Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 318
Filtrar
1.
Cell Commun Signal ; 22(1): 450, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39327600

RESUMEN

Mitochondrial activity directs neuronal differentiation dynamics during brain development. In this context, the long-established metabolic coupling of mitochondria and the eukaryotic host falls short of a satisfactory mechanistic explanation, hinting at an undisclosed facet of mitochondrial function. Here, we reveal an RNA-based inter-organellar communication mode that complements metabolic coupling of host-mitochondria and underpins neuronal differentiation. We show that within minutes of exposure to differentiation cues and activation of the electron transport chain, the mitochondrial outer membrane transiently fuses with the nuclear membrane of neural progenitors, leading to efflux of nuclear-encoded RNAs (neRNA) into the positively charged mitochondrial intermembrane space. Subsequent degradation of mitochondrial neRNAs by Polynucleotide phosphorylase 1 (PNPase) located in the intermembrane space curbs the transcriptomic memory of progenitor cells. Further, acquisition of neRNA by mitochondria leads to a collapse of proton motive force, suppression of ATP production, and a resultant amplification of autophagic flux that attenuates proteomic memory. Collectively, these events force the progenitor cells towards a "tipping point" characterised by emergence of a competing neuronal differentiation program. It appears that neuronal differentiation is a consequence of reprogrammed coupling of metabolomic and transcriptomic landscapes of progenitor cells, with mitochondria emerging as key "reprogrammers" that operate by acquiring and metabolising neRNAs. However, the documented role of mitochondria as "reprogrammers" of differentiation remains to be validated in other neuronal lineages and in vivo.


Asunto(s)
Diferenciación Celular , Mitocondrias , Neuronas , ARN Nuclear , Mitocondrias/metabolismo , Neuronas/metabolismo , Neuronas/citología , Animales , ARN Nuclear/metabolismo , ARN Nuclear/genética , Humanos , Ratones , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Neurogénesis/genética
2.
Biochem Soc Trans ; 52(4): 1605-1615, 2024 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-39082979

RESUMEN

Although the majority of RNAs are retained in the nucleus, their significance is often overlooked. However, it is now becoming clear that nuclear RNA forms a dynamic structure through interacting with various proteins that can influence the three-dimensional structure of chromatin. We review the emerging evidence for a nuclear RNA mesh or gel, highlighting the interplay between DNA, RNA and RNA-binding proteins (RBPs), and assessing the critical role of protein and RNA in governing chromatin architecture. We also discuss a proposed role for the formation and regulation of the nuclear gel in transcriptional control. We suggest that it may concentrate the transcriptional machinery either by direct binding or inducing RBPs to form microphase condensates, nanometre sized membraneless structures with distinct properties to the surrounding medium and an enrichment of particular macromolecules.


Asunto(s)
Cromatina , Transcripción Genética , Cromatina/metabolismo , Humanos , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , ARN Nuclear/metabolismo , ARN Nuclear/genética , Animales , Núcleo Celular/metabolismo , ARN/metabolismo , ARN/genética , ADN/metabolismo
3.
Mol Cell ; 84(11): 2014-2016, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38848690

RESUMEN

In a recent publication in Science, Zocher et al.1 identify and characterize long-lived nuclear RNA in the mouse brain, suggesting their potential roles as guardians of neuronal longevity.


Asunto(s)
Neuronas , Animales , Neuronas/metabolismo , Ratones , Longevidad/genética , Encéfalo/metabolismo , Humanos , ARN Nuclear/metabolismo , ARN Nuclear/genética
4.
Cell Stem Cell ; 31(5): 583-585, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38701751

RESUMEN

How nuclear RNA homeostasis impacts cellular functions remains elusive. In this issue of Cell Stem Cell, Han et al.1 utilized a controllable protein degradation system targeting EXOSC2 to perturb RNA homeostasis in mouse pluripotent embryonic stem cells, revealing its vital role in orchestrating crucial nuclear events for cellular fitness.


