing in favor of saprotrophic microbes over the myriad symbiotic ones that include parasitic and mutualistic relationships with other taxa. In the present study, we aimed to shed light on the ecological function and morphology of the many undescribed lineages of aquatic fungi by individually isolating and sequencing molecular barcodes from 127 cells of host-associated fungi using single-cell sequencing. By adding these sequences and their photographs into the fungal tree, we were able to understand the morphology of reproductive and vegetative structures of these novel fungi and to provide a hypothesized ecological function for them. These individual host-fungal cells revealed themselves to be complex environments despite their small size; numerous samples were hyper-parasitized with other zoosporic fungal lineages such as Rozellomycota.


Asunto(s)
Quitridiomicetos , Microscopía , Filogenia , Hongos , Quitridiomicetos/genética , ADN Ribosómico/genética , Agua Dulce/microbiología , ADN de Hongos/genética , ADN de Hongos/química
8.
Med Mycol ; 61(5)2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37070928

RESUMEN

This study looked for correlations between molecular identification, clinical manifestation, and morphology for Trichophyton interdigitale and Trichophyton mentagrophytes. For this purpose, a total of 110 isolates were obtained from Czech patients with various clinical manifestations of dermatophytosis. Phenotypic characters were analyzed, and the strains were characterized using multilocus sequence typing. Among the 12 measured/scored phenotypic features, statistically significant differences were found only in growth rates at 37 °C and in the production of spiral hyphae, but none of these features is diagnostic. Correlations were found between T. interdigitale and higher age of patients and between clinical manifestations such as tinea pedis or onychomychosis. The MLST approach showed that internal transcribed spacer (ITS) genotyping of T. mentagrophytes isolates has limited practical benefits because of extensive gene flow between sublineages. Based on our results and previous studies, there are few taxonomic arguments for preserving both species names. The species show a lack of monophyly and unique morphology. On the other hand, some genotypes are associated with predominant clinical manifestations and sources of infections, which keep those names alive. This practice is questionable because the use of both names confuses identification, leading to difficulty in comparing epidemiological studies. The current identification method using ITS genotyping is ambiguous for some isolates and is not user-friendly. Additionally, identification tools such as matrix-assisted laser desorption/ionization time-of-flight mass spectrometry fail to distinguish these species. To avoid further confusion and to simplify identification in practice, we recommend using the name T. mentagrophytes for the entire complex. When clear differentiation of populations corresponding to T. interdigitale and Trichophyton indotineae is possible based on molecular data, we recommend optionally using a variety rank: T. mentagrophytes var. interdigitale and T. mentagrophytes var. indotineae.


Species in the T. mentagrophytes complex lack support from usual taxonomic methods and simple identification tools are missing or inaccurate. To avoid recurring confusions, we propose naming the entire complex as T. mentagrophytes and optionally use rank variety to classify the observed variability.


Asunto(s)
Tiña , Animales , Filogenia , Tiña/diagnóstico , Tiña/veterinaria , Tipificación de Secuencias Multilocus/veterinaria , ADN Espaciador Ribosómico/genética , ADN Espaciador Ribosómico/química , Análisis de Secuencia de ADN/veterinaria , ADN de Hongos/genética , ADN de Hongos/química , Trichophyton , Fenotipo
9.
Nature ; 616(7958): 843-848, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37076626

RESUMEN

Structural maintenance of chromosomes (SMC) protein complexes are essential for the spatial organization of chromosomes1. Whereas cohesin and condensin organize chromosomes by extrusion of DNA loops, the molecular functions of the third eukaryotic SMC complex, Smc5/6, remain largely unknown2. Using single-molecule imaging, we show that Smc5/6 forms DNA loops by extrusion. Upon ATP hydrolysis, Smc5/6 reels DNA symmetrically into loops at a force-dependent rate of one kilobase pair per second. Smc5/6 extrudes loops in the form of dimers, whereas monomeric Smc5/6 unidirectionally translocates along DNA. We also find that the subunits Nse5 and Nse6 (Nse5/6) act as negative regulators of loop extrusion. Nse5/6 inhibits loop-extrusion initiation by hindering Smc5/6 dimerization but has no influence on ongoing loop extrusion. Our findings reveal functions of Smc5/6 at the molecular level and establish DNA loop extrusion as a conserved mechanism among eukaryotic SMC complexes.


Asunto(s)
Proteínas de Ciclo Celular , Cromosomas Fúngicos , ADN de Hongos , Saccharomyces cerevisiae , Adenosina Trifosfato/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona , Cromosomas Fúngicos/química , Cromosomas Fúngicos/metabolismo , ADN de Hongos/química , ADN de Hongos/metabolismo , Hidrólisis , Complejos Multiproteicos , Imagen Individual de Molécula , Cohesinas
10.
Artículo en Inglés | MEDLINE | ID: mdl-35960658

RESUMEN

Seven yeast strains (UBIF12-1, UBFB13-1, SRFS56-3, SRFS57-2, SKFS62-1, SKFS66-1 and SKFS67-1) representing a single anamorphic novel yeast species were isolated from traditional Thai fermented foods in Ubon Ratchathani, Surin and Sisaket in the northeast part of Thailand. The results of analysis of the sequences of the D1/D2 region of the large subunit (LSU) rRNA gene and the internal transcribed spacer (ITS) region indicated that the seven strains showed zero to one nucleotide substitutions in the sequences of the D1/D2 region of the LSU rRNA gene, and zero to four nucleotide substitutions in the ITS region. Kazachstania humilis CBS 5658T was the most closely-related species, but with 0.7-0.9% nucleotide substitutions in the D1/D2 region of the LSU rRNA gene, and 2.0-2.2% nucleotide substitution in the ITS region. The results of a phylogenetic analysis based on the concatenated ITS and D1/D2 regions confirmed that the seven strains represented a single species of the genus Kazachstania distinct from the other recognized species of the genus. Furthermore, the morphological, biochemical and physiological properties of the seven strains not only indicated that they represented members of the genus Kazachstania, but that they were separated from K. humilis and K. pseudohumilis, the two most closely related species in the phylogenetic tree. Therefore, the seven strains were identified as representing a novel species, for which we propose the name Kazachstania surinensis f.a., sp. nov. The holotype is TBRC 15053T (isotype: SRFS57-2 and PYCC 9021). The MycoBank number of the novel species is 841892.


Asunto(s)
Alimentos Fermentados , Saccharomycetales , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , ADN de Hongos/química , ADN de Hongos/genética , ADN Espaciador Ribosómico/genética , Ácidos Grasos/química , Técnicas de Tipificación Micológica , Nucleótidos , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Tailandia
11.
Proc Natl Acad Sci U S A ; 119(23): e2202799119, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35648833

RESUMEN

Structural maintenance of chromosomes (SMC) complexes are essential for chromatin organization and functions throughout the cell cycle. The cohesin and condensin SMCs fold and tether DNA, while Smc5/6 directly promotes DNA replication and repair. The functions of SMCs rely on their abilities to engage DNA, but how Smc5/6 binds and translocates on DNA remains largely unknown. Here, we present a 3.8 Å cryogenic electron microscopy (cryo-EM) structure of DNA-bound Saccharomyces cerevisiae Smc5/6 complex containing five of its core subunits, including Smc5, Smc6, and the Nse1-3-4 subcomplex. Intricate interactions among these subunits support the formation of a clamp that encircles the DNA double helix. The positively charged inner surface of the clamp contacts DNA in a nonsequence-specific manner involving numerous DNA binding residues from four subunits. The DNA duplex is held up by Smc5 and 6 head regions and positioned between their coiled-coil arm regions, reflecting an engaged-head and open-arm configuration. The Nse3 subunit secures the DNA from above, while the hook-shaped Nse4 kleisin forms a scaffold connecting DNA and all other subunits. The Smc5/6 DNA clamp shares similarities with DNA-clamps formed by other SMCs but also exhibits differences that reflect its unique functions. Mapping cross-linking mass spectrometry data derived from DNA-free Smc5/6 to the DNA-bound Smc5/6 structure identifies multi-subunit conformational changes that enable DNA capture. Finally, mutational data from cells reveal distinct DNA binding contributions from each subunit to Smc5/6 chromatin association and cell fitness. In summary, our integrative study illuminates how a unique SMC complex engages DNA in supporting genome regulation.


Asunto(s)
Proteínas de Ciclo Celular , Replicación del ADN , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Microscopía por Crioelectrón , ADN de Hongos/química , Conformación de Ácido Nucleico , Unión Proteica , Conformación Proteica , Subunidades de Proteína/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química
12.
Fungal Biol ; 126(5): 342-355, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35501030

RESUMEN

Stem blight is a major disease of blueberry caused by Botryosphaeriaceae fungi. Chemical and cultural management options are limited, putting emphasis on breeding efforts to identify sources of resistance. The efficacy and durability of host resistance could be impacted by the species composition of the pathogen population in a region and by the isolates employed in the screenings used to identify the resistance. Samples (365) were collected from southern highbush (SHB) and rabbiteye blueberry (REB) cultivars from 28 sites in the southeastern US (AL, FL, GA, NC, and SC). Colony morphology identified 86% of the isolates as Botryosphaeriaceae. Conidia morphology and Maximum Likelihood analysis of the Internal Transcribed Spacer rDNA regions (ITS), translation elongation factor one alpha (tef1-α), and ß-tubulin were used to identify isolates at genera or species level. A PCR-restriction fragment length polymorphism (PCR-RFLP) test was used to identify isolates to genus. Neofusicoccum and Lasiodiplodia were the predominant genera. N. kwambonambiense, N. ribis, L. theobromae and L. pseudotheobromae were the most common species isolated. Phylogenies conducted with a limited number of isolates indicated non-clonal and potentially diverse populations occur on blueberry that warrant additional study. Botryosphaeria corticis, B. dothidea, and Diplodia seriata were isolated infrequently.


Asunto(s)
Ascomicetos , Vaccinium , ADN de Hongos/química , ADN de Hongos/genética , ADN Ribosómico/genética , Enfermedades de las Plantas/microbiología , Vaccinium/genética
13.
Nat Struct Mol Biol ; 29(2): 121-129, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35173352

RESUMEN

Chromatin remodelers are ATP-dependent enzymes that reorganize nucleosomes within all eukaryotic genomes. Here we report a complex of the Chd1 remodeler bound to a nucleosome in a nucleotide-free state, determined by cryo-EM to 2.3 Å resolution. The remodeler stimulates the nucleosome to absorb an additional nucleotide on each strand at two different locations: on the tracking strand within the ATPase binding site and on the guide strand one helical turn from the ATPase motor. Remarkably, the additional nucleotide on the tracking strand is associated with a local transformation toward an A-form geometry, explaining how sequential ratcheting of each DNA strand occurs. The structure also reveals a histone-binding motif, ChEx, which can block opposing remodelers on the nucleosome and may allow Chd1 to participate in histone reorganization during transcription.


Asunto(s)
ADN de Hongos/química , ADN de Hongos/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Nucleosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Ensamble y Desensamble de Cromatina/fisiología , Microscopía por Crioelectrón , Proteínas de Unión al ADN/genética , Modelos Biológicos , Modelos Moleculares , Proteínas Motoras Moleculares/química , Proteínas Motoras Moleculares/metabolismo , Nucleosomas/química , Nucleótidos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
14.
Science ; 375(6580): 515-522, 2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-35113693

RESUMEN

The discovery of N6-methyldeoxyadenine (6mA) across eukaryotes led to a search for additional epigenetic mechanisms. However, some studies have highlighted confounding factors that challenge the prevalence of 6mA in eukaryotes. We developed a metagenomic method to quantitatively deconvolve 6mA events from a genomic DNA sample into species of interest, genomic regions, and sources of contamination. Applying this method, we observed high-resolution 6mA deposition in two protozoa. We found that commensal or soil bacteria explained the vast majority of 6mA in insect and plant samples. We found no evidence of high abundance of 6mA in Drosophila, Arabidopsis, or humans. Plasmids used for genetic manipulation, even those from Dam methyltransferase mutant Escherichia coli, could carry abundant 6mA, confounding the evaluation of candidate 6mA methyltransferases and demethylases. On the basis of this work, we advocate for a reassessment of 6mA in eukaryotes.


Asunto(s)
Metilación de ADN , ADN/química , Desoxiadenosinas/análisis , Eucariontes/genética , Animales , Arabidopsis/genética , Neoplasias Encefálicas/genética , Chlamydomonas reinhardtii/genética , ADN/genética , ADN Bacteriano/química , ADN Bacteriano/genética , ADN de Hongos/química , ADN de Hongos/genética , ADN Protozoario/química , ADN Protozoario/genética , Drosophila melanogaster/genética , Drosophila melanogaster/microbiología , Epigénesis Genética , Escherichia coli/genética , Eucariontes/metabolismo , Glioblastoma/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Leucocitos Mononucleares/química , Metagenómica , Plásmidos , Análisis de Secuencia de ADN , Tetrahymena thermophila/genética
15.
Parasit Vectors ; 15(1): 26, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-35033159

RESUMEN

BACKGROUND: Microsporidia is a large group of eukaryotic obligate intracellular spore-forming parasites, of which 17 species can cause microsporidiosis in humans. Most human-infecting microsporidians belong to the genera Enterocytozoon and Encephalitozoon. To date, only five microsporidian species, including Encephalitozoon-like, have been found in hard ticks (Ixodidae) using microscopic methods, but no sequence data are available for them. Furthermore, no widespread screening for microsporidian-infected ticks based on DNA analysis has been carried out to date. Thus, in this study, we applied a recently developed DNA metabarcoding method for efficient microsporidian DNA identification to assess the role of ticks as potential vectors of microsporidian species causing diseases in humans. METHODS: In total, 1070 (493 juvenile and 577 adult) unfed host-seeking Ixodes ricinus ticks collected at urban parks in the city of Poznan, Poland, and 94 engorged tick females fed on dogs and cats were screened for microsporidian DNA. Microsporidians were detected by PCR amplification and sequencing of the hypervariable V5 region of 18S rRNA gene (18S profiling) using the microsporidian-specific primer set. Tick species were identified morphologically and confirmed by amplification and sequencing of the shortened fragment of cytochrome c oxidase subunit I gene (mini-COI). RESULTS: All collected ticks were unambiguously assigned to I. ricinus. Potentially zoonotic Encephalitozoon intestinalis was identified in three fed ticks (3.2%) collected from three different dogs. In eight unfed host-seeking ticks (0.8%), including three males (1.1%), two females (0.7%) and three nymphs (0.7%), the new microsporidian sequence representing a species belonging to the genus Endoreticulatus was identified. CONCLUSIONS: The lack of zoonotic microsporidians in host-seeking ticks suggests that I. ricinus is not involved in transmission of human-infecting microsporidians. Moreover, a very low occurrence of the other microsporidian species in both fed and host-seeking ticks implies that mechanisms exist to defend ticks against infection with these parasites.


Asunto(s)
Vectores Arácnidos/microbiología , Ixodes/microbiología , Microsporidios/fisiología , Animales , Secuencia de Bases , Enfermedades de los Gatos/parasitología , Gatos , Código de Barras del ADN Taxonómico , ADN de Hongos/química , ADN de Hongos/aislamiento & purificación , ADN Ribosómico/química , Enfermedades de los Perros/parasitología , Perros , Complejo IV de Transporte de Electrones/química , Femenino , Masculino , Microsporidios/clasificación , Parques Recreativos , Filogenia , Polonia , Prevalencia , ARN Ribosómico 18S/genética , Análisis de Secuencia de ADN , Infestaciones por Garrapatas/parasitología , Infestaciones por Garrapatas/veterinaria
16.
Nucleic Acids Res ; 50(1): 579-596, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-34928384

RESUMEN

We have used chromosome engineering to replace native centromeric DNA with different test sequences at native centromeres in two different strains of the fission yeast Schizosaccharomyces pombe and have discovered that A + T rich DNA, whether synthetic or of bacterial origin, will function as a centromere in this species. Using genome size as a surrogate for the inverse of effective population size (Ne) we also show that the relative A + T content of centromeric DNA scales with Ne across 43 animal, fungal and yeast (Opisthokonta) species. This suggests that in most of these species the A + T content of the centromeric DNA is determined by a balance between selection and mutation. Combining the experimental results and the evolutionary analyses allows us to conclude that A + T rich DNA of almost any sequence will function as a centromere in most Opisthokonta species. The fact that many G/C to A/T substitutions are unlikely to be selected against may contribute to the rapid evolution of centromeric DNA. We also show that a neo-centromere sequence is not simply a weak version of native centromeric DNA and suggest that neo-centromeres require factors either for their propagation or establishment in addition to those required by native centromeres.


Asunto(s)
Centrómero/metabolismo , Cromatina/metabolismo , ADN de Hongos/química , Schizosaccharomyces/genética , Secuencia de Bases , Secuencias Repetitivas de Ácidos Nucleicos
17.
Biochemistry ; 61(1): 10-20, 2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34932305

RESUMEN

The gene encoding the Pif1 helicase was first discovered in a Saccharomyces cerevisiae genetic screen as a mutant that reduces recombination between mitochondrial respiratory mutants and was subsequently rediscovered in a screen for genes affecting the telomere length in the nucleus. It is now known that Pif1 is involved in numerous aspects of DNA metabolism. All known functions of Pif1 rely on binding to DNA substrates followed by ATP hydrolysis, coupling the energy released to translocation along DNA to unwind duplex DNA or alternative DNA secondary structures. The interaction of Pif1 with higher-order DNA structures, like G-quadruplex DNA, as well as the length of single-stranded (ss)DNA necessary for Pif1 loading have been widely studied. Here, to test the effects of ssDNA length, sequence, and structure on Pif1's biochemical activities in vitro, we used a suite of oligonucleotide-based substrates to perform a basic characterization of Pif1 ssDNA binding, ATPase activity, and helicase activity. Using recombinant, untagged S. cerevisiae Pif1, we found that Pif1 preferentially binds to structured G-rich ssDNA, but the preferred binding substrates failed to maximally stimulate ATPase activity. In helicase assays, significant DNA unwinding activity was detected at Pif1 concentrations as low as 250 pM. Helicase assays also demonstrated that Pif1 most efficiently unwinds DNA fork substrates with unstructured ssDNA tails. As the chemical step size of Pif1 has been determined to be 1 ATP per translocation or unwinding event, this implies that the highly structured DNA inhibits conformational changes in Pif1 that couple ATP hydrolysis to DNA translocation and unwinding.


Asunto(s)
ADN Helicasas/metabolismo , ADN de Hongos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , ADN Helicasas/química , ADN de Hongos/química , G-Cuádruplex , Hidrólisis , Conformación de Ácido Nucleico , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/química
18.
Science ; 374(6572): 1252-1258, 2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34855483

RESUMEN

How cells with DNA replication defects acquire mutations that allow them to escape apoptosis under environmental stress is a long-standing question. Here, we report that an error-prone Okazaki fragment maturation (OFM) pathway is activated at restrictive temperatures in rad27Δ yeast cells. Restrictive temperature stress activated Dun1, facilitating transformation of unprocessed 5' flaps into 3' flaps, which were removed by 3' nucleases, including DNA polymerase δ (Polδ). However, at certain regions, 3' flaps formed secondary structures that facilitated 3' end extension rather than degradation, producing alternative duplications with short spacer sequences, such as pol3 internal tandem duplications. Consequently, little 5' flap was formed, suppressing rad27Δ-induced lethality at restrictive temperatures. We define a stress-induced, error-prone OFM pathway that generates mutations that counteract replication defects and drive cellular evolution and survival.


