Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 50(D1): D211-D221, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34570238

RESUMEN

Small non-coding RNAs (sncRNAs) are pervasive regulators of physiological and pathological processes. We previously developed the human miRNA Tissue Atlas, detailing the expression of miRNAs across organs in the human body. Here, we present an updated resource containing sequencing data of 188 tissue samples comprising 21 organ types retrieved from six humans. Sampling the organs from the same bodies minimizes intra-individual variability and facilitates the making of a precise high-resolution body map of the non-coding transcriptome. The data allow shedding light on the organ- and organ system-specificity of piwi-interacting RNAs (piRNAs), transfer RNAs (tRNAs), microRNAs (miRNAs) and other non-coding RNAs. As use case of our resource, we describe the identification of highly specific ncRNAs in different organs. The update also contains 58 samples from six tissues of the Tabula Muris collection, allowing to check if the tissue specificity is evolutionary conserved between Homo sapiens and Mus musculus. The updated resource of 87 252 non-coding RNAs from nine non-coding RNA classes for all organs and organ systems is available online without any restrictions (https://www.ccb.uni-saarland.de/tissueatlas2).


Asunto(s)
MicroARNs/genética , ARN Largo no Codificante/genética , ARN Interferente Pequeño/genética , ARN Nuclear Pequeño/genética , ARN Nucleolar Pequeño/genética , ARN de Transferencia/genética , Programas Informáticos , Animales , Atlas como Asunto , Femenino , Humanos , Internet , Masculino , Ratones , MicroARNs/clasificación , MicroARNs/metabolismo , Especificidad de Órganos , ARN Largo no Codificante/clasificación , ARN Largo no Codificante/metabolismo , ARN Interferente Pequeño/clasificación , ARN Interferente Pequeño/metabolismo , ARN Nuclear Pequeño/clasificación , ARN Nuclear Pequeño/metabolismo , ARN Nucleolar Pequeño/clasificación , ARN Nucleolar Pequeño/metabolismo , ARN de Transferencia/clasificación , ARN de Transferencia/metabolismo , Transcriptoma
2.
RNA Biol ; 18(8): 1152-1159, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33103602

RESUMEN

Bacterial small-RNA (sRNA) sequences are functional RNAs, which play an important role in regulating the expression of a diverse class of genes. It is thus critical to identify such sRNA sequences and their probable mRNA targets. Here, we discuss new procedures to identify and characterize sRNA and their targets via the introduction of an integrated online platform 'PresRAT'. PresRAT uses the primary and secondary structural attributes of sRNA sequences to predict sRNA from a given sequence or bacterial genome. PresRAT also finds probable target mRNAs of sRNA sequences from a given bacterial chromosome and further concentrates on the identification of the probable sRNA-mRNA binding regions. Using PresRAT, we have identified a total of 66,209 potential sRNA sequences from 292 bacterial genomes and 2247 potential targets from 13 bacterial genomes. We have also implemented a protocol to build and refine 3D models of sRNA and sRNA-mRNA duplex regions and generated 3D models of 50 known sRNAs and 81 sRNA-mRNA duplexes using this platform. Along with the server part, PresRAT also contains a database section, which enlists the predicted sRNA sequences, sRNA targets, and their corresponding 3D models with structural dynamics information.


Asunto(s)
Bacterias/genética , ARN Bacteriano/química , ARN Mensajero/química , ARN Citoplasmático Pequeño/química , ARN Nuclear Pequeño/química , Programas Informáticos , Bacterias/metabolismo , Emparejamiento Base , Benchmarking , Cromosomas Bacterianos/química , Bases de Datos de Ácidos Nucleicos , Conformación de Ácido Nucleico , Hibridación de Ácido Nucleico , ARN Bacteriano/clasificación , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN Mensajero/clasificación , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Citoplasmático Pequeño/genética , ARN Citoplasmático Pequeño/metabolismo , ARN Nuclear Pequeño/clasificación , ARN Nuclear Pequeño/genética , ARN Nuclear Pequeño/metabolismo
3.
Gigascience ; 7(2)2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29267854

RESUMEN

Background: Milu, also known as Père David's deer (Elaphurus davidianus), was widely distributed in East Asia but recently experienced a severe bottleneck. Only 18 survived by the end of the 19th century, and the current population of 4500 individuals was propagated from just 11 kept by the 11th British Duke of Bedford. This species is known for its distinguishable appearance, the driving force behind which is still a mystery. To aid efforts to explore these phenomena, we constructed a draft genome of the species. Findings: In total, we generated 321.86 gigabases (Gb) of raw DNA sequence from whole-genome sequencing of a male milu deer using an Illumina HiSeq 2000 platform. Assembly yielded a final genome with a scaffold N50 size of 3.03 megabases (Mb) and a total length of 2.52 Gb. Moreover, we identified 20 125 protein-coding genes and 988.1 Mb of repetitive sequences. In addition, homology-based searches detected 280 rRNA, 1335 miRNA, 1441 snRNA, and 893 tRNA sequences in the milu genome. The divergence time between E. davidianus and Bos taurus was estimated to be about 28.20 million years ago (Mya). We identified 167 species-specific genes and 293 expanded gene families in the milu lineage. Conclusions: We report the first reference genome of milu, which will provide a valuable resource for studying the species' demographic history of severe bottleneck and the genetic mechanism(s) of special phenotypic evolution.


Asunto(s)
Evolución Biológica , Mapeo Cromosómico/métodos , Ciervos/genética , Genoma , Secuenciación de Nucleótidos de Alto Rendimiento , Animales , Bovinos , Ciervos/clasificación , Masculino , MicroARNs/clasificación , MicroARNs/genética , Sistemas de Lectura Abierta , Filogenia , Proteínas/clasificación , Proteínas/genética , ARN Ribosómico/clasificación , ARN Ribosómico/genética , ARN Nuclear Pequeño/clasificación , ARN Nuclear Pequeño/genética , ARN de Transferencia/clasificación , ARN de Transferencia/genética , Secuenciación Completa del Genoma
4.
BMC Genomics ; 17: 691, 2016 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-27576499

RESUMEN

BACKGROUND: The colonial ascidian Didemnum vexillum, sea carpet squirt, is not only a key marine organism to study morphological ancestral patterns of chordates evolution but it is also of great ecological importance due to its status as a major invasive species. Non-coding RNAs, in particular microRNAs (miRNAs), are important regulatory genes that impact development and environmental adaptation. Beyond miRNAs, not much in known about tunicate ncRNAs. RESULTS: We provide here a comprehensive homology-based annotation of non-coding RNAs in the recently sequenced genome of D. vexillum. To this end we employed a combination of several computational approaches, including blast searches with a wide range of parameters, and secondary structured centered survey with infernal. The resulting candidate set was curated extensively to produce a high-quality ncRNA annotation of the first draft of the D. vexillum genome. It comprises 57 miRNA families, 4 families of ribosomal RNAs, 22 isoacceptor classes of tRNAs (of which more than 72 % of loci are pseudogenes), 13 snRNAs, 12 snoRNAs, and 1 other RNA family. Additionally, 21 families of mitochondrial tRNAs and 2 of mitochondrial ribosomal RNAs and 1 long non-coding RNA. CONCLUSIONS: The comprehensive annotation of the D. vexillum non-coding RNAs provides a starting point towards a better understanding of the restructuring of the small RNA system in ascidians. Furthermore it provides a valuable research for efforts to establish detailed non-coding RNA annotations for other recently published and recently sequences in tunicate genomes.


Asunto(s)
Organismos Acuáticos/genética , Genoma/genética , Biología Marina , ARN no Traducido/genética , Animales , MicroARNs/clasificación , MicroARNs/genética , Anotación de Secuencia Molecular , ARN Largo no Codificante , ARN Nuclear Pequeño/clasificación , ARN Nuclear Pequeño/genética , ARN Nucleolar Pequeño/clasificación , ARN Nucleolar Pequeño/genética , ARN no Traducido/clasificación , Urocordados/genética
5.
Nucleic Acids Res ; 36(9): 3001-10, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18390578

RESUMEN

The RNA molecules of the spliceosome are critical for specificity and catalysis during splicing of eukaryotic pre-mRNA. In order to examine the evolution and phylogenetic distribution of these RNAs, we analyzed 149 eukaryotic genomes representing a broad range of phylogenetic groups. RNAs were predicted using high-sensitivity local alignment methods and profile HMMs in combination with covariance models. The results provide the most comprehensive view so far of the phylogenetic distribution of spliceosomal RNAs. RNAs were predicted in many phylogenetic groups where these RNA were not previously reported. Examples are RNAs of the major (U2-type) spliceosome in all fungal lineages, in lower metazoa and many protozoa. We also identified the minor (U12-type) spliceosomal U11 and U6atac RNAs in Acanthamoeba castellanii, where U12 spliceosomal RNA as well as minor introns were reported recently. In addition, minor-spliceosome-specific RNAs were identified in a number of phylogenetic groups where previously such RNAs were not observed, including the nematode Trichinella spiralis, the slime mold Physarum polycephalum and the fungal lineages Zygomycota and Chytridiomycota. The detailed map of the distribution of the U12-type RNA genes supports an early origin of the minor spliceosome and points to a number of occasions during evolution where it was lost.


Asunto(s)
Filogenia , ARN Nuclear Pequeño/clasificación , Empalmosomas/química , Animales , Secuencia de Bases , Quitridiomicetos/genética , Biología Computacional/métodos , Evolución Molecular , Hongos/genética , Genómica , Cadenas de Markov , Datos de Secuencia Molecular , Physarum polycephalum/genética , ARN Nuclear Pequeño/química , ARN Nuclear Pequeño/genética , Alineación de Secuencia , Trichinella spiralis/genética
6.
Insect Mol Biol ; 11(1): 105-14, 2002 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11841508

RESUMEN

Eight U2 snRNA variants were isolated from several Bombyx mori U2-specific RT-PCR libraries. U2 sequences and secondary structures were generated and examined in terms of potential RNA and protein interactions. Analysis indicated that nucleotide changes occurred in both stem/loop and single-stranded areas. Changes in the double stranded areas were either compensatory, single substitutions (e.g. C <--> U) or prevented the double-stranded formation of one or two base pairs. The polymorphisms were clustered in moderately conserved regions. Some of the changes observed generated stronger base pairing. Inter-species conserved protein or RNA-binding sites were relatively unaffected. No polymorphic sites were found in known functional sequences. Bombyx mori and Drosophila melanogaster U2 sequences are 95% and 70% similar at the 5'- and the 3'-ends of the molecule, respectively. Phylogenetic analysis of the U2 sequences demonstrates remarkable conservation across species.


Asunto(s)
Bombyx/genética , ARN Nuclear Pequeño/análisis , Animales , Secuencia de Bases , Transferencia de Energía , Biblioteca de Genes , Variación Genética , Humanos , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Filogenia , ARN Nuclear Pequeño/clasificación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Alineación de Secuencia , Análisis de Secuencia de ADN , Homología de Secuencia de Ácido Nucleico
8.
Plant Mol Biol ; 39(6): 1091-100, 1999 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-10380797

RESUMEN

Small nucleolar RNAs (snoRNAs) are involved in various aspects of ribosome biogenesis and rRNA maturation. Plants have a unique organisation of snoRNA genes where multiple, different genes are tightly clustered at a number of different loci. The maize gene clusters studied here include genes from both of the two major classes of snoRNAs (box C/D and box H/ACA) and are transcribed as a polycistronic pre-snoRNA transcript from an upstream promoter. In contrast to vertebrate and yeast intron-encoded snoRNAs, which are processed from debranched introns by exonuclease activity, the particular organisation of plant snoRNA genes suggests a different mode of expression and processing. Here we show that single and multiple plant snoRNAs can be processed from both non-intronic and intronic transcripts such that processing is splicing-independent and requires endonucleolytic activity. Processing of these different snoRNAs from the same polycistronic transcript suggests that the processing machineries needed by each class are not spatially separated in the nucleolus/nucleus.


Asunto(s)
Procesamiento Postranscripcional del ARN/genética , Empalme del ARN , ARN de Planta/genética , ARN Nuclear Pequeño/genética , Zea mays/genética , Secuencia de Bases , Endonucleasas/metabolismo , Genes/genética , Genes de Plantas/genética , Vectores Genéticos , Intrones/genética , Modelos Genéticos , Plantas Tóxicas , Regiones Promotoras Genéticas/genética , Protoplastos , ARN de Planta/análisis , ARN de Planta/metabolismo , ARN Nuclear Pequeño/análisis , ARN Nuclear Pequeño/clasificación , ARN Nuclear Pequeño/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos/genética , Nicotiana/genética , Transfección , Zea mays/enzimología
9.
RNA ; 5(3): 455-67, 1999 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-10094313

RESUMEN

Eukaryotic nucleoli contain a large family of box C+D small nucleolar RNA (snoRNA) species, all of which are associated with a common protein Nop1p/fibrillarin. Nop58p was identified in a screen for synthetic lethality with Nop1p and shown to be an essential nucleolar protein. Here we report that a Protein A-tagged version of Nop58p coprecipitates all tested box C+D snoRNAs and that genetic depletion of Nop58p leads to the loss of all tested box C+D snoRNAs. The box H+ACA class of snoRNAs are not coprecipitated with Nop58p, and are not codepleted. The yeast box C+D snoRNAs include two species, U3 and U14, that are required for the early cleavages in pre-rRNA processing. Consistent with this, Nop58p depletion leads to a strong inhibition of pre-rRNA processing and 18S rRNA synthesis. Unexpectedly, depletion of Nop58p leads to the accumulation of 3' extended forms of U3 and U24, showing that the protein is also involved in snoRNA synthesis. Nop58p is the second common component of the box C+D snoRNPs to be identified and the first to be shown to be required for the stability and for the synthesis of these snoRNAs.


Asunto(s)
Nucléolo Celular/genética , Proteínas Fúngicas/genética , Proteínas Nucleares/genética , ARN Nuclear Pequeño/genética , Ribonucleoproteínas Nucleolares Pequeñas , Proteínas de Saccharomyces cerevisiae , Northern Blotting , Nucléolo Celular/metabolismo , Proteínas Cromosómicas no Histona/genética , Metilación , Precursores del ARN/genética , Procesamiento Postranscripcional del ARN/genética , ARN de Hongos/genética , ARN Ribosómico 18S/genética , ARN Nuclear Pequeño/clasificación , Ribonucleoproteínas Nucleares Pequeñas/genética , Proteína Estafilocócica A/genética , Proteína Estafilocócica A/inmunología
11.
Genes Dev ; 12(4): 527-37, 1998 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-9472021

RESUMEN

Many or all of the sites of pseudouridine (Psi) formation in eukaryotic rRNA are selected by site-specific base-pairing with members of the box H + ACA class of small nucleolar RNAs (snoRNAs). Database searches previously identified strong homology between the rat nucleolar protein Nap57p, its yeast homolog Cbf5p, and the Escherichia coli Psi synthase truB/P35. We therefore tested whether Cbf5p is required for synthesis of Psi in the yeast rRNA. After genetic depletion of Cbf5p, formation of Psi in the pre-rRNA is dramatically inhibited, resulting in accumulation of the unmodified rRNA. Protein A-tagged Cbf5p coprecipitates all tested members of the box H + ACA snoRNAs but not box C + D snoRNAs or other RNA species. Genetic depletion of Cbf5p leads to depletion of all box H + ACA snoRNAs. These include snR30, which is required for pre-rRNA processing. Depletion of Cbf5p also results in a pre-rRNA processing defect similar to that seen on depletion of snR30. We conclude that Cbf5p is likely to be the rRNA Psi synthase and is an integral component of the box H + ACA class of snoRNPs, which function to target the enzyme to its site of action.


Asunto(s)
Hidroliasas , Proteínas Asociadas a Microtúbulos/metabolismo , Seudouridina/biosíntesis , Procesamiento Postranscripcional del ARN , ARN Ribosómico/metabolismo , ARN Nuclear Pequeño/metabolismo , Proteínas de Unión al ARN/metabolismo , Ribonucleoproteínas Nucleares Pequeñas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/enzimología , Nucléolo Celular , Genes Letales , Proteínas Asociadas a Microtúbulos/genética , Proteínas Nucleares/genética , Unión Proteica , Precursores del ARN/metabolismo , ARN Nuclear Pequeño/clasificación , Proteínas de Unión al ARN/genética
12.
Genes Dev ; 11(7): 941-56, 1997 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-9106664

RESUMEN

Eukaryotic cells contain a large number of small nucleolar RNAs (snoRNAs). A major family of snoRNAs features a consensus ACA motif positioned 3 nucleotides from the 3' end of the RNA. In this study we have characterized nine novel human ACA snoRNAs (U64-U72). Structural probing of U64 RNA followed by systematic computer modeling of all known box ACA snoRNAs revealed that this class of snoRNAs is defined by a phylogenetically conserved secondary structure. The ACA snoRNAs fold into two hairpin structures connected by a single-stranded hinge region and followed by a short 3' tail. The hinge region carries an evolutionarily conserved sequence motif, called box H (consensus, AnAnnA). The H box, probably in concert with the flanking helix structures and the ACA box characterized previously, plays an essential role in the accumulation of human U64 intronic snoRNA. The correct processing of a yeast ACA snoRNA, snR36, in mammalian cells demonstrated that the cis- and trans-acting elements required for processing and accumulation of ACA snoRNAs are evolutionarily conserved. The notion that ACA snoRNAs share a common secondary structure and conserved box elements that likely function as binding sites for common proteins (e.g., GAR1) suggests that these RNAs possess closely related nucleolar functions.


Asunto(s)
Nucléolo Celular/genética , Conformación de Ácido Nucleico , Procesamiento Postranscripcional del ARN , ARN Nuclear Pequeño/genética , Ribonucleoproteínas Nucleolares Pequeñas , Proteínas de Saccharomyces cerevisiae , Secuencia de Bases , Evolución Biológica , Proteínas Cromosómicas no Histona/análisis , Simulación por Computador , Secuencia Conservada , Proteínas Fúngicas/análisis , Células HeLa , Humanos , Intrones/genética , Modelos Genéticos , Modelos Moleculares , Datos de Secuencia Molecular , Familia de Multigenes , Proteínas Nucleares/análisis , Unión Proteica , ARN Nuclear Pequeño/biosíntesis , ARN Nuclear Pequeño/clasificación , Especificidad de la Especie
13.
Gene ; 180(1-2): 37-42, 1996 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-8973344

RESUMEN

Among the small nuclear RNAs (snRNAs) involved in the spliceosomal processing of pre-mRNA, U6 is the most conserved. As a first evidence for the presence of the splicing machinery in the amitochondrial protozoan Entamoeba histolytica (Eh), we have cloned the u6 snRNA gene. We find that in this organism u6 is a single copy gene that is transcribed as a poly(A)- RNA molecule of approximately 105 nucleotides. We have mapped the 5' end of the U6 snRNA transcript, and identified typical elements of a putative polymerase III promoter. This is the first snRNA gene reported in Eh. Sequence analysis indicates that this gene contains all the conserved nucleotides known to be important for U6 snRNA function. These results, in conjunction with the earlier finding of genes that contain pre-mRNA introns, suggest that Eh has a functional spliceosomal complex.


Asunto(s)
Entamoeba histolytica/genética , ARN Protozoario/genética , ARN Nuclear Pequeño/genética , Animales , Secuencia de Bases , Evolución Biológica , Mapeo Cromosómico , Clonación Molecular , ADN Protozoario , Entamoeba histolytica/clasificación , Dosificación de Gen , Expresión Génica , Genes Protozoarios , Humanos , Datos de Secuencia Molecular , Filogenia , ARN Nuclear Pequeño/clasificación , Alineación de Secuencia , Empalmosomas/genética
14.
Cell ; 86(5): 823-34, 1996 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-8797828

RESUMEN

We have discovered that all known yeast and vertebrate small nucleolar RNAs (snoRNAs), except for the MRP/7-2 RNA, fall into two major classes. One class is defined by conserved boxes C and D and the other by a novel element: a consensus ACA triplet positioned 3 nt before the 3' end of the RNA. A role for the ACA box is snoRNA stability has been established by mutational analysis of a yeast ACA snoRNA (snR 11). Full function of the box depends on the integrity of an adjacent upstream stem. All members of the yeast ACA family are associated with the GAR1 protein. Binding of this or another common small nucleolar ribonucleoprotein particle protein is predicted to be a critical entry point to snoRNA posttranscriptional life, including precise formation of the snoRNA 3' end.


Asunto(s)
Nucléolo Celular/genética , Secuencia Conservada/genética , ARN Nuclear Pequeño/genética , Ribonucleoproteínas Nucleolares Pequeñas , Proteínas de Saccharomyces cerevisiae , Animales , Secuencia de Bases , Clonación Molecular , Secuencia de Consenso/genética , Análisis Mutacional de ADN , Escherichia coli , Proteínas Fúngicas/metabolismo , Datos de Secuencia Molecular , Proteínas Nucleares/metabolismo , Conformación de Ácido Nucleico , ARN Nuclear Pequeño/química , ARN Nuclear Pequeño/clasificación , ARN Nuclear Pequeño/aislamiento & purificación , ARN Nuclear Pequeño/metabolismo , Ribonucleoproteínas , Saccharomyces cerevisiae , Análisis de Secuencia de ARN , Vertebrados/genética
16.
Dev Biol ; 127(2): 349-61, 1988 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-2967782

RESUMEN

We have studied the accumulation and localization of U1 RNA during mouse embryo development by in situ hybridization with a U1 RNA probe and immunofluorescence microscopy using a mouse monoclonal antibody to U1 snRNP. There is a substantial amount of U1 RNA present in the oocyte that is present in both the germinal vesicle and the cytoplasm although the concentration is higher in the nuclear compartment. Following the germinal vesicle breakdown that accompanies ovulation and meiotic maturation, the U1 RNA is uniformly distributed throughout the unfertilized oocyte. In the fertilized egg, the silver grain density from in situ hybridization is higher over pronuclei and this enrichment is maintained at the two-cell and later stages. Similar results were obtained for the distribution of the U1 snRNP as assayed by immunofluorescence microscopy: U1 RNA is predominantly localized in all nuclei except polar body nuclei. The U1 RNA in the oocyte and two-cell embryo is predominantly (greater than 85%) U1a RNA. By the eight-cell stage there is a two to three-fold increase in the amount of total U1 RNA and the proportion of U1b RNA has increased to about 40%. The amount of U1 RNA continues to increase through the blastocyst stage and the proportion of the U1b RNA increases to 60%.


Asunto(s)
Ratones/embriología , Oocitos/fisiología , ARN Nuclear Pequeño/metabolismo , Cigoto/fisiología , Animales , Anticuerpos Monoclonales/inmunología , Blastocisto/fisiología , Compartimento Celular , Fase de Segmentación del Huevo/fisiología , Técnica del Anticuerpo Fluorescente , Regulación de la Expresión Génica , Ratones/genética , Hibridación de Ácido Nucleico , ARN Nuclear Pequeño/clasificación , ARN Nuclear Pequeño/genética , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas Nucleares Pequeñas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...