Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 678
Filtrar
1.
Oncoimmunology ; 13(1): 2373526, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38948931

RESUMEN

Prostate cancer (PCa) is characterized as a "cold tumor" with limited immune responses, rendering the tumor resistant to immune checkpoint inhibitors (ICI). Therapeutic messenger RNA (mRNA) vaccines have emerged as a promising strategy to overcome this challenge by enhancing immune reactivity and significantly boosting anti-tumor efficacy. In our study, we synthesized Tetra, an mRNA vaccine mixed with multiple tumor-associated antigens, and ImmunER, an immune-enhancing adjuvant, aiming to induce potent anti-tumor immunity. ImmunER exhibited the capacity to promote dendritic cells (DCs) maturation, enhance DCs migration, and improve antigen presentation at both cellular and animal levels. Moreover, Tetra, in combination with ImmunER, induced a transformation of bone marrow-derived dendritic cells (BMDCs) to cDC1-CCL22 and up-regulated the JAK-STAT1 pathway, promoting the release of IL-12, TNF-α, and other cytokines. This cascade led to enhanced proliferation and activation of T cells, resulting in effective killing of tumor cells. In vivo experiments further revealed that Tetra + ImmunER increased CD8+T cell infiltration and activation in RM-1-PSMA tumor tissues. In summary, our findings underscore the promising potential of the integrated Tetra and ImmunER mRNA-LNP therapy for robust anti-tumor immunity in PCa.


Asunto(s)
Adyuvantes Inmunológicos , Antígenos de Neoplasias , Vacunas contra el Cáncer , Células Dendríticas , Neoplasias de la Próstata , ARN Mensajero , Animales , Masculino , Neoplasias de la Próstata/inmunología , Neoplasias de la Próstata/terapia , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/tratamiento farmacológico , Antígenos de Neoplasias/inmunología , Ratones , Células Dendríticas/inmunología , Adyuvantes Inmunológicos/farmacología , Adyuvantes Inmunológicos/administración & dosificación , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Mensajero/administración & dosificación , Vacunas contra el Cáncer/administración & dosificación , Vacunas contra el Cáncer/inmunología , Humanos , Ratones Endogámicos C57BL , Línea Celular Tumoral , Vacunas de ARNm , Linfocitos T CD8-positivos/inmunología , Linfocitos T/inmunología , Linfocitos T/metabolismo , Inmunoterapia/métodos , Activación de Linfocitos/efectos de los fármacos
2.
Transl Vis Sci Technol ; 13(7): 7, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38980261

RESUMEN

Purpose: Lipid nanoparticles (LNPs) show promise in their ability to introduce mRNA to drive protein expression in specific cell types of the mammalian eye. Here, we examined the ability of mRNA encapsulated in LNPs with two distinct formulations to drive gene expression in mouse and human retina and other ocular tissues. Methods: We introduced mRNA-carrying LNPs into two biological systems. Intravitreal injections were tested to deliver LNPs into the mouse eye. Human retinal pigment epithelium (RPE) and retinal explants were used to assess mRNA expression in human tissue. We analyzed specificity of expression using histology, immunofluorescence, and imaging. Results: In mice, mRNAs encoding GFP and ciliary neurotrophic factor (CNTF) were specifically expressed by Müller glia and RPE. Acute inflammatory changes measured by microglia distribution (Iba-1) or interleukin-6 (IL-6) expression were not observed 6 hours post-injection. Human RPE also expressed high levels of GFP. Human retinal explants expressed GFP in cells with apical and basal processes consistent with Müller glia and in perivascular cells consistent with macrophages. Conclusions: We demonstrated the ability to reliably transfect subpopulations of retinal cells in mouse eye tissues in vivo and in human ocular tissues. Of significance, intravitreal injections were sufficient to transfect the RPE in mice. To our knowledge, we demonstrate delivery of mRNA using LNPs in human ocular tissues for the first time. Translational Relevance: Ocular gene-replacement therapies using non-viral vector methods are a promising alternative to adeno-associated virus (AAV) vectors. Our studies show that mRNA LNP delivery can be used to transfect retinal cells in both mouse and human tissues without inducing significant inflammation. This methodology could be used to transfect retinal cell lines, tissue explants, mice, or potentially as gene-replacement therapy in a clinical setting in the future.


Asunto(s)
Inyecciones Intravítreas , Nanopartículas , ARN Mensajero , Epitelio Pigmentado de la Retina , Animales , Humanos , ARN Mensajero/administración & dosificación , ARN Mensajero/metabolismo , Ratones , Epitelio Pigmentado de la Retina/metabolismo , Nanopartículas/química , Ratones Endogámicos C57BL , Factor Neurotrófico Ciliar/genética , Factor Neurotrófico Ciliar/metabolismo , Factor Neurotrófico Ciliar/administración & dosificación , Retina/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células Ependimogliales/metabolismo , Técnicas de Transferencia de Gen , Liposomas
3.
Nano Lett ; 24(26): 8080-8088, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38888232

RESUMEN

Among various mRNA carrier systems, lipid nanoparticles (LNPs) stand out as the most clinically advanced. While current clinical trials of mRNA/LNP therapeutics mainly address liver diseases, the potential of mRNA therapy extends far beyond─yet to be unraveled. To fully unlock the promises of mRNA therapy, there is an urgent need to develop safe and effective LNP systems that can target extrahepatic organs. Here, we report on the development of sulfonium lipid nanoparticles (sLNPs) for systemic mRNA delivery to the lungs. sLNP effectively and specifically delivered mRNA to the lungs following intravenous administration in mice. No evidence of lung and systemic inflammation or toxicity in major organs was induced by sLNP. Our findings demonstrated that the newly developed lung-specific sLNP platform is both safe and efficacious. It holds great promise for advancing the development of new mRNA-based therapies for the treatment of lung-associated diseases and conditions.


Asunto(s)
Lípidos , Pulmón , Nanopartículas , ARN Mensajero , Animales , Pulmón/metabolismo , Nanopartículas/química , Ratones , ARN Mensajero/genética , ARN Mensajero/administración & dosificación , Lípidos/química , Humanos , Compuestos de Sulfonio/química , Técnicas de Transferencia de Gen , Liposomas
4.
Theranostics ; 14(8): 3246-3266, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38855184

RESUMEN

The rapid advancement of mRNA as vaccines and therapeutic agents in the biomedical field has sparked hope in the fight against untreatable diseases. Successful clinical application of mRNA therapeutics largely depends on the carriers. Recently, a new and exciting focus has emerged on natural cell-derived vesicles. These nanovesicles offer many functions, including enhanced drug delivery capabilities and immune evasion, thereby presenting a unique and promising platform for the effective and safe delivery of mRNA therapeutics. In this study, we summarize the characteristics and properties of biomimetic delivery systems for mRNA therapeutics. In particular, we discuss the unique features of cellular membrane-derived vesicles (CDVs) and the combination of synthetic nanovesicles with CDVs.


Asunto(s)
Sistemas de Liberación de Medicamentos , ARN Mensajero , ARN Mensajero/administración & dosificación , ARN Mensajero/genética , Humanos , Sistemas de Liberación de Medicamentos/métodos , Animales , Membrana Celular/metabolismo , Biomimética/métodos , Portadores de Fármacos/química
5.
J Am Chem Soc ; 146(25): 17365-17376, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38874565

RESUMEN

Messenger RNA (mRNA) delivery platforms often facilitate protein expression in the liver following intravenous injection and have been optimized for use in normally oxygenated cells (21% O2 atmosphere). However, there is a growing need for mRNA therapy in diseases affecting non-liver organs, such as the lungs. Additionally, many diseases are characterized by hypoxia (<21% O2 atmosphere), a state of abnormally low oxygenation in cells and tissues that can reduce the efficacy of mRNA therapies by upwards of 80%. Here, we report a Tunable Lung-Expressing Nanoparticle Platform (TULEP) for mRNA delivery, whose properties can be readily tuned for optimal expression in hypoxic environments. Briefly, our study begins with the synthesis and characterization of a novel amino acrylate polymer that can be effectively complexed with mRNA payloads into TULEPs. We study the efficacy and mechanism of mRNA delivery using TULEP, including analysis of the cellular association, endocytosis mechanisms, endosomal escape, and protein expression in a lung cell line. We then evaluate TULEP under hypoxic conditions and address hypoxia-related deficits in efficacy by making our system tunable with adenosine triphosphate (ATP). Finally, we conclude our study with an in vivo analysis of mRNA expression, biodistribution, and tolerability of the TULEP platform in mice. In presenting these data, we hope that our work highlights the utility of TULEPs for tunable and effective mRNA delivery while more broadly highlighting the utility of considering oxygen levels when developing mRNA delivery platforms.


Asunto(s)
Pulmón , ARN Mensajero , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Mensajero/administración & dosificación , Pulmón/metabolismo , Humanos , Animales , Ratones , Nanopartículas/química , Hipoxia de la Célula , Hipoxia/metabolismo
6.
Biomater Sci ; 12(14): 3600-3609, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38836707

RESUMEN

Nucleic acid drugs show immense therapeutic potential, but achieving selective organ targeting (SORT) for pulmonary disease therapy remains a formidable challenge due to the high mortality rate caused by pulmonary embolism via intravenous administration or the mucus barrier in the respiratory tract via nebulized delivery. To meet this important challenge, we propose a new strategy to prepare lung-selective nucleic-acid vectors generated by in vivo decoration of lung-targeting proteins on bioreducible polyplexes. First, we synthesized polyamidoamines, named pabol and polylipo, to encapsulate and protect nucleic acids, forming polyamidoamines/mRNA polyplexes. Second, bovine serum albumin (BSA) was coated on the surface of these polyplexes, called BSA@polyplexes, including BSA@pabol polyplexes and BSA@polylipo polyplexes, to neutralize excess positive charge, thereby enhancing biosafety. Finally, after subcutaneous injection, proteins, especially vitronectin and fibronectins, attached to the polyplexes, resulting in the formation of lung-selective nucleic-acid vectors that achieve efficient lung targeting.


Asunto(s)
Pulmón , Albúmina Sérica Bovina , Animales , Pulmón/metabolismo , Albúmina Sérica Bovina/química , Albúmina Sérica Bovina/administración & dosificación , Ratones , Bovinos , Humanos , Poliaminas/química , Ácidos Nucleicos/química , Ácidos Nucleicos/administración & dosificación , ARN Mensajero/administración & dosificación
7.
Biomacromolecules ; 25(7): 4281-4291, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38843459

RESUMEN

Messenger ribonucleic acid (mRNA) vaccines, serving as a rapid and easily scalable emergency preventive measure, have played a pivotal role in preventing infectious diseases. The effectiveness of mRNA vaccines heavily relies on the delivery carrier, but the current market options are predominantly lipid nanoparticles. Their intricate preparation process and high transportation costs pose challenges for widespread use in remote areas. In this study, we harnessed FDA-approved polymer PLGA and lipid components widely employed in clinical experiments to craft a ready-to-use mRNA vaccine delivery system known as lipid-polymer hybrid nanoparticles (LPP). Following formulation optimization, the PDCD nanoparticles emerged as the most effective, showcasing exceptional mRNA delivery capabilities both in vitro and in vivo. Loading PDCD nanoparticles with mRNA encoding the H1N1 influenza virus HA antigen-fused M2e peptide enabled the successful induction of M2e-specific antibodies and T cell immune responses in immunized mice. After three rounds of vaccine immunization, the mice demonstrated weight recovery to normal levels and maintained a survival rate exceeding 80% following an encounter with the H1N1 influenza virus. The innovative mRNA delivery system that we designed demonstrates outstanding effectiveness in preventing infectious diseases, with the potential to play an even more significant role in future clinical applications.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Vacunas contra la Influenza , Animales , Ratones , Vacunas contra la Influenza/inmunología , Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/química , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H1N1 del Virus de la Influenza A/genética , Nanopartículas/química , Vacunas de ARNm , Ratones Endogámicos BALB C , Femenino , Infecciones por Orthomyxoviridae/prevención & control , ARN Mensajero/genética , ARN Mensajero/inmunología , ARN Mensajero/administración & dosificación , Humanos , Gripe Humana/prevención & control , Estados Unidos , Lípidos/química
8.
Int J Nanomedicine ; 19: 4779-4801, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38828196

RESUMEN

Background: Messenger RNA (mRNA)-based immunogene therapy holds significant promise as an emerging tumor therapy approach. However, the delivery efficiency of existing mRNA methods and their effectiveness in stimulating anti-tumor immune responses require further enhancement. Tumor cell lysates containing tumor-specific antigens and biomarkers can trigger a stronger immune response to tumors. In addition, strategies involving multiple gene therapies offer potential optimization paths for tumor gene treatments. Methods: Based on the previously developed ideal mRNA delivery system called DOTAP-mPEG-PCL (DMP), which was formed through the self-assembly of 1.2-dioleoyl-3-trimethylammonium-propane (DOTAP) and methoxypoly (ethylene glycol)-b-poly (ε-caprolactone) (mPEG-PCL), we introduced a fused cell-penetrating peptide (fCPP) into the framework and encapsulated tumor cell lysates to form a novel nanovector, termed CLSV system (CLS: CT26 tumor cell lysate, V: nanovector). This system served a dual purpose of facilitating the delivery of two mRNAs and enhancing tumor immunogene therapy through tumor cell lysates. Results: The synthesized CLSV system had an average size of 241.17 nm and a potential of 39.53 mV. The CLSV system could not only encapsulate tumor cell lysates, but also deliver two mRNAs to tumor cells simultaneously, with a transfection efficiency of up to 60%. The CLSV system effectively activated the immune system such as dendritic cells to mature and activate, leading to an anti-tumor immune response. By loading Bim-encoded mRNA and IL-23A-encoded mRNA, CLSV/Bim and CLSV/IL-23A complexes were formed, respectively, to further induce apoptosis and anti-tumor immunity. The prepared CLSV/dual-mRNA complex showed significant anti-cancer effects in multiple CT26 mouse models. Conclusion: Our results suggest that the prepared CLSV system is an ideal delivery system for dual-mRNA immunogene therapy.


