Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Exp Biol Med (Maywood) ; 246(14): 1643-1649, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33899542

RESUMEN

The year 2020 witnessed an unpredictable pandemic situation due to novel coronavirus (COVID-19) outbreaks. This condition can be more severe if the patient has comorbidities. Failure of viable treatment for such viral infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is due to lack of identification. Thus, modern and productive biotechnology-based tools are being used to manipulate target genes by introducing the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas (CRISPR-associated) system. Moreover, it has now been used as a tool to inhibit viral replication. Hence, it can be hypothesized that the CRISPR/Cas system can be a viable tool to target both the SARS-CoV-2 genome with specific target RNA sequence and host factors to destroy the SARS-CoV-2 community via inhibition of viral replication and infection. Moreover, comorbidities and COVID-19 escalate the rate of mortality globally, and as a result, we have faced this pandemic. CRISPR/Cas-mediated genetic manipulation to knockdown viral sequences may be a preventive strategy against such pandemic caused by SARS-CoV-2. Furthermore, prophylactic antiviral CRISPR in human cells (PAC-MAN) along with CRISPR/Cas13d efficiently degrades the specific RNA sequence to inhibit viral replication. Therefore, we suggest that CRISPR/Cas system with PAC-MAN could be a useful tool to fight against such a global pandemic caused by SARS-CoV-2. This is an alternative preventive approach of management against the pandemic to destroy the target sequence of RNA in SARS-CoV-2 by viral inhibition.


Asunto(s)
Antivirales/farmacología , COVID-19/virología , Técnicas de Transferencia de Gen , Interacciones Huésped-Patógeno/fisiología , SARS-CoV-2/genética , Antivirales/administración & dosificación , COVID-19/epidemiología , COVID-19/genética , Sistemas CRISPR-Cas , Edición Génica/métodos , Interacciones Huésped-Patógeno/genética , Humanos , ARN Guía de Kinetoplastida/administración & dosificación , ARN Guía de Kinetoplastida/farmacología , SARS-CoV-2/patogenicidad
2.
Bioorg Med Chem Lett ; 40: 127925, 2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-33705909

RESUMEN

Our research group has been studying the design of intracellular delivery peptides based on cationic lytic peptides. By placing negatively charged amino acids on potentially hydrophobic faces of the peptides, membrane lytic activity is attenuated on the cell surface, whereas it recovers in endosomes, enabling cytosolic delivery of proteins including antibodies. These lytic peptides generally contain multiple lysines, facilitating cell surface interaction and membrane perturbation. This study evaluated the effect of lysine-to-homoarginine substitution using HAad as a model delivery peptide. The resulting peptide had a comparable or better delivery efficacy for Cre recombinase, antibodies, and the Cas9/sgRNA complex with one-quarter of the concentration of HAad, implying that a subtle structural difference can affect delivery activity.


Asunto(s)
Portadores de Fármacos/química , Endosomas/metabolismo , Homoarginina/química , Membranas Intracelulares/metabolismo , Péptidos/química , Secuencia de Aminoácidos , Proteína 9 Asociada a CRISPR/farmacología , Dextranos/química , Portadores de Fármacos/toxicidad , Liberación de Fármacos , Fluoresceínas/química , Colorantes Fluorescentes/química , Células HeLa , Humanos , Inmunoglobulina G/farmacología , Integrasas/farmacología , Liposomas/química , Péptidos/toxicidad , ARN Guía de Kinetoplastida/farmacología , Ácidos Sulfónicos/química
3.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33649229

RESUMEN

Loss-of-function mutations in Angiopoietin-like 3 (Angptl3) are associated with lowered blood lipid levels, making Angptl3 an attractive therapeutic target for the treatment of human lipoprotein metabolism disorders. In this study, we developed a lipid nanoparticle delivery platform carrying Cas9 messenger RNA (mRNA) and guide RNA for CRISPR-Cas9-based genome editing of Angptl3 in vivo. This system mediated specific and efficient Angptl3 gene knockdown in the liver of wild-type C57BL/6 mice, resulting in profound reductions in serum ANGPTL3 protein, low density lipoprotein cholesterol, and triglyceride levels. Our delivery platform is significantly more efficient than the FDA-approved MC-3 LNP, the current gold standard. No evidence of off-target mutagenesis was detected at any of the nine top-predicted sites, and no evidence of toxicity was detected in the liver. Importantly, the therapeutic effect of genome editing was stable for at least 100 d after a single dose administration. This study highlights the potential of LNP-mediated delivery as a specific, effective, and safe platform for Cas9-based therapeutics.


Asunto(s)
Proteínas Similares a la Angiopoyetina , Proteína 9 Asociada a CRISPR/genética , Portadores de Fármacos , Edición Génica , Lípidos , Hígado/metabolismo , Nanopartículas/química , ARN Guía de Kinetoplastida , ARN Mensajero , Proteína 3 Similar a la Angiopoyetina , Proteínas Similares a la Angiopoyetina/genética , Proteínas Similares a la Angiopoyetina/metabolismo , Animales , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacología , Femenino , Lípidos/química , Lípidos/farmacocinética , Lípidos/farmacología , Ratones , Ratones Endogámicos BALB C , Especificidad de Órganos , ARN Guía de Kinetoplastida/química , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/farmacocinética , ARN Guía de Kinetoplastida/farmacología , ARN Mensajero/química , ARN Mensajero/genética , ARN Mensajero/farmacocinética , ARN Mensajero/farmacología
4.
Cancer Res ; 81(5): 1332-1346, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33372040

RESUMEN

Although the cyclin-dependent kinases CDK4 and CDK6 play fundamental roles in cancer, the specific pathways and downstream targets by which they exert their tumorigenic effects remain elusive. In this study, we uncover distinct and novel functions for these kinases in regulating tumor formation and metastatic colonization in various solid tumors, including those of the breast, prostate, and pancreas. Combining in vivo CRISPR-based CDK4 and CDK6 gene editing with pharmacologic inhibition approaches in orthotopic transplantation and patient-derived xenograft preclinical models, we defined clear functions for CDK4 and CDK6 in facilitating tumor growth and progression in metastatic cancers. Transcriptomic profiling of CDK4/6 CRISPR knockouts in breast cancer revealed these two kinases to regulate cancer progression through distinct mechanisms. CDK4 regulated prometastatic inflammatory cytokine signaling, whereas CDK6 mainly controlled DNA replication and repair processes. Inhibition of CDK6 but not CDK4 resulted in defective DNA repair and increased DNA damage. Multiple CDK6 DNA replication/repair genes were not only associated with cancer subtype, grades, and poor clinical outcomes, but also facilitated primary tumor growth and metastasis in vivo. CRISPR-based genomic deletion of CDK6 efficiently blocked tumor formation and progression in preestablished cell- and patient-derived xenograft preclinical models of breast cancer, providing a potential novel targeted therapy for these deadly tumors. SIGNIFICANCE: In-depth transcriptomic analysis identifies cyclin-dependent kinases CDK4 and CDK6 as regulators of metastasis through distinct signaling pathways and reveals the DNA replication/repair pathway as central in promoting these effects.


Asunto(s)
Quinasa 4 Dependiente de la Ciclina/genética , Quinasa 6 Dependiente de la Ciclina/genética , Reparación del ADN/fisiología , Replicación del ADN/fisiología , Neoplasias/patología , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Quinasa 4 Dependiente de la Ciclina/metabolismo , Quinasa 6 Dependiente de la Ciclina/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Técnicas de Inactivación de Genes , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundario , Masculino , Ratones SCID , Neoplasias/genética , ARN Guía de Kinetoplastida/administración & dosificación , ARN Guía de Kinetoplastida/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
5.
CRISPR J ; 3(6): 512-522, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33346704

RESUMEN

Allele-specific genomic targeting by CRISPR is a versatile strategy that has been increasingly exploited not only in treating inherited dominant diseases and mutation-driven cancers, but also in other important fields such as genome imprinting, haploinsufficiency, and genome loci imaging. Despite its tremendous utilities, few bioinformatic tools have been implemented for the allele-specific purpose of CRISPR. We thus developed AsCRISPR (Allele-specific CRISPR), a comprehensive web tool to aid the design of short-guide RNA (sgRNA) sequences that can discriminate between alleles. AsCRISPR allows users to analyze both their own identified variants and heterozygous single nucleotide polymorphisms and, importantly, output the candidate sgRNAs and their quality control information. To facilitate targeting dominant diseases, AsCRISPR analyzed dominant single nucleotide variants (SNVs) retrieved from ClinVar and OMIM databases, and generated a dominant database of candidate-discriminating sgRNAs that may specifically target the alternative allele for each dominant SNV site. Moreover, a validated database was established, which manually curated the discriminating sgRNAs that were experimentally validated in the mounting literature for multiple allele-specific purposes.


Asunto(s)
Edición Génica/métodos , Medicina de Precisión/métodos , ARN Guía de Kinetoplastida/genética , Algoritmos , Alelos , Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Biología Computacional/métodos , Computadores , Genómica/métodos , Humanos , Polimorfismo de Nucleótido Simple/genética , ARN Guía de Kinetoplastida/farmacología , Programas Informáticos
6.
Leuk Res ; 99: 106464, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33130330

RESUMEN

The role of interferon-gamma (IFN-γ) in Chronic Myelogenous/Myeloid Leukemia (CML) and in the treatment of CML remains unclear; specifically, the effect of IFN-γ on apoptosis. There is reported interplay between IFN-γ and glycogen synthase kinase-3 (GSK-3), a kinase which has been implicated in both cell death and, conversely, cell survival. Thus, we utilized the CML-derived HAP1 cell line and a mutant HAP1 GSK-3ß knocked-down cell line (GSK-3ß 31bp) to investigate whether GSK-3 modulates IFN-γ's action on CML cells. Significantly less GSK-3ß 31bp cells, relative to HAP1 cells, were present after 48 h treatment with IFN-γ. IFN-γ treatment significantly decreased GSK-3ß 31bp substrate adhesiveness (relative to HAP1 cells); an observation often correlated with cell death. Fluorescence microscopy revealed that IFN-γ induces a modest level of apoptosis in the HAP1 cells and that IFN-γ induced apoptosis is significantly enhanced in GSK-3ß 31bp cells. Utilizing a complementary GSK-3ß knocked-down cell line (8bp) we found, via flow cytometric analysis, that IFN-γ induced apoptosis is significantly enhanced in GSK-3ß 8bp cells relative to HAP1 cells. Combined, our findings suggest that IFN-γ induces apoptosis of CML cells and that loss of GSK-3ß significantly augments IFN-γ-induced apoptosis.


Asunto(s)
Apoptosis/efectos de los fármacos , Glucógeno Sintasa Quinasa 3 beta/antagonistas & inhibidores , Interferón gamma/farmacología , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Proteínas de Neoplasias/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Antineoplásicos/farmacología , Sistemas CRISPR-Cas , Adhesión Celular/efectos de los fármacos , Línea Celular Tumoral/efectos de los fármacos , Codón sin Sentido , Interacciones Farmacológicas , Citometría de Flujo , Mutación del Sistema de Lectura , Proteínas de Fusión bcr-abl/antagonistas & inhibidores , Técnicas de Silenciamiento del Gen , Glucógeno Sintasa Quinasa 3 beta/genética , Humanos , Interferón gamma/uso terapéutico , Leucemia Mielógena Crónica BCR-ABL Positiva/enzimología , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Masculino , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/farmacología , Espectrometría de Fluorescencia
7.
Pharmacol Rev ; 72(4): 862-898, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32929000

RESUMEN

RNA-based therapies, including RNA molecules as drugs and RNA-targeted small molecules, offer unique opportunities to expand the range of therapeutic targets. Various forms of RNAs may be used to selectively act on proteins, transcripts, and genes that cannot be targeted by conventional small molecules or proteins. Although development of RNA drugs faces unparalleled challenges, many strategies have been developed to improve RNA metabolic stability and intracellular delivery. A number of RNA drugs have been approved for medical use, including aptamers (e.g., pegaptanib) that mechanistically act on protein target and small interfering RNAs (e.g., patisiran and givosiran) and antisense oligonucleotides (e.g., inotersen and golodirsen) that directly interfere with RNA targets. Furthermore, guide RNAs are essential components of novel gene editing modalities, and mRNA therapeutics are under development for protein replacement therapy or vaccination, including those against unprecedented severe acute respiratory syndrome coronavirus pandemic. Moreover, functional RNAs or RNA motifs are highly structured to form binding pockets or clefts that are accessible by small molecules. Many natural, semisynthetic, or synthetic antibiotics (e.g., aminoglycosides, tetracyclines, macrolides, oxazolidinones, and phenicols) can directly bind to ribosomal RNAs to achieve the inhibition of bacterial infections. Therefore, there is growing interest in developing RNA-targeted small-molecule drugs amenable to oral administration, and some (e.g., risdiplam and branaplam) have entered clinical trials. Here, we review the pharmacology of novel RNA drugs and RNA-targeted small-molecule medications, with a focus on recent progresses and strategies. Challenges in the development of novel druggable RNA entities and identification of viable RNA targets and selective small-molecule binders are discussed. SIGNIFICANCE STATEMENT: With the understanding of RNA functions and critical roles in diseases, as well as the development of RNA-related technologies, there is growing interest in developing novel RNA-based therapeutics. This comprehensive review presents pharmacology of both RNA drugs and RNA-targeted small-molecule medications, focusing on novel mechanisms of action, the most recent progress, and existing challenges.


Asunto(s)
ARN/efectos de los fármacos , ARN/farmacología , Aptámeros de Nucleótidos/farmacología , Aptámeros de Nucleótidos/uso terapéutico , Betacoronavirus , COVID-19 , Técnicas de Química Analítica/métodos , Técnicas de Química Analítica/normas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Infecciones por Coronavirus/tratamiento farmacológico , Sistemas de Liberación de Medicamentos/métodos , Desarrollo de Medicamentos/organización & administración , Descubrimiento de Drogas , Humanos , MicroARNs/farmacología , MicroARNs/uso terapéutico , Oligonucleótidos Antisentido/farmacología , Oligonucleótidos Antisentido/uso terapéutico , Pandemias , Neumonía Viral/tratamiento farmacológico , ARN/efectos adversos , ARN sin Sentido/farmacología , ARN sin Sentido/uso terapéutico , ARN Guía de Kinetoplastida/farmacología , ARN Guía de Kinetoplastida/uso terapéutico , ARN Mensajero/efectos de los fármacos , ARN Mensajero/farmacología , ARN Ribosómico/efectos de los fármacos , ARN Ribosómico/farmacología , ARN Interferente Pequeño/farmacología , ARN Interferente Pequeño/uso terapéutico , ARN Viral/efectos de los fármacos , Ribonucleasas/metabolismo , Riboswitch/efectos de los fármacos , SARS-CoV-2
8.
Mol Biol Rep ; 47(8): 6091-6103, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32761301

RESUMEN

Cervical cancer is the leading cause of cancer-related death among women worldwide. Identifying an effective treatment with fewer side effects is imperative, because all of the current treatments have unique disadvantages. Aldo-keto reductase family 1 member B1 (AKR1B1) is highly expressed in various cancers and is associated with tumor development, but has not been studied in cervical cancer. In the current study, we used CRISPR/Cas9 technology to establish a stable HeLa cell line with AKR1B1 knockout. In vitro, AKR1B1 knockout inhibited the proliferation, migration and invasion of HeLa cells, providing evidence that AKR1B1 is an innovative therapeutic target. Notably, the clinically used epalrestat, an inhibitor of aldose reductases, including AKR1B1, had the same effect as AKR1B1 knockout on HeLa cells. This result suggests that epalrestat could be used in the clinical treatment of cervical cancer, a prospect that undoubtedly requires further research. Moreover, aiming to determine the underlying regulatory mechanism of AKR1B1, we screened a series of differentially regulated genes (DEGs) by RNA sequencing and verified selected DEGs by quantitative RT-PCR. In addition, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of the DEGs revealed a correlation between AKR1B1 and cancer. In summary, epalrestat inhibits the progression of cervical cancer by inhibiting AKR1B1, and thus may be a new drug for the clinical treatment of cervical cancer.


Asunto(s)
Aldehído Reductasa/fisiología , Inhibidores Enzimáticos/farmacología , Proteínas de Neoplasias/fisiología , Rodanina/análogos & derivados , Tiazolidinas/farmacología , Neoplasias del Cuello Uterino/tratamiento farmacológico , Aldehído Reductasa/antagonistas & inhibidores , Aldehído Reductasa/genética , División Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Ontología de Genes , Células HeLa , Humanos , Invasividad Neoplásica , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/genética , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/farmacología , Rodanina/farmacología , Ensayo de Tumor de Célula Madre , Neoplasias del Cuello Uterino/patología
9.
Sci Rep ; 10(1): 10919, 2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32616820

RESUMEN

Marek's disease virus (MDV) is a highly cell-associated alphaherpesvirus that causes deadly lymphomas in chickens. While vaccination protects against clinical symptoms, MDV field strains can still circulate in vaccinated flocks and continuously evolve towards greater virulence. MDV vaccines do not provide sterilizing immunity, allowing the virus to overcome vaccine protection, and has increased the need for more potent vaccines or alternative interventions. In this study, we addressed if the CRISPR/Cas9 system can protect cells from MDV replication. We first screened a number of guide RNAs (gRNAs) targeting essential MDV genes for their ability to prevent virus replication. Single gRNAs significantly inhibited virus replication, but could result in the emergence of escape mutants. Strikingly, combining two or more gRNAs completely abrogated virus replication and no escape mutants were observed upon serial passaging. Our study provides the first proof-of-concept, demonstrating that the CRISPR/Cas9 system can be efficiently used to block MDV replication. The presented findings lay the foundation for future research to completely protect chickens from this deadly pathogen.


Asunto(s)
Sistemas CRISPR-Cas , Mardivirus/efectos de los fármacos , ARN Guía de Kinetoplastida/farmacología , Replicación Viral/efectos de los fármacos , Animales , Embrión de Pollo , Pollos , Patos , Genes Virales , Células HEK293 , Humanos , Mardivirus/genética , Mardivirus/fisiología , Enfermedad de Marek/prevención & control , Vacunas contra la Enfermedad de Marek , Mutación , Prueba de Estudio Conceptual , ARN Guía de Kinetoplastida/genética , Organismos Libres de Patógenos Específicos , Replicación Viral/genética
10.
Emerg Microbes Infect ; 9(1): 1682-1691, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32643563

RESUMEN

Ideal methods for detecting pathogens should be sensitive, specific, rapid, cost-effective and instrument-free. Conventional nucleic acid pathogen detection strategies, mostly PCR-based techniques, have various limitations, such as expensive equipment, reagents and skilled performance. Recently, CRISPR/Cas-based methods have burst onto the scene, with the potential to power the pathogen detection field. Here we introduce these unique methods and discuss its hurdles and promises.


Asunto(s)
Sistemas CRISPR-Cas , Enfermedades Transmisibles/diagnóstico , Técnicas de Diagnóstico Molecular/métodos , Proteínas Asociadas a CRISPR/metabolismo , Humanos , Técnicas de Diagnóstico Molecular/economía , ARN Guía de Kinetoplastida/farmacología , Sensibilidad y Especificidad
11.
Nat Plants ; 6(6): 620-624, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32483329

RESUMEN

An in planta gene editing approach was developed wherein Cas9 transgenic plants are infected with an RNA virus that expresses single guide RNAs (sgRNAs). The sgRNAs are augmented with sequences that promote cell-to-cell mobility. Mutant progeny are recovered in the next generation at frequencies ranging from 65 to 100%; up to 30% of progeny derived from plants infected with a virus expressing three sgRNAs have mutations in all three targeted loci.


Asunto(s)
Edición Génica/métodos , Nicotiana/genética , Plantas Modificadas Genéticamente/genética , Virus ARN/genética , ARN Guía de Kinetoplastida/farmacología , ARN Viral/farmacología , Agrobacterium tumefaciens
12.
Mol Syst Biol ; 16(3): e9265, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32175691

RESUMEN

Deep mutational scanning can provide significant insights into the function of essential genes in bacteria. Here, we developed a high-throughput method for mutating essential genes of Escherichia coli in their native genetic context. We used Cas9-mediated recombineering to introduce a library of mutations, created by error-prone PCR, within a gene fragment on the genome using a single gRNA pre-validated for high efficiency. Tracking mutation frequency through deep sequencing revealed biases in the position and the number of the introduced mutations. We overcame these biases by increasing the homology arm length and blocking mismatch repair to achieve a mutation efficiency of 85% for non-essential genes and 55% for essential genes. These experiments also improved our understanding of poorly characterized recombineering process using dsDNA donors with single nucleotide changes. Finally, we applied our technology to target rpoB, the beta subunit of RNA polymerase, to study resistance against rifampicin. In a single experiment, we validate multiple biochemical and clinical observations made in the previous decades and provide insights into resistance compensation with the study of double mutants.


Asunto(s)
Escherichia coli/genética , Genes Esenciales , Ingeniería Genética/métodos , Mutación , Sistemas CRISPR-Cas , ARN Polimerasas Dirigidas por ADN/genética , Proteínas de Escherichia coli/genética , ARN Guía de Kinetoplastida/farmacología , Recombinación Genética
13.
Sci Rep ; 10(1): 766, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31964975

RESUMEN

The proteasome inhibitor bortezomib is the most successfully applied chemotherapeutic drug for treating multiple myeloma. However, its clinical efficacy reduced due to resistance development. The underlying molecular mechanisms of bortezomib resistance are poorly understood. In this study, by combining in silico analysis and sgRNA library based drug resistance screening assay, we identified SENP2 (Sentrin/SUMO-specific proteases-2) as a bortezomib sensitive gene and found its expression highly downregulated in bortezomib resistant multiple myeloma patient's samples. Furthermore, down regulation of SENP2 in multiple myeloma cell line RPMI8226 alleviated bortezomib induced cell proliferation inhibition and apoptosis, whereas, overexpression of SENP2 sensitized these cells to bortezomib treatment. We further demonstrate that knockdown of SENP2 in RPMI8226 cells increased SUMO2 conjugated IκBα that resulted in the activation of NF-κB. Taken together, we report that silencing of SENP2 and consequent activation of NF-κB through the modulation of IκBα sumoylation as a novel mechanism inducing bortezomib resistance in multiple myeloma.


Asunto(s)
Bortezomib/farmacología , Cisteína Endopeptidasas/genética , Regulación hacia Abajo , Resistencia a Antineoplásicos , Mieloma Múltiple/genética , Inhibidor NF-kappaB alfa/metabolismo , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular , Simulación por Computador , Regulación Neoplásica de la Expresión Génica , Humanos , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/metabolismo , FN-kappa B/metabolismo , ARN Guía de Kinetoplastida/farmacología , Transducción de Señal , Sumoilación
14.
Methods Mol Biol ; 2111: 59-70, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31933198

RESUMEN

T-cell-based cancer immunotherapies have emerged as a promising approach for cancer treatment, highlighting the importance of understanding the regulation of T-cell function. However, the molecular mechanisms underlying T-cell activation are not fully understood. The CRISPR/Cas9 system can serve as a robust method to systematically study signaling pathways. In this chapter, we describe details of using the CRISPR screen to identify regulators in TCR signaling, from the sgRNA library construction to genomic DNA sequencing. We also add some notes to further help readers performing the CRISPR screen. This approach can be readily adapted to study the activation of other immune cells, including B cells and dendritic cells.


Asunto(s)
Redes Reguladoras de Genes , ARN Guía de Kinetoplastida/farmacología , Análisis de Secuencia de ADN/métodos , Linfocitos T/inmunología , Sistemas CRISPR-Cas , Edición Génica , Pruebas Genéticas , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Células Jurkat , Lentivirus/genética , Activación de Linfocitos , Transducción de Señal , Transducción Genética
15.
Mol Syst Biol ; 15(12): e8983, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31885201

RESUMEN

Arrayed CRISPR-based screens emerge as a powerful alternative to pooled screens making it possible to investigate a wide range of cellular phenotypes that are typically not amenable to pooled screens. Here, we describe a solid-phase transfection platform that enables CRISPR-based genetic screens in arrayed format with flexible readouts. We demonstrate efficient gene knockout upon delivery of guide RNAs and Cas9/guide RNA ribonucleoprotein complexes into untransformed and cancer cell lines. In addition, we provide evidence that our platform can be easily adapted to high-throughput screens and we use this approach to study oncogene addiction in tumor cells. Finally demonstrating that the human primary cells can also be edited using this method, we pave the way for rapid testing of potential targeted therapies.


Asunto(s)
Edición Génica/instrumentación , Neoplasias/genética , ARN Guía de Kinetoplastida/farmacología , Sistemas CRISPR-Cas , Línea Celular Tumoral , Predisposición Genética a la Enfermedad , Ensayos Analíticos de Alto Rendimiento , Humanos , Fenotipo , Transfección
16.
Nucleic Acids Res ; 47(22): 11880-11888, 2019 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-31713616

RESUMEN

Cas9 has made a wide range of genomic manipulation possible. However, its specificity continues to be a challenge. Non-canonical gRNAs and new engineered variants of Cas9 have been developed to improve specificity, but at the cost of the on-target activity. DNA unwinding is a checkpoint before cleavage by Cas9, and was shown to be made more sensitive to sequence mismatches by specificity-enhancing mutations in engineered Cas9s. Here we performed single-molecule FRET-based DNA unwinding experiments using various combinations of non-canonical gRNAs and different Cas9s. All engineered Cas9s were less promiscuous than wild type when canonical gRNA was used, but HypaCas9 had much-reduced on-target unwinding. Cas9-HF1 and eCas9 showed the best balance between low promiscuity and high on-target activity with canonical gRNA. When extended gRNAs with one or two non-matching guanines added to the 5' end were used, Sniper1-Cas9 showed the lowest promiscuity while maintaining high on-target activity. Truncated gRNA generally reduced unwinding and adding a non-matching guanine to the 5' end of gRNA influenced unwinding in a sequence-context dependent manner. Our results are consistent with cell-based cleavage data and provide a mechanistic understanding of how various Cas9/gRNA combinations perform in genome engineering.