Asunto(s)
Homeostasis , ARN Nuclear , Animales , Ratones , ARN Nuclear/metabolismo , ARN Nuclear/genética , Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , Complejo Multienzimático de Ribonucleasas del Exosoma/genética , Núcleo Celular/metabolismo , Células Madre Embrionarias de Ratones/metabolismo , Células Madre Embrionarias de Ratones/citología , Humanos , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , ARN/metabolismo , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/citología
5.
Science ; 384(6691): 31-32, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38574156

RESUMEN

RNA labeled in young mice is detected 2 years later in adult mouse brains.


Asunto(s)
ARN Nuclear , ARN , Animales , Ratones , ARN Nuclear/genética , ARN/genética , Encéfalo
6.
Cell Stem Cell ; 31(5): 694-716.e11, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38631356

RESUMEN

Understanding cellular coordination remains a challenge despite knowledge of individual pathways. The RNA exosome, targeting a wide range of RNA substrates, is often downregulated in cellular senescence. Utilizing an auxin-inducible system, we observed that RNA exosome depletion in embryonic stem cells significantly affects the transcriptome and proteome, causing pluripotency loss and pre-senescence onset. Mechanistically, exosome depletion triggers acute nuclear RNA aggregation, disrupting nuclear RNA-protein equilibrium. This disturbance limits nuclear protein availability and hinders polymerase initiation and engagement, reducing gene transcription. Concurrently, it promptly disrupts nucleolar transcription, ribosomal processes, and nuclear exporting, resulting in a translational shutdown. Prolonged exosome depletion induces nuclear structural changes resembling senescent cells, including aberrant chromatin compaction, chromocenter disassembly, and intensified heterochromatic foci. These effects suggest that the dynamic turnover of nuclear RNA orchestrates crosstalk between essential processes to optimize cellular function. Disruptions in nuclear RNA homeostasis result in systemic functional decline, altering the cell state and promoting senescence.


Asunto(s)
Senescencia Celular , Homeostasis , ARN Nuclear , Animales , ARN Nuclear/metabolismo , Ratones , Diferenciación Celular , Linaje de la Célula , Núcleo Celular/metabolismo , Transcriptoma/genética , Humanos
7.
Science ; 384(6691): 53-59, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38574132

RESUMEN

Genomic DNA that resides in the nuclei of mammalian neurons can be as old as the organism itself. The life span of nuclear RNAs, which are critical for proper chromatin architecture and transcription regulation, has not been determined in adult tissues. In this work, we identified and characterized nuclear RNAs that do not turn over for at least 2 years in a subset of postnatally born cells in the mouse brain. These long-lived RNAs were stably retained in nuclei in a neural cell type-specific manner and were required for the maintenance of heterochromatin. Thus, the life span of neural cells may depend on both the molecular longevity of DNA for the storage of genetic information and also the extreme stability of RNA for the functional organization of chromatin.


Asunto(s)
Encéfalo , Cromatina , ARN Nuclear , Animales , Ratones , Encéfalo/metabolismo , Regulación de la Expresión Génica , Heterocromatina/genética , ARN Nuclear/genética
8.
Biochemistry (Mosc) ; 89(1): 159-172, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38467552

RESUMEN

N6-methyladenosine (m6A) is one of the most common modifications in both eukaryotic and prokaryotic mRNAs. It has been experimentally confirmed that m6A methylation is involved in the regulation of stability and translation of various mRNAs. Until recently, the majority of m6A-related studies have been focused on the cytoplasmic functions of this modification. Here, we review new data on the role of m6A in several key biological processes taking place in the cell nucleus, such as transcription, chromatin organization, splicing, nuclear-cytoplasmic transport, and R-loop metabolism. Based on analysis of these data, we suggest that m6A methylation of nuclear RNAs is another level of gene expression regulation which, together with DNA methylation and histone modifications, controls chromatin structure and functioning in various biological contexts.


Asunto(s)
Adenosina/análogos & derivados , Metiltransferasas , ARN Nuclear , Metiltransferasas/genética , ARN Nuclear/metabolismo , Metilación , Regulación de la Expresión Génica , ARN Mensajero/metabolismo
9.
BMC Genomics ; 25(1): 77, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38243187

RESUMEN

BACKGROUND: The Peruvian 'chanque' or Chilean 'loco' Concholepas concholepas is an economically, ecologically, and culturally important muricid gastropod heavily exploited by artisanal fisheries in the temperate southeastern Pacific Ocean. In this study, we have profited from a set of bioinformatics tools to recover important biological information of C. concholepas from low-coverage short-read NGS datasets. Specifically, we calculated the size of the nuclear genome, ploidy, and estimated transposable elements content using an in silico k-mer approach, we discovered, annotated, and quantified those transposable elements, we assembled and annotated the 45S rDNA RNA operon and mitochondrial genome, and we confirmed the phylogenetic position of C. concholepas within the muricid subfamily Rapaninae based on translated protein coding genes. RESULTS: Using a k-mer approach, the haploid genome size estimated for the predicted diploid genome of C. concholepas varied between 1.83 Gbp (with kmer = 24) and 2.32 Gbp (with kmer = 36). Between half and two thirds of the nuclear genome of C. concholepas was composed of transposable elements. The most common transposable elements were classified as Long Interspersed Nuclear Elements and Short Interspersed Nuclear Elements, which were more abundant than DNA transposons, simple repeats, and Long Terminal Repeats. Less abundant repeat elements included Helitron mobile elements, 45S rRNA DNA, and Satellite DNA, among a few others.The 45S rRNA DNA operon of C. concholepas that encodes for the ssrRNA, 5.8S rRNA, and lsrRNA genes was assembled into a single contig 8,090 bp long. The assembled mitochondrial genome of C. concholepas is 15,449 bp long and encodes 13 protein coding genes, two ribosomal genes, and 22 transfer RNAs. CONCLUSION: The information gained by this study will inform the assembly of a high quality nuclear genome for C. concholepas and will support bioprospecting and biomonitoring using environmental DNA to advance development of conservation and management plans in this overexploited marine snail.


Asunto(s)
Gastrópodos , Genoma Mitocondrial , Animales , Gastrópodos/genética , Gastrópodos/metabolismo , Elementos Transponibles de ADN/genética , Tamaño del Genoma , Filogenia , ARN Nuclear/metabolismo , Caracoles/genética , Operón , Ploidias
10.
Cell Rep ; 43(1): 113639, 2024 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-38175753

RESUMEN

The nuclear cap-binding complex (CBC) coordinates co-transcriptional maturation, transport, or degradation of nascent RNA polymerase II (Pol II) transcripts. CBC with its partner ARS2 forms mutually exclusive complexes with diverse "effectors" that promote either productive or destructive outcomes. Combining AlphaFold predictions with structural and biochemical validation, we show how effectors NCBP3, NELF-E, ARS2, PHAX, and ZC3H18 form competing binary complexes with CBC and how PHAX, NCBP3, ZC3H18, and other effectors compete for binding to ARS2. In ternary CBC-ARS2 complexes with PHAX, NCBP3, or ZC3H18, ARS2 is responsible for the initial effector recruitment but inhibits their direct binding to the CBC. We show that in vivo ZC3H18 binding to both CBC and ARS2 is required for nuclear RNA degradation. We propose that recruitment of PHAX to CBC-ARS2 can lead, with appropriate cues, to competitive displacement of ARS2 and ZC3H18 from the CBC, thus promoting a productive rather than a degradative RNA fate.


Asunto(s)
Complejo Proteico Nuclear de Unión a la Caperuza , ARN , Unión Competitiva , Complejo Proteico Nuclear de Unión a la Caperuza/química , ARN/genética , ARN Polimerasa II/metabolismo , ARN Nuclear
11.
J Biol Chem ; 300(2): 105646, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38219817

RESUMEN

The RNA exosome is a ribonuclease complex that mediates both RNA processing and degradation. This complex is evolutionarily conserved, ubiquitously expressed, and required for fundamental cellular functions, including rRNA processing. The RNA exosome plays roles in regulating gene expression and protecting the genome, including modulating the accumulation of RNA-DNA hybrids (R-loops). The function of the RNA exosome is facilitated by cofactors, such as the RNA helicase MTR4, which binds/remodels RNAs. Recently, missense mutations in RNA exosome subunit genes have been linked to neurological diseases. One possibility to explain why missense mutations in genes encoding RNA exosome subunits lead to neurological diseases is that the complex may interact with cell- or tissue-specific cofactors that are impacted by these changes. To begin addressing this question, we performed immunoprecipitation of the RNA exosome subunit, EXOSC3, in a neuronal cell line (N2A), followed by proteomic analyses to identify novel interactors. We identified the putative RNA helicase, DDX1, as an interactor. DDX1 plays roles in double-strand break repair, rRNA processing, and R-loop modulation. To explore the functional connections between EXOSC3 and DDX1, we examined the interaction following double-strand breaks and analyzed changes in R-loops in N2A cells depleted for EXOSC3 or DDX1 by DNA/RNA immunoprecipitation followed by sequencing. We find that EXOSC3 interaction with DDX1 is decreased in the presence of DNA damage and that loss of EXOSC3 or DDX1 alters R-loops. These results suggest EXOSC3 and DDX1 interact during events of cellular homeostasis and potentially suppress unscrupulous expression of genes promoting neuronal projection.


Asunto(s)
Exosomas , ARN , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , ADN/metabolismo , Complejo Multienzimático de Ribonucleasas del Exosoma/genética , Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , Exosomas/genética , Exosomas/metabolismo , Proteómica , Estructuras R-Loop , ARN/metabolismo , ARN Helicasas/metabolismo , ARN Nuclear/metabolismo , Línea Celular , Animales , Ratones
12.
Mol Cell ; 83(23): 4255-4271.e9, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-37995687

RESUMEN

Endogenous retroviruses (ERVs) are remnants of ancient parasitic infections and comprise sizable portions of most genomes. Although epigenetic mechanisms silence most ERVs by generating a repressive environment that prevents their expression (heterochromatin), little is known about mechanisms silencing ERVs residing in open regions of the genome (euchromatin). This is particularly important during embryonic development, where induction and repression of distinct classes of ERVs occur in short temporal windows. Here, we demonstrate that transcription-associated RNA degradation by the nuclear RNA exosome and Integrator is a regulatory mechanism that controls the productive transcription of most genes and many ERVs involved in preimplantation development. Disrupting nuclear RNA catabolism promotes dedifferentiation to a totipotent-like state characterized by defects in RNAPII elongation and decreased expression of long genes (gene-length asymmetry). Our results indicate that RNA catabolism is a core regulatory module of gene networks that safeguards RNAPII activity, ERV expression, cell identity, and developmental potency.


Asunto(s)
Retrovirus Endógenos , Retrovirus Endógenos/genética , ARN Nuclear , Epigénesis Genética , Heterocromatina , Expresión Génica
13.
Nat Commun ; 14(1): 6327, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37816771

RESUMEN

N-acetyltransferase 10 (NAT10) is an N4-acetylcytidine (ac4C) writer that catalyzes RNA acetylation at cytidine N4 position on tRNAs, rRNAs and mRNAs. Recently, NAT10 and the associated ac4C have been reported to increase the stability of HIV-1 transcripts. Here, we show that NAT10 catalyzes ac4C addition to the polyadenylated nuclear RNA (PAN), a long non-coding RNA encoded by the oncogenic DNA virus Kaposi's sarcoma-associated herpesvirus (KSHV), triggering viral lytic reactivation from latency. Mutagenesis of ac4C sites in PAN RNA in the context of KSHV infection abolishes PAN ac4C modifications, downregulates the expression of viral lytic genes and reduces virion production. NAT10 knockdown or mutagenesis erases ac4C modifications of PAN RNA and increases its instability, and prevents KSHV reactivation. Furthermore, PAN ac4C modification promotes NAT10 recruitment of IFN-γ-inducible protein-16 (IFI16) mRNA, resulting in its ac4C acetylation, mRNA stability and translation, and eventual inflammasome activation. These results reveal a novel mechanism of viral and host ac4C modifications and the associated complexes as a critical switch of KSHV replication and antiviral immunity.


Asunto(s)
Herpesvirus Humano 8 , Herpesvirus Humano 8/metabolismo , Inflamasomas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Nuclear , Citidina/metabolismo , Estabilidad del ARN , Replicación Viral , Regulación Viral de la Expresión Génica
14.
Cell Rep ; 42(11): 113325, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37889751

RESUMEN

The RNA exosome is a versatile ribonuclease. In the nucleoplasm of mammalian cells, it is assisted by its adaptors the nuclear exosome targeting (NEXT) complex and the poly(A) exosome targeting (PAXT) connection. Via its association with the ARS2 and ZC3H18 proteins, NEXT/exosome is recruited to capped and short unadenylated transcripts. Conversely, PAXT/exosome is considered to target longer and adenylated substrates via their poly(A) tails. Here, mutational analysis of the core PAXT component ZFC3H1 uncovers a separate branch of the PAXT pathway, which targets short adenylated RNAs and relies on a direct ARS2-ZFC3H1 interaction. We further demonstrate that similar acidic-rich short linear motifs of ZFC3H1 and ZC3H18 compete for a common ARS2 epitope. Consequently, while promoting NEXT function, ZC3H18 antagonizes PAXT activity. We suggest that this organization of RNA decay complexes provides co-activation of NEXT and PAXT at loci with abundant production of short exosome substrates.


Asunto(s)
ARN Nuclear , Proteínas de Unión al ARN , Animales , Núcleo Celular/metabolismo , Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , Mamíferos , Estabilidad del ARN/genética , ARN Mensajero/genética , ARN Nuclear/genética , Proteínas de Unión al ARN/genética
15.
STAR Protoc ; 4(3): 102528, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37632746

RESUMEN

Here, we present a detailed protocol to study the role of a human nuclear m6A RNA reader, YTHDC1, on chromatin-associated RNA targets. We describe steps for RNA extraction coupled to subnuclear fractionation to identify and study RNA-based regulations that take place in the chromatin-associated fraction. We then detail an RNA immunoprecipitation procedure adapted to identify chromatin-associated RNA targets. This protocol can be adapted to other human or mammalian chromatin-associated RNA binding proteins. For complete details on the use and execution of this protocol, please refer to Timcheva et al.1.


Asunto(s)
Adenina/análogos & derivados , Cromatina , ARN , Animales , Humanos , Cromatina/genética , ARN/genética , ARN Nuclear , ARN Nuclear Pequeño , Mamíferos
16.
J Vis Exp ; (194)2023 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-37092831

RESUMEN

The separation of intracellular components has been a key tool in cellular biology for many years now and has been able to provide useful insight into how their location can impact their function. In particular, the separation of nuclear and cytoplasmic RNA has become important in the context of cancer cells and the quest to find new targets for drugs. Purchasing kits for nuclear-cytoplasmic RNA extraction can be costly when many of the required materials can be found within a typical lab setting. Using the present method, which can replace more expensive kits or other time-consuming processes, only a homemade lysis buffer, a benchtop centrifuge, and RNA isolation purification columns are needed to isolate nuclear and cytoplasmic RNA. Lysis buffer is used to gently lyse the cell's outer membrane without affecting the integrity of the nuclear envelope, allowing for releasing its intracellular components. Then, the nuclei can be isolated by a simple centrifugation step since they possess a higher density than the lysis solution. Centrifugation is utilized to separate these areas based on their density differences to isolate subcellular elements in the nucleus from those in the cytoplasm. Once the centrifugation has isolated the different components, an RNA clean-up kit is utilized to purify the RNA content, and qPCR is performed to validate the separation quality, quantified by the amount of nuclear and cytoplasmic RNA in the different fractions. Statistically significant levels of separation were achieved, illustrating the protocol's effectiveness. In addition, this system can be adapted for the isolation of different types of RNA (total, small RNA, etc.), which allows for targeted studying of cytoplasm-nucleus interactions, and aids in understanding the differences in the function of RNA that reside in the nucleus and cytoplasm.


Asunto(s)
Núcleo Celular , ARN Nuclear , Citosol , Citoplasma , ARN , Células Cultivadas
17.
Science ; 380(6642): eabn7625, 2023 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-37079685

RESUMEN

RNA surveillance pathways detect and degrade defective transcripts to ensure RNA fidelity. We found that disrupted nuclear RNA surveillance is oncogenic. Cyclin-dependent kinase 13 (CDK13) is mutated in melanoma, and patient-mutated CDK13 accelerates zebrafish melanoma. CDK13 mutation causes aberrant RNA stabilization. CDK13 is required for ZC3H14 phosphorylation, which is necessary and sufficient to promote nuclear RNA degradation. Mutant CDK13 fails to activate nuclear RNA surveillance, causing aberrant protein-coding transcripts to be stabilized and translated. Forced aberrant RNA expression accelerates melanoma in zebrafish. We found recurrent mutations in genes encoding nuclear RNA surveillance components in many malignancies, establishing nuclear RNA surveillance as a tumor-suppressive pathway. Activating nuclear RNA surveillance is crucial to avoid accumulation of aberrant RNAs and their ensuing consequences in development and disease.


Asunto(s)
Proteína Quinasa CDC2 , Carcinógenos , Melanoma , Estabilidad del ARN , ARN Nuclear , Neoplasias Cutáneas , Animales , Proteína Quinasa CDC2/genética , Melanoma/genética , Mutación , ARN Nuclear/genética , Neoplasias Cutáneas/genética , Pez Cebra , Humanos
18.
Mol Biol Cell ; 34(4): ar32, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36790906

RESUMEN

Mitosis results in a dramatic reorganization of chromatin structure to promote chromosome compaction and segregation to daughter cells. Consequently, mitotic entry is accompanied by transcriptional silencing and removal of most chromatin-bound RNA from chromosomes. As cells exit mitosis, chromatin rapidly decondenses and transcription restarts as waves of differential gene expression. However, little is known about the fate of chromatin-bound RNAs following cell division. Here we explored whether nuclear RNA from the previous cell cycle is present in G1 nuclei following mitosis. We found that half of all nuclear RNA is inherited in a transcription-independent manner following mitosis. Interestingly, the snRNA U2 is efficiently inherited by G1 nuclei, while the lncRNAs NEAT1 and MALAT1 show no inheritance following mitosis. We found that the nuclear protein SAF-A, which is hypothesized to tether RNA to DNA, did not play a prominent role in nuclear RNA inheritance, indicating that the mechanism for RNA inheritance may not involve RNA chaperones that have chromatin-binding activity. Instead, we observe that the timing of RNA inheritance indicates that a select group of nuclear RNAs are reimported into the nucleus after the nuclear envelope has reassembled. Our work demonstrates that there is a fraction of nuclear RNA from the previous cell cycle that is reimported following mitosis and suggests that mitosis may serve as a time to reset the interaction of lncRNAs with chromatin.


Asunto(s)
ARN Largo no Codificante , ARN Nuclear , Transporte Activo de Núcleo Celular , ARN Nuclear/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Mitosis , Cromatina
19.
Proc Natl Acad Sci U S A ; 119(48): e2210532119, 2022 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-36409902

RESUMEN

A hexanucleotide repeat expansion in intron 1 of the C9orf72 gene is the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia, or c9ALS/FTD. The RNA transcribed from the expansion, r(G4C2)exp, causes various pathologies, including intron retention, aberrant translation that produces toxic dipeptide repeat proteins (DPRs), and sequestration of RNA-binding proteins (RBPs) in RNA foci. Here, we describe a small molecule that potently and selectively interacts with r(G4C2)exp and mitigates disease pathologies in spinal neurons differentiated from c9ALS patient-derived induced pluripotent stem cells (iPSCs) and in two c9ALS/FTD mouse models. These studies reveal a mode of action whereby a small molecule diminishes intron retention caused by the r(G4C2)exp and allows the liberated intron to be eliminated by the nuclear RNA exosome, a multi-subunit degradation complex. Our findings highlight the complexity of mechanisms available to RNA-binding small molecules to alleviate disease pathologies and establishes a pipeline for the design of brain penetrant small molecules targeting RNA with novel modes of action in vivo.


Asunto(s)
Exosomas , Demencia Frontotemporal , Animales , Ratones , Demencia Frontotemporal/metabolismo , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , ARN/genética , Exosomas/metabolismo , Barrera Hematoencefálica/metabolismo , Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , Encéfalo/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , ARN Nuclear
20.
Acta Neuropathol Commun ; 10(1): 149, 2022 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-36274170

RESUMEN

The pathophysiology of epilepsy underlies a complex network dysfunction between neurons and glia, the molecular cell type-specific contributions of which remain poorly defined in the human disease. In this study, we validated a method that simultaneously isolates neuronal (NEUN +), astrocyte (PAX6 + NEUN-), and oligodendroglial progenitor (OPC) (OLIG2 + NEUN-) enriched nuclei populations from non-diseased, fresh-frozen human neocortex and then applied it to characterize the distinct transcriptomes of such populations isolated from electrode-mapped temporal lobe epilepsy (TLE) surgical samples. Nuclear RNA-seq confirmed cell type specificity and informed both common and distinct pathways associated with TLE in astrocytes, OPCs, and neurons. Compared to postmortem control, the transcriptome of epilepsy astrocytes showed downregulation of mature astrocyte functions and upregulation of development-related genes. To gain further insight into glial heterogeneity in TLE, we performed single cell transcriptomics (scRNA-seq) on four additional human TLE samples. Analysis of the integrated TLE dataset uncovered a prominent subpopulation of glia that express a hybrid signature of both reactive astrocyte and OPC markers, including many cells with a mixed GFAP + OLIG2 + phenotype. A further integrated analysis of this TLE scRNA-seq dataset and a previously published normal human temporal lobe scRNA-seq dataset confirmed the unique presence of hybrid glia only in TLE. Pseudotime analysis revealed cell transition trajectories stemming from this hybrid population towards both OPCs and reactive astrocytes. Immunofluorescence studies in human TLE samples confirmed the rare presence of GFAP + OLIG2 + glia, including some cells with proliferative activity, and functional analysis of cells isolated directly from these samples disclosed abnormal neurosphere formation in vitro. Overall, cell type-specific isolation of glia from surgical epilepsy samples combined with transcriptomic analyses uncovered abnormal glial subpopulations with de-differentiated phenotype, motivating further studies into the dysfunctional role of reactive glia in temporal lobe epilepsy.


Asunto(s)
Epilepsia del Lóbulo Temporal , Humanos , Epilepsia del Lóbulo Temporal/genética , Epilepsia del Lóbulo Temporal/patología , Transcriptoma , Neuroglía/patología , Astrocitos/patología , ARN Nuclear/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...