Asunto(s)
Neoplasias del Colon , Terapia Genética , Inmunoterapia , Nanopartículas , ARN Mensajero , Animales , ARN Mensajero/genética , ARN Mensajero/administración & dosificación , Línea Celular Tumoral , Neoplasias del Colon/terapia , Neoplasias del Colon/genética , Terapia Genética/métodos , Inmunoterapia/métodos , Nanopartículas/química , Ratones , Ratones Endogámicos BALB C , Péptidos de Penetración Celular/química , Polietilenglicoles/química , Humanos , Poliésteres/química , Femenino , Compuestos de Amonio Cuaternario , Ácidos Grasos Monoinsaturados
9.
Drug Deliv Transl Res ; 14(8): 2046-2061, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38811465

RESUMEN

The global emergency of coronavirus disease 2019 (COVID-19) has spurred extensive worldwide efforts to develop vaccines for protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Our contribution to this global endeavor involved the development of a diverse library of nanocarriers, as alternatives to lipid nanoparticles (LNPs), including nanoemulsions (NEs) and nanocapsules (NCs), with the aim of protecting and delivering messenger ribonucleic acid (mRNA) for nasal vaccination purposes. A wide range of prototypes underwent rigorous screening through a series of in vitro and in vivo experiments, encompassing assessments of cellular transfection, cytotoxicity, and intramuscular administration of a model mRNA for protein translation. As a result, two promising candidates were identified for nasal administration. One of them was a NE incorporating a combination of an ionizable lipid (C12-200) and cationic lipid (DOTAP), both intended to condense mRNA, along with DOPE, which is known to facilitate endosomal escape. This NE exhibited a size of 120 nm and a highly positive surface charge (+ 50 mV). Another candidate was an NC formulation comprising the same components and endowed with a dextran sulfate shell. This formulation showed a size of 130 nm and a moderate negative surface charge (-16 mV). Upon intranasal administration of mRNA encoding for ovalbumin (mOVA) associated with optimized versions of the said NE and NCs, a robust antigen-specific CD8 + T cell response was observed. These findings underscore the potential of NEs and polymeric NCs in advancing mRNA vaccine development for combating infectious diseases.


Asunto(s)
Administración Intranasal , Vacunas contra la COVID-19 , Emulsiones , Nanocápsulas , Vacunas de ARNm , Nanocápsulas/química , Animales , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/inmunología , Ratones , COVID-19/prevención & control , Nanopartículas/administración & dosificación , Nanopartículas/química , Humanos , SARS-CoV-2/inmunología , Femenino , Compuestos de Amonio Cuaternario/química , Ratones Endogámicos BALB C , Ácidos Grasos Monoinsaturados/química , ARN Mensajero/administración & dosificación , Portadores de Fármacos/química , Portadores de Fármacos/administración & dosificación
10.
J Control Release ; 371: 455-469, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38789090

RESUMEN

The full potential of ionizable lipid nanoparticles (LNPs) as an in vivo nucleic acid delivery platform has not yet been realized given that LNPs primarily accumulate in the liver following systemic administration, limiting their success to liver-centric conditions. The engineering of LNPs with antibody targeting moieties can enable extrahepatic tropism by facilitating site-specific LNP tethering and driving preferential LNP uptake into receptor-expressing cell types via receptor-mediated endocytosis. Obstetric conditions stemming from placental dysfunction, such as preeclampsia, are characterized by overexpression of cellular receptors, including the epidermal growth factor receptor (EGFR), making targeted LNP platforms an exciting potential treatment strategy for placental dysfunction during pregnancy. Herein, an EGFR antibody-conjugated LNP (aEGFR-LNP) platform was developed by engineering LNPs with increasing densities of antibody functionalization. aEGFR-LNPs were screened in vitro in immortalized placental trophoblasts and in vivo in non-pregnant and pregnant mice and compared to non-targeted formulations for extrahepatic, antibody-targeted mRNA LNP delivery to the placenta. Our top performing LNP with an intermediate density of antibody functionalization (1:5 aEGFR-LNP) mediated a âˆ¼twofold increase in mRNA delivery in murine placentas and a âˆ¼twofold increase in LNP uptake in EGFR-expressing trophoblasts compared to non-targeted counterparts. These results demonstrate the potential of antibody-conjugated LNPs for achieving extrahepatic tropism, and the ability of aEGFR-LNPs in promoting mRNA delivery to EGFR-expressing cell types in the placenta.


Asunto(s)
Receptores ErbB , Lípidos , Nanopartículas , Placenta , ARN Mensajero , Femenino , Animales , Receptores ErbB/metabolismo , Embarazo , Placenta/metabolismo , Nanopartículas/química , ARN Mensajero/administración & dosificación , Lípidos/química , Humanos , Ratones , Trofoblastos/metabolismo , Liposomas
11.
J Control Release ; 371: 179-192, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38795814

RESUMEN

The delivery of vaccines plays a pivotal role in influencing the strength and longevity of the immune response and controlling reactogenicity. Mucosal immunization, as compared to parenteral vaccination, could offer greater protection against respiratory infections while being less invasive. While oral vaccination has been presumed less effective and believed to target mainly the gastrointestinal tract, trans-buccal delivery using mucoadhesive films (MAF) may allow targeted delivery to the mucosa. Here we present an effective strategy for mucosal delivery of several vaccine platforms incorporated in MAF, including DNA plasmids, viral vectors, and lipid nanoparticles incorporating mRNA (mRNA/LNP). The mRNA/LNP vaccine formulation targeting SARS-CoV-2 as a proof of concept remained stable within MAF consisting of slowly releasing water-soluble polymers and an impermeable backing layer, facilitating enhanced penetration into the oral mucosa. This formulation elicited antibody and cellular responses comparable to the intramuscular injection, but also induced the production of mucosal IgAs, highlighting its efficacy, particularly for use as a booster vaccine and the potential advantage for protection against respiratory infections. The MAF vaccine preparation demonstrates significant advantages, such as efficient delivery, stability, and simple noninvasive administration with the potential to alleviate vaccine hesitancy.


Asunto(s)
Vacunas contra la COVID-19 , Nanopartículas , Animales , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/inmunología , Administración Oral , Nanopartículas/administración & dosificación , Mucosa Bucal/inmunología , COVID-19/prevención & control , Femenino , Ratones Endogámicos BALB C , SARS-CoV-2/inmunología , Ratones , Sistemas de Liberación de Medicamentos/métodos , Humanos , Lípidos/química , Lípidos/administración & dosificación , ARN Mensajero/administración & dosificación , Liposomas
12.
Biomater Sci ; 12(12): 3027-3044, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38712531

RESUMEN

Developing safe and effective delivery strategies for localizing messenger RNA (mRNA) payloads to the spleen is an important goal in the field of genetic medicine. Accomplishing this goal is challenging due to the instability, size, and charge of mRNA payloads. Here, we provide an analysis of non-viral delivery technologies that have been developed to deliver mRNA payloads to the spleen. Specifically, our review begins by outlining the unique anatomy and potential targets for mRNA delivery within the spleen. Next, we describe approaches in mRNA sequence engineering that can be used to improve mRNA delivery to the spleen. Then, we describe advances in non-viral carrier systems that can package and deliver mRNA payloads to the spleen, highlighting key advances in the literature in lipid nanoparticle (LNP) and polymer nanoparticle (PNP) technology platforms. Finally, we provide commentary and outlook on how splenic mRNA delivery may afford next-generation treatments for autoimmune disorders and cancers. In undertaking this approach, our goal with this review is to both establish a fundamental understanding of drug delivery challenges associated with localizing mRNA payloads to the spleen, while also broadly highlighting the potential to use these genetic medicines to treat disease.


Asunto(s)
Nanopartículas , ARN Mensajero , Bazo , Bazo/metabolismo , ARN Mensajero/administración & dosificación , ARN Mensajero/genética , Humanos , Animales , Nanopartículas/química , Polímeros/química , Lípidos/química , Técnicas de Transferencia de Gen , Sistemas de Liberación de Medicamentos
13.
J Control Release ; 370: 379-391, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38697317

RESUMEN

Although various types of mRNA-based vaccines have been explored, the optimal conditions for induction of both humoral and cellular immunity remain rather unknown. In this study, mRNA vaccines of nucleoside-modified mRNA in lipoplexes (LPXs) or lipid nanoparticles (LNPs) were evaluated after administration in mice through different routes, assessing mRNA delivery, tolerability and immunogenicity. In addition, we investigated whether mRNA vaccines could benefit from the inclusion of the adjuvant alpha-galactosylceramide (αGC), an invariant Natural Killer T (iNKT) cell ligand. Intramuscular (IM) vaccination with ovalbumin (OVA)-encoding mRNA encapsulated in LNPs adjuvanted with αGC showed the highest antibody- and CD8+ T cell responses. Furthermore, we observed that addition of signal peptides and endocytic sorting signals of either LAMP1 or HLA-B7 in the OVA-encoding mRNA sequence further enhanced CD8+ T cell activation although reducing the induction of IgG antibody responses. Moreover, mRNA LNPs with the ionizable lipidoid C12-200 exhibited higher pro-inflammatory- and reactogenic activity compared to mRNA LNPs with SM-102, correlating with increased T cell activation and antitumor potential. We also observed that αGC could further enhance the cellular immunity of clinically relevant mRNA LNP vaccines, thereby promoting therapeutic antitumor potential. Finally, a Listeria monocytogenes mRNA LNP vaccine supplemented with αGC showed synergistic protective effects against listeriosis, highlighting a key advantage of co-activating iNKT cells in antibacterial mRNA vaccines. Taken together, our study offers multiple insights for optimizing the design of mRNA vaccines for disease applications, such as cancer and intracellular bacterial infections.


Asunto(s)
Vacunas contra el Cáncer , Galactosilceramidas , Ratones Endogámicos C57BL , Nanopartículas , Ovalbúmina , Animales , Galactosilceramidas/administración & dosificación , Galactosilceramidas/química , Vacunas contra el Cáncer/administración & dosificación , Vacunas contra el Cáncer/inmunología , Femenino , Nanopartículas/química , Nanopartículas/administración & dosificación , Ovalbúmina/inmunología , Ovalbúmina/administración & dosificación , Vacunas de ARNm , Adyuvantes Inmunológicos/administración & dosificación , Linfocitos T CD8-positivos/inmunología , ARN Mensajero/administración & dosificación , Ratones , Vacunas Bacterianas/administración & dosificación , Vacunas Bacterianas/inmunología , Neoplasias/inmunología , Neoplasias/terapia , Lípidos/química , Liposomas
14.
J Control Release ; 370: 516-527, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38718875

RESUMEN

The success of mRNA vaccines against COVID-19 has enhanced the potential of lipid nanoparticles (LNPs) as a system for the delivery of mRNA. In this review, we describe our progress using a lipid library to engineer ionizable lipids and promote LNP technology from the viewpoints of safety, controlled biodistribution, and mRNA vaccines. These advancements in LNP technology are applied to cancer immunology, and a potential nano-DDS is constructed to evaluate immune status that is associated with a cancer-immunity cycle that includes the sub-cycles in tumor microenvironments. We also discuss the importance of the delivery of antigens and adjuvants in enhancing the cancer-immunity cycle. Recent progress in NK cell targeting in cancer immunotherapy is also introduced. Finally, the impact of next-generation DDS technology is explained using the MITO-Porter membrane fusion-based delivery system for the organelle targeting of the mitochondria. We introduce a successful example of the MITO-Porter used in a cell therapeutic strategy to treat cardiomyopathy.


Asunto(s)
Lípidos , Nanopartículas , Humanos , Nanopartículas/química , Nanopartículas/administración & dosificación , Lípidos/química , Animales , Neoplasias/terapia , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/inmunología , COVID-19 , ARN Mensajero/administración & dosificación , Orgánulos/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Inmunoterapia/métodos , Liposomas
15.
Anal Chem ; 96(22): 9236-9243, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38767294

RESUMEN

The early detection of nonalcoholic fatty liver disease (NAFLD) through bioluminescent probes is of great significance. However, there remains a challenge to apply them in nontransgenic natural animals due to the lack of exogenous luciferase. To address this issue, we herein report a new strategy for in situ monitoring of endogenous hydrogen sulfide (H2S) in the liver of NAFLD mice by leveraging a H2S-responsive bioluminescent probe (H-Luc) combined with firefly luciferase (fLuc) mRNA delivery. The probe H-Luc was created by installing a H2S recognition moiety, 2,4-dinitrophenol, onto the luciferase substrate (d-luciferin), which is allowed to release cage-free d-luciferin in the presence of H2S via a nucleophilic aromatic substitution reaction. In the meantime, the intracellular luciferase was introduced by lipid nanoparticle (LNP)-mediated fLuc mRNA delivery, rendering it suitable for bioluminescence (BL) imaging in vitro and in vivo. Based on this luciferase-luciferin system, the endogenous H2S could be sensitively and selectively detected in living cells, showing a low limit of detection (LOD) value of 0.72 µM. More importantly, after systematic administration of fLuc mRNA-loaded LNPs in vivo, H-Luc was able to successfully monitor the endogenous H2S levels in the NAFLD mouse model for the first time, displaying a 28-fold higher bioluminescence intensity than that in the liver of normal mice. We believe that this strategy may shed new light on the diagnosis of inflammatory liver disease, further elucidating the roles of H2S.


Asunto(s)
Sulfuro de Hidrógeno , Luciferasas de Luciérnaga , Mediciones Luminiscentes , Enfermedad del Hígado Graso no Alcohólico , ARN Mensajero , Animales , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Sulfuro de Hidrógeno/metabolismo , Sulfuro de Hidrógeno/análisis , Luciferasas de Luciérnaga/genética , Luciferasas de Luciérnaga/metabolismo , Ratones , ARN Mensajero/metabolismo , ARN Mensajero/administración & dosificación , Humanos , Sustancias Luminiscentes/química , Nanopartículas/química , Ratones Endogámicos C57BL
16.
J Am Chem Soc ; 146(22): 15085-15095, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38776232

RESUMEN

The spleen emerges as a pivotal target for mRNA delivery, prompting a continual quest for specialized and efficient lipid nanoparticles (LNPs) designed to enhance spleen-selective transfection efficiency. Here we report imidazole-containing ionizable lipids (IMILs) that demonstrate a pronounced preference for mRNA delivery into the spleen with exceptional transfection efficiency. We optimized IMIL structures by constructing and screening a multidimensional IMIL library containing multiple heads, tails, and linkers to perform a structure-activity correlation analysis. Following high-throughput in vivo screening, we identified A3B7C2 as a top-performing IMIL in spleen-specific mRNA delivery via the formulated LNPs, achieving a remarkable 98% proportion of splenic transfection. Moreover, A3B7C2-based LNPs are particularly potent in splenic dendritic cell transfection. Comparative analyses revealed that A3B7C2-based LNPs achieved a notable 2.8-fold and 12.9-fold increase in splenic mRNA transfection compared to SM102 and DLin-MC3-DMA lipid formulations, respectively. Additionally, our approach yielded an 18.3-fold enhancement in splenic mRNA expression compared to the SORT method without introducing additional anionic lipids. Collectively, these IMILs highlight promising avenues for further research in spleen-selective mRNA delivery. This work offers valuable insights for the swift discovery and rational design of ionizable lipid candidates tailored for spleen-selective transfection, thereby facilitating the application of mRNA therapeutics in spleen-related interventions.


Asunto(s)
Imidazoles , Lípidos , ARN Mensajero , Bazo , Bazo/metabolismo , Imidazoles/química , Lípidos/química , Lípidos/síntesis química , ARN Mensajero/administración & dosificación , ARN Mensajero/genética , Animales , Ratones , Transfección/métodos , Nanopartículas/química , Estructura Molecular
17.
ACS Nano ; 18(17): 11335-11348, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38621181

RESUMEN

Leveraging the extensive surface area of the lungs for gene therapy, the inhalation route offers distinct advantages for delivery. Clinical nebulizers that employ vibrating mesh technology are the standard choice for converting liquid medicines into aerosols. However, they have limitations when it comes to delivering mRNA through inhalation, including severe damage to nanoparticles due to shearing forces. Here, we introduce a microfluidic aerosolization platform (MAP) that preserves the structural and physicochemical integrity of lipid nanoparticles, enabling safe and efficient delivery of mRNA to the respiratory system. Our results demonstrated the superiority of the MAP over the conventional vibrating mesh nebulizer, as it avoided problems such as particle aggregation, loss of mRNA encapsulation, and deformation of the nanoparticle morphology. Notably, aerosolized nanoparticles generated by the microfluidic device led to enhanced transfection efficiency across various cell lines. In vivo experiments with mice that inhaled these aerosolized nanoparticles revealed successful lung-specific mRNA transfection without observable signs of toxicity. This MAP may represent an advancement for the pulmonary gene therapy, enabling precise and effective delivery of aerosolized nanoparticles.


Asunto(s)
Aerosoles , Liposomas , Nanopartículas , ARN Mensajero , Nanopartículas/química , Animales , ARN Mensajero/genética , ARN Mensajero/administración & dosificación , Aerosoles/química , Ratones , Administración por Inhalación , Humanos , Lípidos/química , Microfluídica/métodos , Tamaño de la Partícula , Dispositivos Laboratorio en un Chip
18.
Angew Chem Int Ed Engl ; 63(26): e202405444, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38637320

RESUMEN

Unlocking the full potential of mRNA immunotherapy necessitates targeted delivery to specific cell subsets in the spleen. Four-component lipid nanoparticles (LNPs) utilized in numerous clinical trials are primarily limited in hepatocyte and muscular targeting, highlighting the imperative demand for targeted and simplified non-liver mRNA delivery systems. Herein, we report the rational design of one-component ionizable cationic lipids to selectively deliver mRNA to the spleen and T cells with high efficacy. Unlike the tertiary amine-based ionizable lipids involved in LNPs, the proposed cationic lipids rich in secondary amines can efficiently deliver mRNA both in vitro and in vivo as the standalone carriers. Furthermore, these vectors facilitate efficacious mRNA delivery to the T cell subsets following intravenous administration, demonstrating substantial potential for advancing immunotherapy applications. This straightforward strategy extends the utility of lipid family for extrahepatic mRNA delivery, offering new insights into vector development beyond LNPs to further the field of precise mRNA therapy.


Asunto(s)
Cationes , Lípidos , ARN Mensajero , Bazo , Linfocitos T , Bazo/metabolismo , Bazo/citología , ARN Mensajero/administración & dosificación , ARN Mensajero/genética , Lípidos/química , Cationes/química , Animales , Linfocitos T/metabolismo , Ratones , Nanopartículas/química , Humanos
19.
J Control Release ; 370: 287-301, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38679162

RESUMEN

The success of lipid nanoparticles (LNPs) in treating COVID-19 promotes further research of mRNA vaccines for cancer vaccination. Aiming at overcoming the constraints of currently available mRNA carriers, various alternative nano-vectors have been developed for delivering tumor antigen encoding mRNA and showed versatility to induce potent anti-tumor immunity. The rationally designed nano-vaccines increase the immune activation capacity of the mRNA vaccines by promoting crucial aspects including mRNA stability, cellular uptake, endosomal escape and targeting of immune cells or organs. Herein, we summarized the research progress of various mRNA based nano-vaccines that have been reported for cancer vaccination, including LNPs, lipid enveloped hybrid nanoparticles, polymeric nanoparticles etc. Several strategies that have been reported for further enhancing the immune stimulation efficacy of mRNA nano-vaccines, including developing nano-vaccines for co-delivering adjuvants, combination of immune checkpoint inhibitors, and optimizing the injection routes for boosting immune responses, have been reviewed. The progress of mRNA nano-vaccines in clinical trials and the prospect of the mRNA vaccines for cancer vaccination are also discussed.


Asunto(s)
Vacunas contra el Cáncer , Nanopartículas , Neoplasias , Vacunas de ARNm , Humanos , Vacunas contra el Cáncer/administración & dosificación , Vacunas contra el Cáncer/inmunología , Neoplasias/terapia , Neoplasias/inmunología , Nanopartículas/administración & dosificación , Animales , Vacunas de ARNm/administración & dosificación , ARN Mensajero/administración & dosificación , ARN Mensajero/inmunología , COVID-19/prevención & control , COVID-19/inmunología , Sistemas de Liberación de Medicamentos/métodos , Lípidos/química , Liposomas
20.
Nature ; 628(8009): 872-877, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38570682

RESUMEN

Propionic acidaemia is a rare disorder caused by defects in the propionyl-coenzyme A carboxylase α or ß (PCCA or PCCB) subunits that leads to an accumulation of toxic metabolites and to recurrent, life-threatening metabolic decompensation events. Here we report interim analyses of a first-in-human, phase 1/2, open-label, dose-optimization study and an extension study evaluating the safety and efficacy of mRNA-3927, a dual mRNA therapy encoding PCCA and PCCB. As of 31 May 2023, 16 participants were enrolled across 5 dose cohorts. Twelve of the 16 participants completed the dose-optimization study and enrolled in the extension study. A total of 346 intravenous doses of mRNA-3927 were administered over a total of 15.69 person-years of treatment. No dose-limiting toxicities occurred. Treatment-emergent adverse events were reported in 15 out of the 16 (93.8%) participants. Preliminary analysis suggests an increase in the exposure to mRNA-3927 with dose escalation, and a 70% reduction in the risk of metabolic decompensation events among 8 participants who reported them in the 12-month pretreatment period.


Asunto(s)
Acidemia Propiónica , Propionil-Coenzima A Carboxilasa , ARN Mensajero , Adolescente , Adulto , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Adulto Joven , Administración Intravenosa , Relación Dosis-Respuesta a Droga , Acidemia Propiónica/genética , Acidemia Propiónica/terapia , Propionil-Coenzima A Carboxilasa/genética , Propionil-Coenzima A Carboxilasa/metabolismo , ARN Mensajero/administración & dosificación , ARN Mensajero/efectos adversos , ARN Mensajero/genética , ARN Mensajero/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...