Asunto(s)
Proteína 9 Asociada a CRISPR/fisiología , División del ADN , ADN/química , ADN/metabolismo , Mutación con Ganancia de Función , ARN Guía de Kinetoplastida/farmacología , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/metabolismo , ADN/efectos de los fármacos , ADN Helicasas/fisiología , Edición Génica/métodos , Conformación de Ácido Nucleico/efectos de los fármacos , Ingeniería de Proteínas , ARN Guía de Kinetoplastida/análisis , ARN Guía de Kinetoplastida/metabolismo , Imagen Individual de Molécula , Streptococcus pyogenes/enzimología , Streptococcus pyogenes/genética , Especificidad por Sustrato/efectos de los fármacos , Especificidad por Sustrato/genética
17.
PLoS One ; 14(10): e0224113, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31658298

RESUMEN

Inactive fusion variants of the CRISPR-Cas9 system are increasingly being used as standard methodology to study transcription regulation. Their ability to readily manipulate the native genomic loci is particularly advantageous. In this work, we serendipitously uncover the key cytokine IL6 as an off-target of the activating derivative of CRISPR (CRISPRa) while studying RP11-326A19.4, a novel long-non coding RNA (lncRNA). Increasing RP11-326A19.4 expression in HEK293T cells via CRISPRa-mediated activation of its promoter region induced genome-wide transcriptional changes, including upregulation of IL6, an important cytokine. IL6 was increased in response to distinct sgRNA targeting the RP11-326A19.4 promoter region, suggesting specificity. Loss of the cognate sgRNA recognition sites failed to abolish CRISPRa mediated activation of IL6 however, pointing to off-target effects. Bioinformatic approaches did not reveal predicted off-target binding sites. Off-target activation of IL6 was sustained and involved low level activation of known IL6 regulators. Increased IL6 remained sensitive to further activation by TNFα, consistent with the existence of independent mechanisms. This study provides experimental evidence that CRISPRa has discrete, unpredictable off-targeting limitations that must be considered when using this emerging technology.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Interleucina-6/genética , ARN Guía de Kinetoplastida/farmacología , ARN Largo no Codificante/genética , Sitios de Unión , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Regulación de la Expresión Génica/efectos de los fármacos , Células HEK293 , Células HeLa , Humanos , Regiones Promotoras Genéticas , Activación Transcripcional , Regulación hacia Arriba
18.
Genome Res ; 29(9): 1442-1452, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31467027

RESUMEN

Obesity is an increasing pathophysiological problem in developed societies. Despite all major progress in understanding molecular mechanisms of obesity, currently available anti-obesity drugs have shown limited efficacy with severe side effects. CRISPR interference (CRISPRi) mechanism based on catalytically dead Cas9 (dCas9) and single guide RNA (sgRNA) was combined with a targeted nonviral gene delivery system to treat obesity and obesity-induced type 2 diabetes. A fusion peptide targeting a vascular and cellular marker of adipose tissue, prohibitin, was developed by conjugation of adipocyte targeting sequence (CKGGRAKDC) to 9-mer arginine (ATS-9R). (dCas9/sgFabp4) + ATS-9R oligoplexes showed effective condensation and selective delivery into mature adipocytes. Targeted delivery of the CRISPRi system against Fabp4 to white adipocytes by ATS-9R induced effective silencing of Fabp4, resulting in reduction of body weight and inflammation and restoration of hepatic steatosis in obese mice. This RNA-guided DNA recognition platform provides a simple and safe approach to regress and treat obesity and obesity-induced metabolic syndromes.


Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Proteínas de Unión a Ácidos Grasos/genética , Hígado Graso/tratamiento farmacológico , Obesidad/tratamiento farmacológico , ARN Guía de Kinetoplastida/administración & dosificación , Células 3T3 , Adipocitos Blancos/química , Adipocitos Blancos/citología , Animales , Sistemas CRISPR-Cas , Citocinas/metabolismo , Diabetes Mellitus Tipo 2/genética , Modelos Animales de Enfermedad , Proteínas de Unión a Ácidos Grasos/antagonistas & inhibidores , Hígado Graso/genética , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Resistencia a la Insulina , Ratones , Terapia Molecular Dirigida , Obesidad/genética , ARN Guía de Kinetoplastida/farmacología
19.
Mol Ther ; 27(10): 1737-1748, 2019 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-31383454

RESUMEN

Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. The majority of CFTR mutations result in impaired chloride channel function as only a fraction of the mutated CFTR reaches the plasma membrane. The development of a therapeutic approach that facilitates increased cell-surface expression of CFTR could prove clinically relevant. Here, we evaluate and contrast two molecular approaches to activate CFTR expression. We find that an RNA-guided nuclease null Cas9 (dCas9) fused with a tripartite activator, VP64-p65-Rta can activate endogenous CFTR in cultured human nasal epithelial cells from CF patients. We also find that targeting BGas, a long non-coding RNA involved in transcriptionally modulating CFTR expression with a gapmer, induced both strong knockdown of BGas and concordant activation of CFTR. Notably, the gapmer can be delivered to target cells when generated as electrostatic particles with recombinant HIV-Tat cell penetrating peptide (CPP), when packaged into exosomes, or when loaded into lipid nanoparticles (LNPs). Treatment of patient-derived human nasal epithelial cells containing F508del with gapmer-CPP, gapmer-exosomes, or LNPs resulted in increased expression and function of CFTR. Collectively, these observations suggest that CRISPR/dCas-VPR (CRISPR) and BGas-gapmer approaches can target and specifically activate CFTR.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Fibrosis Quística/genética , Terapia Molecular Dirigida/métodos , Mucosa Nasal/metabolismo , Proteína 9 Asociada a CRISPR/metabolismo , Línea Celular , Membrana Celular/metabolismo , Péptidos de Penetración Celular/genética , Fibrosis Quística/metabolismo , Fibrosis Quística/terapia , Células Epiteliales/citología , Células Epiteliales/metabolismo , Humanos , Nanopartículas/química , Mucosa Nasal/citología , ARN Guía de Kinetoplastida/farmacología , ARN Largo no Codificante/genética , Activación Transcripcional , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/genética
20.
Acc Chem Res ; 52(6): 1555-1564, 2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31099553

RESUMEN

The discovery of CRISPR/Cas has revolutionized the field of genome editing. CRIPSR/Cas components are part of the bacterial immune system and are able to induce double-strand DNA breaks in the genome, which are resolved by endogenous DNA repair mechanisms. The most relevant of these are the error-prone nonhomologous end joining and homology directed repair pathways. The former can lead to gene knockout by introduction of insertions and deletions at the cut site, while the latter can be used for gene correction based on a provided repair template. In this Account, we focus on the delivery aspects of CRISPR/Cas for therapeutic applications in vivo. Safe and effective delivery of the CRISPR/Cas components into the nucleus of affected cells is essential for therapeutic gene editing. These components can be delivered in several formats, such as pDNA, viral vectors, or ribonuclear complexes. In the ideal case, the delivery system should address the current limitations of CRISPR gene editing, which are (1) lack of targeting specific tissues or cells, (2) the inability to enter cells, (3) activation of the immune system, and (4) off-target events. To circumvent most of these problems, initial therapeutic applications of CRISPR/Cas were performed on cells ex vivo via classical methods (e.g., microinjection or electroporation) and novel methods (e.g., TRIAMF and iTOP). Ideal candidates for such methods are, for example, hematopoietic cells, but not all tissue types are suited for ex vivo manipulation. For direct in vivo application, however, delivery systems are needed that can target the CRISPR/Cas components to specific tissues or cells in the human body, without causing immune activation or causing high frequencies of off-target effects. Viral systems have been used as a first resort to transduce cells in vivo. These systems suffer from problems related to packaging constraints, immunogenicity, and longevity of Cas expression, which favors off-target events. Viral vectors are as such not the best choice for direct in vivo delivery of CRISPR/Cas. Synthetic vectors can deliver nucleic acids as well, without the innate disadvantages of viral vectors. They can be classed into lipid, polymeric, and inorganic particles, all of which have been reported in the literature. The advantage of synthetic systems is that they can deliver the CRISPR/Cas system also as a preformed ribonucleoprotein complex. The transient nature of this approach favors low frequencies of off-target events and minimizes the window of immune activation. Moreover, from a pharmaceutical perspective, synthetic delivery systems are much easier to scale up for clinical use compared to viral vectors and can be chemically functionalized with ligands to obtain target cell specificity. The first preclinical results with lipid nanoparticles delivering CRISPR/Cas either as mRNA or ribonucleoproteins are very promising. The goal is translating these CRISPR/Cas therapeutics to a clinical setting as well. Taken together, these current trends seem to favor the use of sgRNA/Cas ribonucleoprotein complexes delivered in vivo by synthetic particles.


Asunto(s)
Proteína 9 Asociada a CRISPR/farmacología , Sistemas CRISPR-Cas/genética , Portadores de Fármacos/química , Edición Génica/métodos , Nanopartículas del Metal/química , Animales , Proteína 9 Asociada a CRISPR/genética , Técnicas de Transferencia de Gen , Humanos , Ratones , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/farmacología , Ribonucleoproteínas/genética , Ribonucleoproteínas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...