Asunto(s)
Supervivencia Celular , Replicación del ADN , ADN de Hongos/genética , ADN , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiología , Estrés Fisiológico , Proteínas de Ciclo Celular/metabolismo , ADN Polimerasa III/genética , ADN Polimerasa III/metabolismo , ADN de Hongos/química , ADN de Hongos/metabolismo , Endonucleasas de ADN Solapado/genética , Conformación de Ácido Nucleico , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Temperatura
19.
mSphere ; 6(6): e0059821, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34730378

RESUMEN

Coccidioides immitis and Coccidioides posadasii are causative agents of Valley fever, a serious fungal disease endemic to regions with hot, arid climate in the United States, Mexico, and Central and South America. The environmental niche of Coccidioides spp. is not well defined, and it remains unknown whether these fungi are primarily associated with rodents or grow as saprotrophs in soil. To better understand the environmental reservoir of these pathogens, we used a systematic soil sampling approach, quantitative PCR (qPCR), culture, whole-genome sequencing, and soil chemical analysis to identify factors associated with the presence of C. immitis at a known colonization site in Washington State linked to a human case in 2010. We found that the same strain colonized an area of over 46,000 m2 and persisted in soil for over 6 years. No association with rodent burrows was observed, as C. immitis DNA was as likely to be detected inside rodent holes as it was in the surrounding soil. In addition, the presence of C. immitis DNA in soil was correlated with elevated levels of boron, calcium, magnesium, sodium, and silicon in soil leachates. We also observed differences in the microbial communities between C. immitis-positive and -negative soils. Our artificial soil inoculation experiments demonstrated that C. immitis can use soil as a sole source of nutrients. Taken together, these results suggest that soil parameters need to be considered when modeling the distribution of this fungus in the environment. IMPORTANCE Coccidioidomycosis is considered a highly endemic disease for which geographic range is likely to expand from climate change. A better understanding of the ecological niche of Coccidioides spp. is essential for generating accurate distribution maps and predicting future changes in response to the changing environment. Our study used a systematic sampling strategy, advanced molecular detection methods, and soil chemical analysis to identify environmental factors associated with the presence of C. immitis in soil. Our results demonstrate the fungus can colonize the same areas for years and is associated with chemical and microbiological soil characteristics. Our results suggest that in addition to climate parameters, soil characteristics need to be considered when building habitat distribution models for this pathogen.


Asunto(s)
Coccidioides/aislamiento & purificación , Coccidioidomicosis/epidemiología , Coccidioidomicosis/microbiología , Microbiología del Suelo , Coccidioides/genética , ADN de Hongos/química , ADN de Hongos/genética , Enfermedades Endémicas , Humanos , Reacción en Cadena en Tiempo Real de la Polimerasa , Washingtón
20.
Acta Crystallogr F Struct Biol Commun ; 77(Pt 10): 341-347, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34605438

RESUMEN

TYE7, a bHLH (basic helix-loop-helix) transcription factor from Saccharomyces cerevisiae, is involved in the regulation of many genes, including glycolytic genes. Meanwhile, accumulating evidence indicates that TYE7 also functions as a cyclin and is linked to sulfur metabolism. Here, the structure of TYE7 (residues 165-291) complexed with its specific DNA was determined by X-ray crystallography. Structural analysis and comparison revealed that His185 and Glu189 are conserved in base recognition. However, Arg193 is also involved in base recognition in the structures that were compared. In the structure in this study, Arg193 in chain A has two conformations and makes a salt bridge with the phosphate backbone structure. In addition, a series of corresponding electrophoretic mobility shift assays were performed to better understand the DNA-binding mechanism of the bHLH domain of TYE7.


Asunto(s)
Cristalografía por Rayos X/métodos , ADN de Hongos/química , ADN de Hongos/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transactivadores/química , Transactivadores/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Modelos Moleculares , Conformación Proteica , Homología de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA