Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.190
Filtrar
1.
Protein Sci ; 33(6): e5012, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38723180

RESUMEN

The enormous LysR-type transcriptional regulators (LTTRs), which are diversely distributed amongst prokaryotes, play crucial roles in transcription regulation of genes involved in basic metabolic pathways, virulence and stress resistance. However, the precise transcription activation mechanism of these genes by LTTRs remains to be explored. Here, we determine the cryo-EM structure of a LTTR-dependent transcription activation complex comprising of Escherichia coli RNA polymerase (RNAP), an essential LTTR protein GcvA and its cognate promoter DNA. Structural analysis shows two N-terminal DNA binding domains of GcvA (GcvA_DBD) dimerize and engage the GcvA activation binding sites, presenting the -35 element for specific recognition with the conserved σ70R4. In particular, the versatile C-terminal domain of α subunit of RNAP directly interconnects with GcvA_DBD, σ70R4 and promoter DNA, providing more interfaces for stabilizing the complex. Moreover, molecular docking supports glycine as one potential inducer of GcvA, and single molecule photobleaching experiments kinetically visualize the occurrence of tetrameric GcvA-engaged transcription activation complex as suggested for the other LTTR homologs. Thus, a general model for tetrameric LTTR-dependent transcription activation is proposed. These findings will provide new structural and functional insights into transcription activation of the essential LTTRs.


Asunto(s)
ARN Polimerasas Dirigidas por ADN , Escherichia coli , Activación Transcripcional , Escherichia coli/genética , Escherichia coli/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Regiones Promotoras Genéticas , Microscopía por Crioelectrón , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Modelos Moleculares , Simulación del Acoplamiento Molecular , Regulación Bacteriana de la Expresión Génica , Multimerización de Proteína , Sitios de Unión
2.
Nat Commun ; 15(1): 4189, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760379

RESUMEN

The viral polymerase complex, comprising the large protein (L) and phosphoprotein (P), is crucial for both genome replication and transcription in non-segmented negative-strand RNA viruses (nsNSVs), while structures corresponding to these activities remain obscure. Here, we resolved two L-P complex conformations from the mumps virus (MuV), a typical member of nsNSVs, via cryogenic-electron microscopy. One conformation presents all five domains of L forming a continuous RNA tunnel to the methyltransferase domain (MTase), preferably as a transcription state. The other conformation has the appendage averaged out, which is inaccessible to MTase. In both conformations, parallel P tetramers are revealed around MuV L, which, together with structures of other nsNSVs, demonstrates the diverse origins of the L-binding X domain of P. Our study links varying structures of nsNSV polymerase complexes with genome replication and transcription and points to a sliding model for polymerase complexes to advance along the RNA templates.


Asunto(s)
Microscopía por Crioelectrón , Virus de la Parotiditis , Proteínas Virales , Virus de la Parotiditis/genética , Virus de la Parotiditis/ultraestructura , Virus de la Parotiditis/metabolismo , Proteínas Virales/metabolismo , Proteínas Virales/ultraestructura , Proteínas Virales/química , Proteínas Virales/genética , Modelos Moleculares , ARN Viral/metabolismo , ARN Viral/ultraestructura , ARN Viral/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/ultraestructura , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/genética , Dominios Proteicos , Fosfoproteínas/metabolismo , Fosfoproteínas/química , Fosfoproteínas/ultraestructura , ARN Polimerasa Dependiente del ARN/metabolismo , ARN Polimerasa Dependiente del ARN/ultraestructura , ARN Polimerasa Dependiente del ARN/química , ARN Polimerasa Dependiente del ARN/genética , Replicación Viral , Transcripción Genética , Conformación Proteica
3.
J Mol Biol ; 436(10): 168568, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38583515

RESUMEN

Porphyromonas gingivalis, an anaerobic CFB (Cytophaga, Fusobacterium, and Bacteroides) group bacterium, is the keystone pathogen of periodontitis and has been implicated in various systemic diseases. Increased antibiotic resistance and lack of effective antibiotics necessitate a search for new intervention strategies. Here we report a 3.5 Å resolution cryo-EM structure of P. gingivalis RNA polymerase (RNAP). The structure displays new structural features in its ω subunit and multiple domains in ß and ß' subunits, which differ from their counterparts in other bacterial RNAPs. Superimpositions with E. coli RNAP holoenzyme and initiation complex further suggest that its ω subunit may contact the σ4 domain, thereby possibly contributing to the assembly and stabilization of initiation complexes. In addition to revealing the unique features of P. gingivalis RNAP, our work offers a framework for future studies of transcription regulation in this important pathogen, as well as for structure-based drug development.


Asunto(s)
Microscopía por Crioelectrón , ARN Polimerasas Dirigidas por ADN , Modelos Moleculares , Porphyromonas gingivalis , Porphyromonas gingivalis/enzimología , Porphyromonas gingivalis/genética , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/ultraestructura , ARN Polimerasas Dirigidas por ADN/genética , Conformación Proteica , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/ultraestructura , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/enzimología , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo
4.
Nucleic Acids Res ; 52(8): 4466-4482, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38567721

RESUMEN

A central question in biology is how RNA sequence changes influence dynamic conformational changes during cotranscriptional folding. Here we investigated this question through the study of transcriptional fluoride riboswitches, non-coding RNAs that sense the fluoride anion through the coordinated folding and rearrangement of a pseudoknotted aptamer domain and a downstream intrinsic terminator expression platform. Using a combination of Escherichia coli RNA polymerase in vitro transcription and cellular gene expression assays, we characterized the function of mesophilic and thermophilic fluoride riboswitch variants. We showed that only variants containing the mesophilic pseudoknot function at 37°C. We next systematically varied the pseudoknot sequence and found that a single wobble base pair is critical for function. Characterizing thermophilic variants at 65°C through Thermus aquaticus RNA polymerase in vitro transcription showed the importance of this wobble pair for function even at elevated temperatures. Finally, we performed all-atom molecular dynamics simulations which supported the experimental findings, visualized the RNA structure switching process, and provided insight into the important role of magnesium ions. Together these studies provide deeper insights into the role of riboswitch sequence in influencing folding and function that will be important for understanding of RNA-based gene regulation and for synthetic biology applications.


Asunto(s)
Emparejamiento Base , Escherichia coli , Fluoruros , Conformación de Ácido Nucleico , Riboswitch , Transcripción Genética , Riboswitch/genética , Fluoruros/química , Escherichia coli/genética , Simulación de Dinámica Molecular , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/genética , Pliegue del ARN , Magnesio/química , Secuencia de Bases , ARN Bacteriano/química , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , Thermus/genética , Thermus/enzimología
5.
Arch Microbiol ; 206(5): 230, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649511

RESUMEN

During the past few decades, a wealth of knowledge has been made available for the transcription machinery in bacteria from the structural, functional and mechanistic point of view. However, comparatively little is known about the homooligomerization of the multisubunit M. tuberculosis RNA polymerase (RNAP) enzyme and its functional relevance. While E. coli RNAP has been extensively studied, many aspects of RNAP of the deadly pathogenic M. tuberculosis are still unclear. We used biophysical and biochemical methods to study the oligomerization states of the core and holoenzymes of M. tuberculosis RNAP. By size exclusion chromatography and negative staining Transmission Electron Microscopy (TEM) studies and quantitative analysis of the TEM images, we demonstrate that the in vivo reconstituted RNAP core enzyme (α2ßß'ω) can also exist as dimers in vitro. Using similar methods, we also show that the holoenzyme (core + σA) does not dimerize in vitro and exist mostly as monomers. It is tempting to suggest that the oligomeric changes that we see in presence of σA factor might have functional relevance in the cellular process. Although reported previously in E. coli, to our knowledge we report here for the first time the study of oligomeric nature of M. tuberculosis RNAP in presence and absence of σA factor.


Asunto(s)
Proteínas Bacterianas , ARN Polimerasas Dirigidas por ADN , Mycobacterium tuberculosis , Multimerización de Proteína , Mycobacterium tuberculosis/enzimología , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/química , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/genética , Holoenzimas/química , Holoenzimas/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Microscopía Electrónica de Transmisión , Factor sigma/metabolismo , Factor sigma/química , Factor sigma/genética , Cromatografía en Gel
6.
Talanta ; 274: 125944, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38537347

RESUMEN

In this study, we present a one-pot, one-step, label-free miRNA detection method through a structural transition of a specially designed dumbbell-shape probe, initiating a rolling circle transition (RCT). In principle, target miRNA binds to right loop of the dumbbell probe (DP), which allows structural change of the DP to circular form, exposing a sequence complementary to the T7 promoter (T7p) previously hidden within the stem. This exposure allows T7 RNA polymerase to initiate RCT, producing a repetitive Mango aptamer sequence. TO1-biotin, fluorescent dye, binds to the aptamer, inducing a detectable enhancement of fluorescence intensity. Without miR-141, the DP stays closed, RCT is prevented, and the fluorescence intensity remains low. By employing this novel strategy, target miRNA was successfully identified with a detection of 73 pM and a dynamic linear range of 0-10 nM. Additionally, the method developed enables one-pot, one-step, and label-free detection of miRNA, demonstrating potential for point-of-care testing (POCT) applications. Furthermore, the practical application of the designed technique was demonstrated by reliably detecting the target miRNA in the human serum sample. We also believe that the conceived approach could be widely used to detect not only miRNAs but also diverse biomolecules by simply replacing the detection probe.


Asunto(s)
Aptámeros de Nucleótidos , MicroARNs , Proteínas Virales , MicroARNs/análisis , MicroARNs/sangre , Humanos , Aptámeros de Nucleótidos/química , Técnicas Biosensibles/métodos , Colorantes Fluorescentes/química , Límite de Detección , Conformación de Ácido Nucleico , Espectrometría de Fluorescencia , ARN Polimerasas Dirigidas por ADN/química
7.
Cell ; 187(5): 1145-1159.e21, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38428394

RESUMEN

Chloroplast genes encoding photosynthesis-associated proteins are predominantly transcribed by the plastid-encoded RNA polymerase (PEP). PEP is a multi-subunit complex composed of plastid-encoded subunits similar to bacterial RNA polymerases (RNAPs) stably bound to a set of nuclear-encoded PEP-associated proteins (PAPs). PAPs are essential to PEP activity and chloroplast biogenesis, but their roles are poorly defined. Here, we present cryoelectron microscopy (cryo-EM) structures of native 21-subunit PEP and a PEP transcription elongation complex from white mustard (Sinapis alba). We identify that PAPs encase the core polymerase, forming extensive interactions that likely promote complex assembly and stability. During elongation, PAPs interact with DNA downstream of the transcription bubble and with the nascent mRNA. The models reveal details of the superoxide dismutase, lysine methyltransferase, thioredoxin, and amino acid ligase enzymes that are subunits of PEP. Collectively, these data provide a foundation for the mechanistic understanding of chloroplast transcription and its role in plant growth and adaptation.


Asunto(s)
ARN Polimerasas Dirigidas por ADN , Plastidios , Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Microscopía por Crioelectrón , ARN Polimerasas Dirigidas por ADN/química , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/química , Plastidios/enzimología , Transcripción Genética
8.
Cell ; 187(5): 1106-1108, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38428392

RESUMEN

RNA polymerases (RNAPs) control the first step of gene expression in all forms of life by transferring genetic information from DNA to RNA, a process known as transcription. In this issue of Cell, Webster et al. and Wu et al. report three-dimensional structures of RNAP complexes from chloroplasts.


Asunto(s)
ARN Polimerasas Dirigidas por ADN , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/metabolismo , Transcripción Genética , Plastidios/enzimología
9.
Chemistry ; 30(24): e202400137, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38403849

RESUMEN

Besides being a key player in numerous fundamental biological processes, RNA also represents a versatile platform for the creation of therapeutic agents and efficient vaccines. The production of RNA oligonucleotides, especially those decorated with chemical modifications, cannot meet the exponential demand. Due to the inherent limits of solid-phase synthesis and in vitro transcription, alternative, biocatalytic approaches are in dire need to facilitate the production of RNA oligonucleotides. Here, we present a first step towards the controlled enzymatic synthesis of RNA oligonucleotides. We have explored the possibility of a simple protection step of the vicinal cis-diol moiety to temporarily block ribonucleotides. We demonstrate that pyrimidine nucleotides protected with acetals, particularly 2',3'-O-isopropylidene, are well-tolerated by the template-independent RNA polymerase PUP (polyU polymerase) and highly efficient coupling reactions can be achieved within minutes - an important feature for the development of enzymatic de novo synthesis protocols. Even though purines are not equally well-tolerated, these findings clearly demonstrate the possibility of using cis-diol-protected ribonucleotides combined with template-independent polymerases for the stepwise construction of RNA oligonucleotides.


Asunto(s)
ARN Polimerasas Dirigidas por ADN , ARN , ARN/química , ARN/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/química , Oligonucleótidos/química , Oligonucleótidos/metabolismo , Oligonucleótidos/síntesis química , Ribonucleótidos/química , Ribonucleótidos/metabolismo , Nucleótidos/química , Nucleótidos/metabolismo , Nucleótidos de Pirimidina/química , Nucleótidos de Pirimidina/metabolismo
10.
Nature ; 626(8000): 891-896, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38326611

RESUMEN

Transcription elongation stalls at lesions in the DNA template1. For the DNA lesion to be repaired, the stalled transcription elongation complex (EC) has to be removed from the damaged site2. Here we show that translation, which is coupled to transcription in bacteria, actively dislodges stalled ECs from the damaged DNA template. By contrast, paused, but otherwise elongation-competent, ECs are not dislodged by the ribosome. Instead, they are helped back into processive elongation. We also show that the ribosome slows down when approaching paused, but not stalled, ECs. Our results indicate that coupled ribosomes functionally and kinetically discriminate between paused ECs and stalled ECs, ensuring the selective destruction of only the latter. This functional discrimination is controlled by the RNA polymerase's catalytic domain, the Trigger Loop. We show that the transcription-coupled DNA repair helicase UvrD, proposed to cause backtracking of stalled ECs3, does not interfere with ribosome-mediated dislodging. By contrast, the transcription-coupled DNA repair translocase Mfd4 acts synergistically with translation, and dislodges stalled ECs that were not destroyed by the ribosome. We also show that a coupled ribosome efficiently destroys misincorporated ECs that can cause conflicts with replication5. We propose that coupling to translation is an ancient and one of the main mechanisms of clearing non-functional ECs from the genome.


Asunto(s)
ARN Polimerasas Dirigidas por ADN , Escherichia coli , Biosíntesis de Proteínas , Transcripción Genética , Dominio Catalítico , ADN Helicasas/metabolismo , Reparación del ADN , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Cinética , Ribosomas/metabolismo , Moldes Genéticos , Elongación de la Transcripción Genética , Genoma Bacteriano
11.
Trends Microbiol ; 32(4): 379-397, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37903670

RESUMEN

Transcription activation is an important checkpoint of regulation of gene expression which occurs in response to different intracellular and extracellular signals. The key elements in this signal transduction process are transcription activators, which determine when and how gene expression is activated. Recent structural studies on a considerable number of new transcription activation complexes (TACs) revealed the remarkable mechanistic diversity of transcription activation mediated by different factors, necessitating a review and re-evaluation of the transcription activation mechanisms. In this review, we present a comprehensive summary of transcription activation mechanisms and propose a new, elaborate, and systematic classification of transcription activation mechanisms, primarily based on the structural features of diverse TAC components.


Asunto(s)
Proteínas Bacterianas , ARN Polimerasas Dirigidas por ADN , Activación Transcripcional , Proteínas Bacterianas/metabolismo , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Factor sigma/metabolismo , Regiones Promotoras Genéticas , Bacterias/genética , Bacterias/metabolismo , Regulación Bacteriana de la Expresión Génica , Transcripción Genética
12.
Science ; 382(6677): eadi5120, 2023 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-38127763

RESUMEN

Transcription initiation is a complex process, and its mechanism is incompletely understood. We determined the structures of de novo transcribing complexes TC2 to TC17 with RNA polymerase II halted on G-less promoters when nascent RNAs reach 2 to 17 nucleotides in length, respectively. Connecting these structures generated a movie and a working model. As initially synthesized RNA grows, general transcription factors (GTFs) remain bound to the promoter and the transcription bubble expands. Nucleoside triphosphate (NTP)-driven RNA-DNA translocation and template-strand accumulation in a nearly sealed channel may promote the transition from initially transcribing complexes (ITCs) (TC2 to TC9) to early elongation complexes (EECs) (TC10 to TC17). Our study shows dynamic processes of transcription initiation and reveals why ITCs require GTFs and bubble expansion for initial RNA synthesis, whereas EECs need GTF dissociation from the promoter and bubble collapse for promoter escape.


Asunto(s)
ARN , Factores Generales de Transcripción , Iniciación de la Transcripción Genética , ARN Polimerasas Dirigidas por ADN/química , ARN/biosíntesis , ARN Polimerasa II/química , Factores Generales de Transcripción/metabolismo , Humanos , Animales , Sus scrofa , Microscopía por Crioelectrón , Películas Cinematográficas
13.
Nat Commun ; 14(1): 8422, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38110450

RESUMEN

RNA performs a wide range of functions regulated by its structure, dynamics, and often post-transcriptional modifications. While NMR is the leading method for understanding RNA structure and dynamics, it is currently limited by the inability to reduce spectral crowding by efficient segmental labeling. Furthermore, because of the challenging nature of RNA chemistry, the tools being developed to introduce site-specific modifications are increasingly complex and laborious. Here we use a previously designed Tgo DNA polymerase mutant to present SegModTeX - a versatile, one-pot, copy-and-paste approach to address these challenges. By precise, stepwise construction of a diverse set of RNA molecules, we demonstrate the technique to be superior to RNA polymerase driven and ligation methods owing to its substantially high yield, fidelity, and selectivity. We also show the technique to be useful for incorporating some fluorescent- and a wide range of other probes, which significantly extends the toolbox of RNA biology in general.


Asunto(s)
ARN Polimerasas Dirigidas por ADN , ARN , ARN/genética , ARN/química , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/química , Espectroscopía de Resonancia Magnética , Colorantes , Biología
14.
J Struct Biol ; 215(4): 108038, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37858875

RESUMEN

Transcription of specific genes in bacteria under environmental stress is frequently initiated by extracytoplasmic function (ECF) σ factors. ECFs σ factors harbour two conserved domains, σ2 and σ4, for transcription initiation by recognition of the promoter region and recruitment of RNA polymerase (RNAP). The crystal structure of Streptomyces tsukubaensis SigG1, an ECF56-family σ factor, was determined revealing σ2, σ4 and the additional carboxi-terminal domain SnoaL_2 tightly packed in a compact conformation. The structure of anti-sigma RsfG was also determined by X-ray crystallography and shows a rare ß-barrel fold. Analysis of the metal binding motifs inside the protein barrel are consistent with Fe(III) binding, which is in agreement with previous findings that the Streptomyces tsukubaensis ECF56 SigG1-RsfG system is involved in metal-ion homeostasis.


Asunto(s)
Factor sigma , Streptomyces , Factor sigma/genética , Factor sigma/química , Factor sigma/metabolismo , Proteínas Bacterianas/química , Compuestos Férricos , Modelos Moleculares , Streptomyces/genética , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/química , Regulación Bacteriana de la Expresión Génica
15.
Nature ; 622(7981): 180-187, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37648864

RESUMEN

Antibiotic binding sites are located in important domains of essential enzymes and have been extensively studied in the context of resistance mutations; however, their study is limited by positive selection. Using multiplex genome engineering1 to overcome this constraint, we generate and characterize a collection of 760 single-residue mutants encompassing the entire rifampicin binding site of Escherichia coli RNA polymerase (RNAP). By genetically mapping drug-enzyme interactions, we identify an alpha helix where mutations considerably enhance or disrupt rifampicin binding. We find mutations in this region that prolong antibiotic binding, converting rifampicin from a bacteriostatic to bactericidal drug by inducing lethal DNA breaks. The latter are replication dependent, indicating that rifampicin kills by causing detrimental transcription-replication conflicts at promoters. We also identify additional binding site mutations that greatly increase the speed of RNAP.Fast RNAP depletes the cell of nucleotides, alters cell sensitivity to different antibiotics and provides a cold growth advantage. Finally, by mapping natural rpoB sequence diversity, we discover that functional rifampicin binding site mutations that alter RNAP properties or confer drug resistance occur frequently in nature.


Asunto(s)
Antibacterianos , Sitios de Unión , ARN Polimerasas Dirigidas por ADN , Escherichia coli , Mutación , Rifampin , Antibacterianos/química , Antibacterianos/metabolismo , Antibacterianos/farmacología , Sitios de Unión/efectos de los fármacos , Sitios de Unión/genética , Roturas del ADN/efectos de los fármacos , Replicación del ADN/efectos de los fármacos , ARN Polimerasas Dirigidas por ADN/antagonistas & inhibidores , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Farmacorresistencia Bacteriana/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/enzimología , Escherichia coli/genética , Nucleótidos/deficiencia , Nucleótidos/metabolismo , Regiones Promotoras Genéticas , Rifampin/química , Rifampin/metabolismo , Rifampin/farmacología , Factores de Tiempo , Transcripción Genética/efectos de los fármacos
16.
Structure ; 31(8): 968-974.e3, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37269829

RESUMEN

The CII protein of bacteriophage λ activates transcription from the phage promoters PRE, PI, and PAQ by binding to two direct repeats that straddle the promoter -35 element. Although genetic, biochemical, and structural studies have elucidated many aspects of λCII-mediated transcription activation, no precise structure of the transcription machinery in the process is available. Here, we report a 3.1-Å cryo-electron microscopy (cryo-EM) structure of an intact λCII-dependent transcription activation complex (TAC-λCII), which comprises λCII, E. coli RNAP-σ70 holoenzyme, and the phage promoter PRE. The structure reveals the interactions between λCII and the direct repeats responsible for promoter specificity and the interactions between λCII and RNAP α subunit C-terminal domain responsible for transcription activation. We also determined a 3.4-Å cryo-EM structure of an RNAP-promoter open complex (RPo-PRE) from the same dataset. Structural comparison between TAC-λCII and RPo-PRE provides new insights into λCII-dependent transcription activation.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Activación Transcripcional , Microscopía por Crioelectrón , ARN Polimerasas Dirigidas por ADN/química , Proteínas de Escherichia coli/química , Bacteriófago lambda/genética , Bacteriófago lambda/metabolismo , Transcripción Genética
17.
Proteins ; 91(9): 1276-1287, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37350110

RESUMEN

σ factors are essential parts of bacterial RNA polymerase (RNAP) as they allow to recognize promotor sequences and initiate transcription. Domain 1.1 of vegetative σ factors occupies the primary channel of RNAP and also prevents binding of the σ factor to promoter DNA alone. Here, we show that domain 1.1 of Bacillus subtilis σ A exists in more structurally distinct variants in dynamic equilibrium. The major conformation at room temperature is represented by a previously reported well-folded structure solved by nuclear magnetic resonance (NMR), but 4% of the protein molecules are present in a less thermodynamically favorable state. We show that this population increases with temperature and we predict its significant elevation at higher but still biologically relevant temperatures. We characterized the minor state of the domain 1.1 using specialized methods of NMR. We found that, in contrast to the major state, the detected minor state is partially unfolded. Its propensity to form secondary structure elements is especially decreased for the first and third α helices, while the second α helix and ß strand close to the C-terminus are more stable. We also analyzed thermal unfolding of the domain 1.1 and performed functional experiments with full length σ A and its shortened version lacking domain 1.1 ( σ A _ Δ 1.1 ). The results revealed that while full length σ A increases transcription activity of RNAP with increasing temperature, transcription with σ A _ Δ 1.1 remains constant. In summary, this study reveals conformational dynamics of domain 1.1 and provides a basis for studies of its interaction with RNAP and effects on transcription regulation.


Asunto(s)
Bacillus subtilis , ARN Polimerasas Dirigidas por ADN , Desplegamiento Proteico , Factor sigma , Temperatura , Amidas/metabolismo , Bacillus subtilis/enzimología , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/metabolismo , Modelos Moleculares , Dominios Proteicos , Protones , Factor sigma/química , Factor sigma/metabolismo
18.
Annu Rev Virol ; 10(1): 199-215, 2023 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-37137281

RESUMEN

The nonsegmented, negative-strand RNA viruses (nsNSVs), also known as the order Mononegavirales, have a genome consisting of a single strand of negative-sense RNA. Integral to the nsNSV replication cycle is the viral polymerase, which is responsible for transcribing the viral genome, to produce an array of capped and polyadenylated messenger RNAs, and replicating it to produce new genomes. To perform the different steps that are necessary for these processes, the nsNSV polymerases undergo a series of coordinated conformational transitions. While much is still to be learned regarding the intersection of nsNSV polymerase dynamics, structure, and function, recently published polymerase structures, combined with a history of biochemical and molecular biology studies, have provided new insights into how nsNSV polymerases function as dynamic machines. In this review, we consider each of the steps involved in nsNSV transcription and replication and suggest how these relate to solved polymerase structures.


Asunto(s)
Virus ARN , Transcripción Genética , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Virus ARN/genética , ARN Mensajero , Genoma Viral , ARN Viral/genética , ARN Viral/química , Replicación Viral
19.
J Biol Chem ; 299(6): 104777, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37142222

RESUMEN

Mycobacterium tuberculosis (Mtb) WhiB3 is an iron-sulfur cluster-containing transcription factor belonging to a subclass of the WhiB-Like (Wbl) family that is widely distributed in the phylum Actinobacteria. WhiB3 plays a crucial role in the survival and pathogenesis of Mtb. It binds to the conserved region 4 of the principal sigma factor (σA4) in the RNA polymerase holoenzyme to regulate gene expression like other known Wbl proteins in Mtb. However, the structural basis of how WhiB3 coordinates with σA4 to bind DNA and regulate transcription is unclear. Here we determined crystal structures of the WhiB3:σA4 complex without and with DNA at 1.5 Å and 2.45 Å, respectively, to elucidate how WhiB3 interacts with DNA to regulate gene expression. These structures reveal that the WhiB3:σA4 complex shares a molecular interface similar to other structurally characterized Wbl proteins and also possesses a subclass-specific Arg-rich DNA-binding motif. We demonstrate that this newly defined Arg-rich motif is required for WhiB3 binding to DNA in vitro and transcriptional regulation in Mycobacterium smegmatis. Together, our study provides empirical evidence of how WhiB3 regulates gene expression in Mtb by partnering with σA4 and engaging with DNA via the subclass-specific structural motif, distinct from the modes of DNA interaction by WhiB1 and WhiB7.


Asunto(s)
Proteínas Bacterianas , Modelos Moleculares , Mycobacterium tuberculosis , Factores de Transcripción , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Estructura Cuaternaria de Proteína , Factor sigma/química , Factor sigma/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo
20.
Science ; 379(6638): 1209-1213, 2023 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-36893216

RESUMEN

In addition to the conserved RNA polymerases I to III (Pols I to III) in eukaryotes, two atypical polymerases, Pols IV and V, specifically produce noncoding RNA in the RNA-directed DNA methylation pathway in plants. Here, we report on the structures of cauliflower Pol V in the free and elongation conformations. A conserved tyrosine residue of NRPE2 stacks with a double-stranded DNA branch of the transcription bubble to potentially attenuate elongation by inducing transcription stalling. The nontemplate DNA strand is captured by NRPE2 to enhance backtracking, thereby increasing 3'-5' cleavage, which likely underpins Pol V's high fidelity. The structures also illuminate the mechanism of Pol V transcription stalling and enhanced backtracking, which may be important for Pol V's retention on chromatin to serve its function in tethering downstream factors for RNA-directed DNA methylation.


Asunto(s)
Brassica , Metilación de ADN , ARN Polimerasas Dirigidas por ADN , Proteínas de Plantas , ARN de Planta , ARN no Traducido , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN de Planta/metabolismo , Brassica/enzimología , Proteínas de Plantas/metabolismo , ARN no Traducido/metabolismo , ADN de Plantas/metabolismo , Conformación Proteica , Dominio Catalítico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA