Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 831, 2022 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-35039556

RESUMEN

Roles for the non-coding small RNA RyhB in quorum-sensing and iron-dependent gene modulation in the human pathogen V. vulnificus were assessed in this study. Both the quorum sensing master regulator SmcR and the Fur-iron complex were observed to bind to the region upstream of the non-coding small RNA RyhB gene to repress expression, which suggests that RyhB is associated with both quorum-sensing and iron-dependent signaling in this pathogen. We found that expression of LuxS, which is responsible for the biosynthesis of autoinducer-2 (AI-2), was higher in wild type than in a ryhB-deletion isotype. RyhB binds directly to the 5'-UTR (untranslated region) of the luxS transcript to form a heteroduplex, which not only stabilizes luxS mRNA but also disrupts the secondary structure that normally obscures the translational start codon and thereby allows translation of LuxS to begin. The binding of RyhB to luxS mRNA requires the chaperone protein Hfq, which stabilizes RyhB. These results demonstrate that the small RNA RyhB is a key element associated with feedback control of AI-2 production, and that it inhibits quorum-sensing signaling in an iron-dependent manner. This study, taken together with previous studies, shows that iron availability and cell density signals are funneled to SmcR and RyhB, and that these regulators coordinate cognate signal pathways that result in the proper balance of protein expression in response to environmental conditions.


Asunto(s)
Genes Bacterianos/genética , Homoserina/análogos & derivados , Hierro/metabolismo , Lactonas/metabolismo , Percepción de Quorum/fisiología , ARN Pequeño no Traducido/genética , ARN Pequeño no Traducido/fisiología , Vibrio vulnificus/genética , Vibrio vulnificus/fisiología , Regiones no Traducidas 5' , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/fisiología , Liasas de Carbono-Azufre/genética , Liasas de Carbono-Azufre/metabolismo , Liasas de Carbono-Azufre/fisiología , Regulación Bacteriana de la Expresión Génica/genética , Homoserina/biosíntesis , Homoserina/metabolismo , ARN Mensajero , Transducción de Señal/genética , Transducción de Señal/fisiología , Vibrio vulnificus/metabolismo
2.
Sci China Life Sci ; 65(1): 1-15, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34705222

RESUMEN

Apart from their primordial role in protein synthesis, tRNAs can be cleaved to produce tRNA-derived small RNAs (tsRNAs). The biological functions of tsRNAs in plants remain largely unknown. In this study, we developed RtcB ligation-based small RNA (sRNA) sequencing, a method that captures and distinguishes between 3'-2',3'-cyclic-phosphate (cP)/phosphate (P)-terminated sRNAs and 3'-OH-terminated sRNAs, and profiled 5' tsRNAs and 5' tRNA halves in Arabidopsis thaliana. We found that Arabidopsis 5' tsRNAs and 5' tRNA halves predominantly contain a cP at the 3' end and require S-like RNase 1 (RNS1) and RNS3 for their production. One of the most abundant 5' tsRNAs, 5' tsR-Ala, by associating with AGO1, negatively regulates Cytochrome P450 71A13 (CYP71A13) expression and camalexin biosynthesis to repress anti-fungal defense. Interestingly, 5' tsR-Ala is downregulated upon fungal infection. Our study provides a global view of 5' tsRNAs and 5' tRNA halves in Arabidopsis and unravels an important role of a 5' tsRNA in regulating anti-fungal defense.


Asunto(s)
Arabidopsis/genética , Regulación de la Expresión Génica , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , ARN Pequeño no Traducido/fisiología , ARN de Transferencia/metabolismo , Arabidopsis/metabolismo , Botrytis , ARN Pequeño no Traducido/química , ARN Pequeño no Traducido/metabolismo , Análisis de Secuencia de ARN
3.
Nucleic Acids Res ; 49(18): 10589-10603, 2021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34478554

RESUMEN

SR1 is a dual-function sRNA from Bacillus subtilis. It inhibits translation initiation of ahrC mRNA encoding the transcription activator of the arginine catabolic operons. Base-pairing is promoted by the RNA chaperone CsrA, which induces a slight structural change in the ahrC mRNA to facilitate SR1 binding. Additionally, SR1 encodes the small protein SR1P that interacts with glyceraldehyde-3P dehydrogenase A to promote binding to RNase J1 and enhancing J1 activity. Here, we describe a new target of SR1, kinA mRNA encoding the major histidine kinase of the sporulation phosphorelay. SR1 and kinA mRNA share 7 complementary regions. Base-pairing between SR1 and kinA mRNA decreases kinA translation without affecting kinA mRNA stability and represses transcription of the KinA/Spo0A downstream targets spoIIE, spoIIGA and cotA. The initial interaction between SR1 and kinA mRNA occurs 10 nt downstream of the kinA start codon and is decisive for inhibition. The sr1 encoded peptide SR1P is dispensable for kinA regulation. Deletion of sr1 accelerates sporulation resulting in low quality spores with reduced stress resistance and altered coat protein composition which can be compensated by sr1 overexpression. Neither CsrA nor Hfq influence sporulation or spore properties.


Asunto(s)
Bacillus subtilis/genética , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Biosíntesis de Proteínas , Proteínas Quinasas/genética , ARN Pequeño no Traducido/fisiología , Bacillales/genética , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/metabolismo , Emparejamiento Base , Conformación de Ácido Nucleico , Regiones Promotoras Genéticas , Proteínas Quinasas/biosíntesis , Estabilidad del ARN , ARN Mensajero/química , ARN Mensajero/metabolismo , ARN Pequeño no Traducido/química , ARN Pequeño no Traducido/metabolismo , Esporas Bacterianas/química , Esporas Bacterianas/genética , Esporas Bacterianas/fisiología , Factores de Transcripción/metabolismo
4.
Nucleic Acids Res ; 49(12): 7035-7052, 2021 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-34125915

RESUMEN

Tight control of cell division is essential for survival of most organisms. For prokaryotes, the regulatory mechanisms involved in the control of cell division are mostly unknown. We show that the small non-coding sRNA StsR has an important role in controlling cell division and growth in the alpha-proteobacterium Rhodobacter sphaeroides. StsR is strongly induced by stress conditions and in stationary phase by the alternative sigma factors RpoHI/HII, thereby providing a regulatory link between cell division and environmental cues. Compared to the wild type, a mutant lacking StsR enters stationary phase later and more rapidly resumes growth after stationary phase. A target of StsR is UpsM, the most abundant sRNA in the exponential phase. It is derived from partial transcriptional termination within the 5' untranslated region of the mRNA of the division and cell wall (dcw) gene cluster. StsR binds to UpsM as well as to the 5' UTR of the dcw mRNA and the sRNA-sRNA and sRNA-mRNA interactions lead to a conformational change that triggers cleavage by the ribonuclease RNase E, affecting the level of dcw mRNAs and limiting growth. These findings provide interesting new insights into the role of sRNA-mediated regulation of cell division during the adaptation to environmental changes.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Procesamiento Postranscripcional del ARN , ARN Pequeño no Traducido/metabolismo , Rhodobacter sphaeroides/genética , Emparejamiento Base , División Celular/genética , Endorribonucleasas/metabolismo , ARN Mensajero/metabolismo , ARN Pequeño no Traducido/química , ARN Pequeño no Traducido/genética , ARN Pequeño no Traducido/fisiología , Rhodobacter sphaeroides/citología , Rhodobacter sphaeroides/crecimiento & desarrollo , Rhodobacter sphaeroides/metabolismo , Factor sigma/fisiología , Estrés Fisiológico/genética
5.
Nucleic Acids Res ; 49(11): 6399-6419, 2021 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-34096591

RESUMEN

sRNAs are a taxonomically-restricted but transcriptomically-abundant class of post-transcriptional regulators. While of major importance for adaption to the environment, we currently lack global-scale methodology enabling target identification, especially in species without known RNA hub proteins (e.g. Hfq). Using psoralen RNA cross-linking and Illumina-sequencing we identify RNA-RNA interacting pairs in vivo in Bacillus subtilis, resolving previously well-described interactants. Although sRNA-sRNA pairings are rare (compared with sRNA-mRNA), we identify a robust example involving the conserved sRNA RoxS and an unstudied sRNA RosA (Regulator of sRNA A). We show RosA to be the first confirmed RNA sponge described in a Gram-positive bacterium. RosA interacts with at least two sRNAs, RoxS and FsrA. The RosA/RoxS interaction not only affects the levels of RoxS but also its processing and regulatory activity. We also found that the transcription of RosA is repressed by CcpA, the key regulator of carbon-metabolism in B. subtilis. Since RoxS is already known to be transcriptionally controlled by malate via the transcriptional repressor Rex, its post-transcriptional regulation by CcpA via RosA places RoxS in a key position to control central metabolism in response to varying carbon sources.


Asunto(s)
Bacillus subtilis/genética , ARN Bacteriano/metabolismo , ARN Pequeño no Traducido/metabolismo , Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Carbono/metabolismo , Aptitud Genética , Proteoma , Procesamiento Postranscripcional del ARN , Estabilidad del ARN , ARN Pequeño no Traducido/biosíntesis , ARN Pequeño no Traducido/genética , ARN Pequeño no Traducido/fisiología , Transcripción Genética
6.
Biochemistry (Mosc) ; 86(Suppl 1): S109-S119, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33827403

RESUMEN

Mycobacterium tuberculosis possesses a significant arsenal of strategies to combat immune defense of the host organism. Small noncoding RNAs, which constitute the largest group of regulatory RNAs, play an important role in the host-pathogen interactions and represent one of the levels of the regulation of interactions of microbial cells with their environment. The regulatory role of small RNAs in pathogenic bacteria is essential when rapid adaptation to the changing environmental conditions with further synchronization of metabolic reactions are required to ensure microbial survival and infection progression. During the past few years, eight small RNAs from M. tuberculosis have been functionally characterized, and targets for four of them have been identified. Small RNAs from M. tuberculosis and other pathogenic microorganisms were found to be one of the most important functional factors in the adaptive response to changing environmental conditions.


Asunto(s)
Interacciones Huésped-Patógeno , Mycobacterium tuberculosis/fisiología , ARN Pequeño no Traducido/fisiología , Tuberculosis/metabolismo , Humanos , Mycobacterium tuberculosis/metabolismo , ARN Bacteriano , ARN Pequeño no Traducido/metabolismo , Tuberculosis/etiología , Tuberculosis/microbiología
7.
Appl Environ Microbiol ; 87(10)2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33674434

RESUMEN

Acid tolerance of microorganisms is a desirable phenotype for many industrial fermentation applications. In Escherichia coli, the stress response sigma factor RpoS is a promising target for engineering acid-tolerant phenotypes. However, the simple overexpression of RpoS alone is insufficient to confer these phenotypes. In this study, we show that the simultaneous overexpression of the noncoding small RNA (sRNA) DsrA and the sRNA chaperone Hfq, which act as RpoS activators, significantly increased acid tolerance in terms of cell growth under modest acidic pH, as well as cell survival upon extreme acid shock. Directed evolution of the DsrA-Hfq module further improved the acid tolerance, with the best mutants showing a 51 to 72% increase in growth performance at pH 4.5 compared with the starting strain, MG1655. Further analyses found that the improved acid tolerance of these DsrA-Hfq strains coincided with activation of genes associated with proton-consuming acid resistance system 2 (AR2), protein chaperone HdeB, and reactive oxygen species (ROS) removal in the exponential phase. This study illustrated that the fine-tuning of sRNAs and their chaperones can be a novel strategy for improving the acid tolerance of E. coliIMPORTANCE Many of the traditional studies on bacterial acid tolerance generally focused on improving cell survival under extreme-pH conditions, but cell growth under less harsh acidic conditions is more relevant to industrial applications. Under normal conditions, the general stress response sigma factor RpoS is maintained at low levels in the growth phase through a number of mechanisms. This study showed that RpoS can be activated prior to the stationary phase via engineering its activators, the sRNA DsrA and the sRNA chaperone Hfq, resulting in significantly improved cell growth at modest acidic pH. This work suggests that the sigma factors and likely other transcription factors can be retuned or retimed by manipulating the respective regulatory sRNAs along with the sufficient supply of the respective sRNA chaperones (i.e., Hfq). This provides a novel avenue for strain engineering of microbes.


Asunto(s)
Proteínas de Escherichia coli/fisiología , Escherichia coli/fisiología , Proteína de Factor 1 del Huésped/fisiología , ARN Pequeño no Traducido/fisiología , Adaptación Fisiológica , Concentración de Iones de Hidrógeno
8.
RNA Biol ; 18(4): 537-546, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32940118

RESUMEN

Leader RNA, a kind of virus-derived small noncoding RNA, has been proposed to play an important role in regulating virus replication, but the underlying mechanism remains elusive. In this study, snakehead vesiculovirus (SHVV), a kind of fish rhabdovirus causing high mortality to the cultured snakehead fish in China, was used to unveil the molecular function of leader RNA. High-throughput small RNA sequencing of SHVV-infected cells showed that SHVV produced two groups of leader RNAs (named legroup1 and legroup2) during infection. Overexpression and knockout experiments reveal that legroup1, but not legroup2, affects SHVV replication. Mechanistically, legroup1-mediated regulation of SHVV replication was associated with its interaction with the viral nucleoprotein (N). Moreover, the nucleotides 6-10 of legroup1 were identified as the critical region for its interaction with the N protein, and the amino acids 1-45 of N protein were proved to confer its interaction with the legroup1. Taken together, we identified two groups of SHVV leader RNAs and revealed a role in virus replication for one of the two types of leader RNAs. This study will help understand the role of leader RNA in regulating the replication of negative-stranded RNA viruses.


Asunto(s)
Regiones no Traducidas 5'/fisiología , Vesiculovirus/fisiología , Replicación Viral/genética , Animales , Células Cultivadas , Mapeo Cromosómico , Femenino , Peces/virología , Células HEK293 , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Novirhabdovirus/fisiología , Proteínas de la Nucleocápside/genética , ARN Pequeño no Traducido/fisiología , ARN Viral/genética , ARN Viral/fisiología , Análisis de Secuencia de ARN , Vesiculovirus/genética
9.
Elife ; 92020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32744240

RESUMEN

Negative feedback regulation, that is the ability of a gene to repress its own synthesis, is the most abundant regulatory motif known to biology. Frequently reported for transcriptional regulators, negative feedback control relies on binding of a transcription factor to its own promoter. Here, we report a novel mechanism for gene autoregulation in bacteria relying on small regulatory RNA (sRNA) and the major endoribonuclease, RNase E. TIER-seq analysis (transiently-inactivating-an-endoribonuclease-followed-by-RNA-seq) revealed ~25,000 RNase E-dependent cleavage sites in Vibrio cholerae, several of which resulted in the accumulation of stable sRNAs. Focusing on two examples, OppZ and CarZ, we discovered that these sRNAs are processed from the 3' untranslated region (3' UTR) of the oppABCDF and carAB operons, respectively, and base-pair with their own transcripts to inhibit translation. For OppZ, this process also triggers Rho-dependent transcription termination. Our data show that sRNAs from 3' UTRs serve as autoregulatory elements allowing negative feedback control at the post-transcriptional level.


Asunto(s)
Regiones no Traducidas 3'/fisiología , Regulación Bacteriana de la Expresión Génica , ARN Bacteriano/fisiología , ARN Pequeño no Traducido/fisiología , Vibrio cholerae/genética , Endorribonucleasas/metabolismo , Retroalimentación Fisiológica , Biosíntesis de Proteínas , RNA-Seq , Factor Rho/metabolismo , Regiones Terminadoras Genéticas , Vibrio cholerae/enzimología
10.
BMC Plant Biol ; 20(1): 298, 2020 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-32600430

RESUMEN

BACKGROUND: Cold stress causes dynamic changes in gene expression that are partially caused by small non-coding RNAs since they regulate protein coding transcripts and act in epigenetic gene silencing pathways. Thus, a detailed analysis of transcriptional changes of small RNAs (sRNAs) belonging to all known sRNA classes such as microRNAs (miRNA) and small interfering RNA (siRNAs) in response to cold contributes to an understanding of cold-related transcriptome changes. RESULT: We subjected A. thaliana plants to cold acclimation conditions (4 °C) and analyzed the sRNA transcriptomes after 3 h, 6 h and 2 d. We found 93 cold responsive differentially expressed miRNAs and only 14 of these were previously shown to be cold responsive. We performed miRNA target prediction for all differentially expressed miRNAs and a GO analysis revealed the overrepresentation of miRNA-targeted transcripts that code for proteins acting in transcriptional regulation. We also identified a large number of differentially expressed cis- and trans-nat-siRNAs, as well as sRNAs that are derived from long non-coding RNAs. By combining the results of sRNA and mRNA profiling with miRNA target predictions and publicly available information on transcription factors, we reconstructed a cold-specific, miRNA and transcription factor dependent gene regulatory network. We verified the validity of links in the network by testing its ability to predict target gene expression under cold acclimation. CONCLUSION: In A. thaliana, miRNAs and sRNAs derived from cis- and trans-NAT gene pairs and sRNAs derived from lncRNAs play an important role in regulating gene expression in cold acclimation conditions. This study provides a fundamental database to deepen our knowledge and understanding of regulatory networks in cold acclimation.


Asunto(s)
Aclimatación/genética , Arabidopsis/genética , ARN de Planta/fisiología , ARN Pequeño no Traducido/fisiología , Arabidopsis/fisiología , Frío , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Redes Reguladoras de Genes , Genes de Plantas , Transcriptoma
11.
J Microbiol ; 58(6): 499-506, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32279276

RESUMEN

RaoN is a Salmonella-specific small RNA that is encoded in the cspH-envE intergenic region on Salmonella pathogenicity island-11. We previously reported that RaoN is induced under conditions of acid and oxidative stress combined with nutrient limitation, contributing to the intramacrophage growth of Salmonella enterica serovar Typhimurium. However, the role of RaoN in nitrosative stress response and virulence has not yet been elucidated. Here we show that the raoN mutant strain has increased susceptibility to nitrosative stress by using a nitric oxide generating acidified nitrite. Extending previous research on the role of RaoN in oxidative stress resistance, we found that NADPH oxidase inhibition restores the growth of the raoN mutant in LPS-treated J774A.1 macrophages. Flow cytometry analysis further revealed that the inactivation of raoN leads to an increase in the intracellular level of reactive oxygen species (ROS) in Salmonella-infected macrophages, suggesting that RaoN is involved in the inhibition of NADPH oxidase-mediated ROS production by mechanisms not yet resolved. Moreover, we evaluated the effect of raoN mutation on the virulence in murine systemic infection and determined that the raoN mutant is less virulent than the wild-type strain following oral inoculation. In conclusion, small regulatory RNA RaoN controls nitrosative-oxidative stress resistance and is required for virulence of Salmonella in mice.


Asunto(s)
Estrés Oxidativo , ARN Bacteriano/fisiología , ARN Pequeño no Traducido/fisiología , Infecciones por Salmonella/microbiología , Animales , Femenino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C3H , Células RAW 264.7 , Salmonella typhimurium/patogenicidad , Virulencia
12.
Plant Cell Physiol ; 61(6): 1204-1212, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32181856

RESUMEN

Small RNA (sRNA), such as microRNA (miRNA) and short interfering RNA, are well-known to control gene expression based on degradation of target mRNA in plants. A considerable amount of research has applied next-generation sequencing (NGS) to reveal the regulatory pathways of plant sRNAs. Consequently, numerous bioinformatics tools have been developed for the purpose of analyzing sRNA NGS data. However, most methods focus on the study of sRNA expression profiles or novel miRNAs predictions. The analysis of sRNA target genes is usually not integrated into their pipelines. As a result, there is still no means available for identifying the interaction mechanisms between host and virus or the synergistic effects between two viruses. For the present study, a comprehensive system, called the Small RNA Illustration System (sRIS), has been developed. This system contains two main components. The first is for sRNA overview analysis and can be used not only to identify miRNA but also to investigate virus-derived small interfering RNA. The second component is for sRNA target prediction, and it employs both bioinformatics calculations and degradome sequencing data to enhance the accuracy of target prediction. In addition, this system has been designed so that figures and tables for the outputs of each analysis can be easily retrieved and accessed, making it easier for users to quickly identify and quantify their results. sRIS is available at http://sris.itps.ncku.edu.tw/.


Asunto(s)
Genoma de Planta/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Plantas/genética , ARN de Planta/genética , ARN Pequeño no Traducido/genética , Biblioteca Genómica , MicroARNs/genética , MicroARNs/fisiología , ARN de Planta/fisiología , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/fisiología , ARN Pequeño no Traducido/fisiología , Análisis de Secuencia de ARN/métodos
13.
Nat Commun ; 11(1): 168, 2020 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-31924754

RESUMEN

Variations in transcription start site (TSS) selection reflect diversity of preinitiation complexes and can impact on post-transcriptional RNA fates. Most metazoan polymerase II-transcribed genes carry canonical initiation with pyrimidine/purine (YR) dinucleotide, while translation machinery-associated genes carry polypyrimidine initiator (5'-TOP or TCT). By addressing the developmental regulation of TSS selection in zebrafish we uncovered a class of dual-initiation promoters in thousands of genes, including snoRNA host genes. 5'-TOP/TCT initiation is intertwined with canonical initiation and used divergently in hundreds of dual-initiation promoters during maternal to zygotic transition. Dual-initiation in snoRNA host genes selectively generates host and snoRNA with often different spatio-temporal expression. Dual-initiation promoters are pervasive in human and fruit fly, reflecting evolutionary conservation. We propose that dual-initiation on shared promoters represents a composite promoter architecture, which can function both coordinately and divergently to diversify RNAs.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Regiones Promotoras Genéticas/genética , Sitio de Iniciación de la Transcripción , Transcripción Genética , Animales , Secuencia de Bases , Drosophila/genética , Drosophila/crecimiento & desarrollo , Humanos , ARN/genética , ARN/fisiología , ARN Nucleolar Pequeño/genética , ARN Nucleolar Pequeño/metabolismo , ARN Pequeño no Traducido/genética , ARN Pequeño no Traducido/fisiología , ARN no Traducido/genética , ARN no Traducido/fisiología , Elementos Reguladores de la Transcripción , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo , Cigoto
14.
BMC Genomics ; 20(1): 997, 2019 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-31856707

RESUMEN

BACKGROUND: Small RNAs (sRNAs) are regulatory molecules impacting on gene expression and transposon activity. MicroRNAs (miRNAs) are responsible for tissue-specific and environmentally-induced gene repression. Short interfering RNAs (siRNA) are constitutively involved in transposon silencing across different type of tissues. The male gametophyte in angiosperms has a unique set of sRNAs compared to vegetative tissues, including phased siRNAs from intergenic or genic regions, or epigenetically activated siRNAs. This is contrasted by a lack of knowledge about the sRNA profile of the male gametophyte of gymnosperms. RESULTS: Here, we isolated mature pollen from male cones of Norway spruce and investigated its sRNA profiles. While 21-nt sRNAs is the major size class of sRNAs in needles, in pollen 21-nt and 24-nt sRNAs are the most abundant size classes. Although the 24-nt sRNAs were exclusively derived from TEs in pollen, both 21-nt and 24-nt sRNAs were associated with TEs. We also investigated sRNAs from somatic embryonic callus, which has been reported to contain 24-nt sRNAs. Our data show that the 24-nt sRNA profiles are tissue-specific and differ between pollen and cell culture. CONCLUSION: Our data reveal that gymnosperm pollen, like angiosperm pollen, has a unique sRNA profile, differing from vegetative leaf tissue. Thus, our results reveal that angiosperm and gymnosperm pollen produce new size classes not present in vegetative tissues; while in angiosperm pollen 21-nt sRNAs are generated, in the gymnosperm Norway spruce 24-nt sRNAs are generated. The tissue-specific production of distinct TE-derived sRNAs in angiosperms and gymnosperms provides insights into the diversification process of sRNAs in TE silencing pathways between the two groups of seed plants.


Asunto(s)
Secuencias Repetitivas Esparcidas , Picea/genética , ARN de Planta/metabolismo , ARN Pequeño no Traducido/metabolismo , Sitios Genéticos , Picea/embriología , Picea/metabolismo , Polen/genética , Polen/metabolismo , ARN de Planta/fisiología , ARN Pequeño no Traducido/fisiología
15.
Microb Pathog ; 137: 103730, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31499182

RESUMEN

Streptococcus suis serotype 2 (SS2) is an important porcine and human pathogen. Regulatory small non-coding RNAs (sRNAs) play an essential role in diverse physiological processes, although they remain poorly understood in SS2. In this study, we identified eight novel sRNAs through a combination of computational strategies and experimental identification. To explore roles of these novel sRNAs, sRNA34 was preferentially selected to assess phenotypes of the deletion strain in vitro and in vivo. The inactivation of sRNA34 significantly elongated the cellular chain, remarkably increased sensitivity to phagocytosis by RAW264.7, and attenuated virulence in a mouse infection model. Transcriptomic analysis revealed that inactivation of sRNA34 altered expression of multiple genes contributing to cellular chain formation and elongation, indicating a potential mechanism of sRNA34 in maintaining proper bacterial chain length to resist phagocytosis by the host cell. In summary, sRNA34 is a novel sRNA that contributes to cellular chain regulation and the anti-phagocytosis ability of SS2.


Asunto(s)
Fagocitos , ARN Pequeño no Traducido/fisiología , Infecciones Estreptocócicas/microbiología , Streptococcus suis/patogenicidad , Animales , Modelos Animales de Enfermedad , Células Epiteliales , Perfilación de la Expresión Génica , Ratones , Fagocitosis , Fenotipo , Células RAW 264.7 , ARN Pequeño no Traducido/genética , ARN Pequeño no Traducido/aislamiento & purificación , Virulencia/genética
16.
BMC Vet Res ; 15(1): 319, 2019 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-31488137

RESUMEN

BACKGROUND: Small non-coding RNAs (sRNAs) regulate bacterial gene expression at the post-transcriptional level. STnc640 is a type of sRNA that was identified in Salmonella Typhimurium. RESULTS: In this study, STnc640 in Salmonella Enteritidis was confirmed to be an Hfq-dependent sRNA. TargetRNA software analysis showed that fimbrial genes fimA and bcfA were likely to be the target genes of STnc640. To investigate the target mRNAs and function of STnc640 in pathogenicity, we constructed the deletion mutant strain 50336△stnc640 and the complemented strain 50336△stnc640/pstnc640 in Salmonella Enteritidis 50336. The RT-qPCR results showed that the mRNA level of fimA was decreased, while bcfA was unchanged in 50336△stnc640 compared with that in the wild type (WT) strain. The adhesion ability of 50336△stnc640 to Caco-2 cells was increased compared to the 50336 WT strain. The virulence of 50336△stnc640 was enhanced in a one-day-old chicken model of S. Enteritidis disease as determined by quantifying the 50% lethal dose (LD50) of the bacterial strains. CONCLUSIONS: The results demonstrate that STnc640 contributes to the virulence of Salmonella Enteritidis.


Asunto(s)
Antígenos Bacterianos/genética , Proteínas Fimbrias/genética , Regulación Bacteriana de la Expresión Génica , ARN Bacteriano/fisiología , ARN Pequeño no Traducido/fisiología , Salmonella enteritidis/genética , Salmonella enteritidis/patogenicidad , Animales , Adhesión Bacteriana/genética , Células CACO-2 , Pollos , Femenino , Humanos , Masculino , Enfermedades de las Aves de Corral/virología , Salmonelosis Animal/virología , Eliminación de Secuencia , Virulencia/genética
17.
J Bacteriol ; 201(22)2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31451541

RESUMEN

Coxiella burnetii is an obligate intracellular gammaproteobacterium and zoonotic agent of Q fever. We previously identified 15 small noncoding RNAs (sRNAs) of C. burnetii One of them, CbsR12 (Coxiella burnetiismall RNA 12), is highly transcribed during axenic growth and becomes more prominent during infection of cultured mammalian cells. Secondary structure predictions of CbsR12 revealed four putative CsrA-binding sites in stem loops with consensus AGGA/ANGGA motifs. We subsequently determined that CbsR12 binds to recombinant C. burnetii CsrA-2, but not CsrA-1, proteins in vitro Moreover, through a combination of in vitro and cell culture assays, we identified several in trans mRNA targets of CbsR12. Of these, we determined that CbsR12 binds and upregulates translation of carA transcripts coding for carbamoyl phosphate synthetase A, an enzyme that catalyzes the first step of pyrimidine biosynthesis. In addition, CbsR12 binds and downregulates translation of metK transcripts coding for S-adenosylmethionine synthetase, a component of the methionine cycle. Furthermore, we found that CbsR12 binds to and downregulates the quantity of cvpD transcripts, coding for a type IVB effector protein, in mammalian cell culture. Finally, we found that CbsR12 is necessary for expansion of Coxiella-containing vacuoles and affects growth rates in a dose-dependent manner in the early phase of infecting THP-1 cells. This is the first characterization of a trans-acting sRNA of C. burnetii and the first example of a bacterial sRNA that regulates both CarA and MetK synthesis. CbsR12 is one of only a few identified trans-acting sRNAs that interacts with CsrA.IMPORTANCE Regulation of metabolism and virulence in C. burnetii is not well understood. Here, we show that C. burnetii small RNA 12 (CbsR12) is highly transcribed in the metabolically active large-cell variant compared to the nonreplicative small-cell variant. We show that CbsR12 directly regulates several genes involved in metabolism, along with a type IV effector gene, in trans In addition, we demonstrate that CbsR12 binds to CsrA-2 in vitro and induces autoaggregation and biofilm formation when transcribed ectopically in Escherichia coli, consistent with other CsrA-sequestering sRNAs. These results implicate CbsR12 in the indirect regulation of a number of genes via CsrA-mediated regulatory activities. The results also support CbsR12 as a crucial regulatory component early on in a mammalian cell infection.


Asunto(s)
Coxiella burnetii/genética , Fiebre Q/microbiología , ARN Bacteriano/fisiología , ARN Pequeño no Traducido/fisiología , Proteínas de Unión al ARN/metabolismo , Vacuolas/metabolismo , Animales , Cultivo Axénico , Proteínas Bacterianas/metabolismo , Chlorocebus aethiops , Coxiella burnetii/crecimiento & desarrollo , Coxiella burnetii/metabolismo , Humanos , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN Pequeño no Traducido/genética , ARN Pequeño no Traducido/metabolismo , Células THP-1 , Células Vero
18.
Science ; 365(6456): 919-922, 2019 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-31346137

RESUMEN

Rhizobial infection and root nodule formation in legumes require recognition of signal molecules produced by the bacteria and their hosts. Here, we show that rhizobial transfer RNA (tRNA)-derived small RNA fragments (tRFs) are signal molecules that modulate host nodulation. Three families of rhizobial tRFs were confirmed to regulate host genes associated with nodule initiation and development through hijacking the host RNA-interference machinery that involves ARGONAUTE 1. Silencing individual tRFs with the use of short tandem target mimics or by overexpressing their targets represses root hair curling and nodule formation, whereas repressing these targets with artificial microRNAs identical to the respective tRFs or mutating these targets with CRISPR-Cas9 promotes nodulation. Our findings thus uncover a bacterial small RNA-mediated mechanism for prokaryote-eukaryote interaction and may pave the way for enhancing nodulation efficiency in legumes.


Asunto(s)
Bradyrhizobium/fisiología , Regulación de la Expresión Génica de las Plantas , Glycine max/microbiología , Interacciones Microbiota-Huesped/genética , Nodulación de la Raíz de la Planta/genética , ARN Bacteriano/fisiología , ARN Pequeño no Traducido/fisiología , ARN de Transferencia/fisiología , Proteínas Argonautas/genética , Bradyrhizobium/genética , Sistemas CRISPR-Cas , Fijación del Nitrógeno , Conformación de Ácido Nucleico , Proteínas de Plantas/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Interferencia de ARN , ARN Bacteriano/química , ARN Bacteriano/genética , ARN Pequeño no Traducido/química , ARN Pequeño no Traducido/genética , ARN de Transferencia/química , ARN de Transferencia/genética , Glycine max/genética , Glycine max/metabolismo
19.
Environ Microbiol ; 21(8): 2933-2947, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31106966

RESUMEN

The biofilm formation by Pseudomonas aeruginosa highly increases the bacterial resistance to antimicrobial agents and host immune clearance. The biofilm formation is positively regulated by two small RNAs, RsmY and RsmZ. Previously, we reported that mutation in the polynucleotide phosphorylase (PNPase) coding gene pnp increases the levels of RsmY/Z. However, in this study, we found that the biofilm formation is decreased in the pnp mutant, which is due to a defect in rhamnolipids production. The rhamnolipids production is regulated by the RhlI-RhlR quorum sensing system. We found that PNPase influences the translation of RhlI through its 5'-untranslated region (UTR) and identified that the sRNA P27 is responsible for the translational repression. In vitro translation experiments demonstrated that P27 directly represses the translation of the rhlI mRNA through its 5'UTR in an Hfq-dependent manner. Point mutations in the rhlI 5'UTR or P27, which abolish the pairing between the two RNAs restore the rhlI expression and rhamnolipids production as well as the biofilm formation in the pnp mutant. Overall, our results reveal a novel layer of regulation of the Rhl quorum sensing system by the sRNA P27.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Ligasas/genética , Pseudomonas aeruginosa/genética , Percepción de Quorum , ARN Bacteriano/fisiología , ARN Pequeño no Traducido/fisiología , Factores de Transcripción/genética , Biopelículas/crecimiento & desarrollo , Glucolípidos/metabolismo , Polirribonucleótido Nucleotidiltransferasa/metabolismo , Biosíntesis de Proteínas , Pseudomonas aeruginosa/enzimología , Percepción de Quorum/genética , Procesamiento Postranscripcional del ARN
20.
Cardiorenal Med ; 9(4): 201-211, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30939477

RESUMEN

Cardiorenal syndromes (CRS) include a scenario of clinical interactions characterized by the heart and kidney dysfunction. The crosstalk between cardiac and renal systems is clearly evidenced but not completely understood. Multi-factorial mechanisms leading to CRS do not involve only hemodynamic parameters. In fact, in recent works on organ crosstalk endothelial injury, the alteration of normal immunologic balance, cell death, inflammatory cascades, cell adhesion molecules, cytokine and chemokine overexpression, neutrophil migration, leukocyte trafficking, caspase-mediated induction of apoptotic mechanisms and oxidative stress has been demonstrated to induce distant organ dysfunction. Furthermore, new alternative mechanisms using the multi-omics approach may be implicated in the pathogenesis of cardiorenal crosstalk. The study of "omics" modifications in the setting of cardiovascular and renal disease represents an emerging area of research. Over the last years, indeed, many studies have elucidated the exact mechanisms involved in gene expression and regulation, cellular communication and organ crosstalk. In this review, we analyze epigenetics, gene expression, small non-coding RNAs, extracellular vesicles, proteomics, and metabolomics in the setting of CRS.


Asunto(s)
Síndrome Cardiorrenal/fisiopatología , Síndrome Cardiorrenal/genética , Síndrome Cardiorrenal/terapia , Epigénesis Genética , Vesículas Extracelulares/fisiología , Expresión Génica , Humanos , Metabolómica , Medicina de Precisión , Proteómica , ARN Pequeño no Traducido/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA