Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Chem Biol ; 17(4): 412-420, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33462493

RESUMEN

Many antibiotics inhibit bacterial growth by binding to the ribosome and interfering with protein biosynthesis. Macrolides represent one of the most successful classes of ribosome-targeting antibiotics. The main clinically relevant mechanism of resistance to macrolides is dimethylation of the 23S rRNA nucleotide A2058, located in the drug-binding site, a reaction catalyzed by Erm-type rRNA methyltransferases. Here, we present the crystal structure of the Erm-dimethylated 70S ribosome at 2.4 Å resolution, together with the structures of unmethylated 70S ribosome functional complexes alone or in combination with macrolides. Altogether, our structural data do not support previous models and, instead, suggest a principally new explanation of how A2058 dimethylation confers resistance to macrolides. Moreover, high-resolution structures of two macrolide antibiotics bound to the unmodified ribosome reveal a previously unknown role of the desosamine moiety in drug binding, laying a foundation for the rational knowledge-based design of macrolides that can overcome Erm-mediated resistance.


Asunto(s)
Macrólidos/metabolismo , ARN Ribosómico/ultraestructura , Ribosomas/ultraestructura , Antibacterianos/farmacología , Farmacorresistencia Bacteriana/genética , Macrólidos/farmacología , Metilación , ARN Ribosómico/genética , ARN Ribosómico 23S/genética , ARN Ribosómico 23S/metabolismo , ARN Ribosómico 23S/ultraestructura , Ribosomas/genética , Ribosomas/metabolismo
2.
Nat Commun ; 10(1): 4563, 2019 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-31594941

RESUMEN

Ribosome-synthesized post-translationally modified peptides (RiPPs) represent a rapidly expanding class of natural products with various biological activities. Linear azol(in)e-containing peptides (LAPs) comprise a subclass of RiPPs that display outstanding diversity of mechanisms of action while sharing common structural features. Here, we report the discovery of a new LAP biosynthetic gene cluster in the genome of Rhizobium Pop5, which encodes the precursor peptide and modification machinery of phazolicin (PHZ) - an extensively modified peptide exhibiting narrow-spectrum antibacterial activity against some symbiotic bacteria of leguminous plants. The cryo-EM structure of the Escherichia coli 70S-PHZ complex reveals that the drug interacts with the 23S rRNA and uL4/uL22 proteins and obstructs ribosomal exit tunnel in a way that is distinct from other compounds. We show that the uL4 loop sequence determines the species-specificity of antibiotic action. PHZ expands the known diversity of LAPs and may be used in the future as biocontrol agent for agricultural needs.


Asunto(s)
Antibacterianos/farmacología , Azoles/farmacología , Agentes de Control Biológico/farmacología , Péptidos/farmacología , Biosíntesis de Proteínas/efectos de los fármacos , Ribosomas/efectos de los fármacos , Antibacterianos/química , Antibacterianos/metabolismo , Azoles/química , Azoles/metabolismo , Agentes de Control Biológico/química , Agentes de Control Biológico/metabolismo , Microscopía por Crioelectrón , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/ultraestructura , Pruebas de Sensibilidad Microbiana , Familia de Multigenes , Biosíntesis de Péptidos/genética , Péptidos/química , Péptidos/metabolismo , Phaseolus/microbiología , ARN Ribosómico 23S/metabolismo , ARN Ribosómico 23S/ultraestructura , Rhizobium/genética , Rhizobium/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Proteínas Ribosómicas/ultraestructura , Ribosomas/metabolismo , Ribosomas/ultraestructura , Especificidad de la Especie , Simbiosis
3.
Sci Rep ; 9(1): 11460, 2019 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-31391518

RESUMEN

The clinical use of the antibiotic erythromycin (ery) is hampered owing to the spread of resistance genes that are mostly mutating rRNA around the ery binding site at the entrance to the protein exit tunnel. Additional effective resistance mechanisms include deletion or insertion mutations in ribosomal protein uL22, which lead to alterations of the exit tunnel shape, located 16 Å away from the drug's binding site. We determined the cryo-EM structures of the Staphylococcus aureus 70S ribosome, and its ery bound complex with a two amino acid deletion mutation in its ß hairpin loop, which grants the bacteria resistance to ery. The structures reveal that, although the binding of ery is stable, the movement of the flexible shorter uL22 loop towards the tunnel wall creates a wider path for nascent proteins, thus enabling bypass of the barrier formed by the drug. Moreover, upon drug binding, the tunnel widens further.


Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/ultraestructura , Farmacorresistencia Bacteriana/genética , Eritromicina/farmacología , Proteínas Ribosómicas/ultraestructura , Staphylococcus aureus/efectos de los fármacos , Antibacterianos/uso terapéutico , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Microscopía por Crioelectrón , Eritromicina/uso terapéutico , Humanos , Mutación , Unión Proteica/genética , ARN Ribosómico 23S/metabolismo , ARN Ribosómico 23S/ultraestructura , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Grandes Bacterianas/efectos de los fármacos , Subunidades Ribosómicas Grandes Bacterianas/metabolismo , Subunidades Ribosómicas Grandes Bacterianas/ultraestructura , Ribosomas/efectos de los fármacos , Ribosomas/metabolismo , Ribosomas/ultraestructura , Imagen Individual de Molécula , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/genética , Staphylococcus aureus/ultraestructura
4.
Nature ; 564(7736): 444-448, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30518861

RESUMEN

Orthogonal ribosomes are unnatural ribosomes that are directed towards orthogonal messenger RNAs in Escherichia coli, through an altered version of the 16S ribosomal RNA of the small subunit1. Directed evolution of orthogonal ribosomes has provided access to new ribosomal function, and the evolved orthogonal ribosomes have enabled the encoding of multiple non-canonical amino acids into proteins2-4. The original orthogonal ribosomes shared the pool of 23S ribosomal RNAs, contained in the large subunit, with endogenous ribosomes. Selectively directing a new 23S rRNA to an orthogonal mRNA, by controlling the association between the orthogonal 16S rRNAs and 23S rRNAs, would enable the evolution of new function in the large subunit. Previous work covalently linked orthogonal 16S rRNA and a circularly permuted 23S rRNA to create orthogonal ribosomes with low activity5,6; however, the linked subunits in these ribosomes do not associate specifically with each other, and mediate translation by associating with endogenous subunits. Here we discover engineered orthogonal 'stapled' ribosomes (with subunits linked through an optimized RNA staple) with activities comparable to that of the parent orthogonal ribosome; they minimize association with endogenous subunits and mediate translation of orthogonal mRNAs through the association of stapled subunits. We evolve cells with genomically encoded stapled ribosomes as the sole ribosomes, which support cellular growth at similar rates to natural ribosomes. Moreover, we visualize the engineered stapled ribosome structure by cryo-electron microscopy at 3.0 Å, revealing how the staple links the subunits and controls their association. We demonstrate the utility of controlling subunit association by evolving orthogonal stapled ribosomes which efficiently polymerize a sequence of monomers that the natural ribosome is intrinsically unable to translate. Our work provides a foundation for evolving the rRNA of the entire orthogonal ribosome for the encoded cellular synthesis of non-canonical biological polymers7.


Asunto(s)
Evolución Molecular Dirigida , Escherichia coli , Biosíntesis de Proteínas , Subunidades Ribosómicas/metabolismo , Subunidades Ribosómicas/ultraestructura , Ribosomas/metabolismo , Ribosomas/ultraestructura , Secuencia de Bases , Reactivos de Enlaces Cruzados/química , Microscopía por Crioelectrón , Escherichia coli/clasificación , Escherichia coli/citología , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Modelos Moleculares , Péptidos/genética , Péptidos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Ribosómico 16S/química , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , ARN Ribosómico 16S/ultraestructura , ARN Ribosómico 23S/química , ARN Ribosómico 23S/genética , ARN Ribosómico 23S/metabolismo , ARN Ribosómico 23S/ultraestructura , Subunidades Ribosómicas/química , Ribosomas/química , Ribosomas/genética
5.
Mol Cell ; 70(5): 881-893.e3, 2018 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-29883607

RESUMEN

The assembly of ribosomal subunits is an essential prerequisite for protein biosynthesis in all domains of life. Although biochemical and biophysical approaches have advanced our understanding of ribosome assembly, our mechanistic comprehension of this process is still limited. Here, we perform an in vitro reconstitution of the Escherichia coli 50S ribosomal subunit. Late reconstitution products were subjected to high-resolution cryo-electron microscopy and multiparticle refinement analysis to reconstruct five distinct precursors of the 50S subunit with 4.3-3.8 Å resolution. These assembly intermediates define a progressive maturation pathway culminating in a late assembly particle, whose structure is more than 96% identical to a mature 50S subunit. Our structures monitor the formation and stabilization of structural elements in a nascent particle in unprecedented detail and identify the maturation of the rRNA-based peptidyl transferase center as the final critical step along the 50S assembly pathway.


Asunto(s)
Escherichia coli/metabolismo , ARN Bacteriano/metabolismo , ARN Ribosómico 23S/metabolismo , Subunidades Ribosómicas Grandes Bacterianas/metabolismo , Microscopía por Crioelectrón , Escherichia coli/genética , Escherichia coli/ultraestructura , Modelos Moleculares , Conformación de Ácido Nucleico , Conformación Proteica , ARN Bacteriano/genética , ARN Bacteriano/ultraestructura , ARN Ribosómico 23S/genética , ARN Ribosómico 23S/ultraestructura , Subunidades Ribosómicas Grandes Bacterianas/genética , Subunidades Ribosómicas Grandes Bacterianas/ultraestructura , Relación Estructura-Actividad
6.
Methods Enzymol ; 558: 99-124, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26068739

RESUMEN

The biology of an RNA is encoded in its structure and dynamics, whether that be binding to a protein, binding to another RNA, enzymatic catalysis, or becoming a substrate. In solution, most RNA molecules are sampling conformations, and their structures are best described as conformational ensembles. For larger RNAs, experiments that can describe the conformations of their domains can be particularly daunting, especially when the RNA is novel and not well characterized. Here, we explain how we have used site-specific 2-aminopurine as a fluorescent probe of the secondary and tertiary structures of a 60 nucleotide RNA, and what new findings we have about its Mg(2+)-dependent conformational changes. We focus on this RNA from prokaryotic ribosome as a proof of concept as well as a research project. Its tertiary structure is known from a cocrystal, and its secondary structure is modeled from phylogenetic conservation, but there are virtually no data describing the motions of its nucleotides in solution, or its folding kinetics. It is a perfect system to illustrate the unique information that comes from a comprehensive fluorescence study of this intricate RNA.


Asunto(s)
2-Aminopurina/química , Proteínas de Escherichia coli/ultraestructura , Sondas Moleculares/química , ARN Ribosómico 23S/ultraestructura , Proteínas Ribosómicas/ultraestructura , Ribosomas/química , Secuencia de Bases , Cationes Bivalentes , Escherichia coli/química , Proteínas de Escherichia coli/química , Fluorescencia , Cinética , Magnesio/química , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Unión Proteica , Pliegue del ARN , ARN Ribosómico 23S/química , Proteínas Ribosómicas/química , Ribosomas/metabolismo , Espectrometría de Fluorescencia/métodos , Termodinámica
7.
Bull Math Biol ; 71(1): 84-106, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19083065

RESUMEN

We give a Large Deviation Principle (LDP) with explicit rate function for the distribution of vertex degrees in plane trees, a combinatorial model of RNA secondary structures. We calculate the typical degree distributions based on nearest neighbor free energies, and compare our results with the branching configurations found in two sets of large RNA secondary structures. We find substantial agreement overall, with some interesting deviations which merit further study.


Asunto(s)
Modelos Moleculares , Conformación de Ácido Nucleico , ARN Ribosómico 23S/ultraestructura , ARN Viral/ultraestructura , Interpretación Estadística de Datos , Árboles de Decisión , Redes Neurales de la Computación , Picornaviridae/genética , Probabilidad , Termodinámica
8.
Proc Natl Acad Sci U S A ; 103(26): 9838-43, 2006 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-16785426

RESUMEN

Thousands of introns have been localized to rRNA genes throughout the three domains of life. The consequences of the presence of either a spliced or an unspliced intron in a rRNA for ribosome assembly and packaging are largely unknown. To help address these questions, and to begin an intron imaging study, we selected a member of the self-splicing group II intron family, which is hypothesized to be the progenitor not only of spliceosomal introns but also of non-LTR retrotransposons. We cloned the self-splicing group II Ll.LtrB intron from Lactococcus lactis into L. lactis 23S rRNA. The 2,492-nt Ll.LtrB intron comprises a catalytic core and an ORF, which encodes a protein, LtrA. LtrA forms a ribonucleoprotein (RNP) complex with the intron RNA to mediate splicing and mobility. The chimeric 23S-intron RNA was shown to be splicing proficient in its native host in the presence of LtrA. Furthermore, a low-resolution cryo-EM reconstruction of the L. lactis ribosome fused to the intron-LtrA RNP of a splicing-defective Ll.LtrB intron was obtained. The image revealed the intron as a large, well defined structure. The activity and structural integrity of the intron indicate not only that it can coexist with the ribosome but also that its presence permits the assembly of a stable ribosome. Additionally, we view our results as a proof of principle that ribosome chimeras may be generally useful for studying a wide variety of structured RNAs and RNP complexes that are not amenable to NMR, crystallographic, or single-particle cryo-EM methodologies.


Asunto(s)
Intrones , Conformación de Ácido Nucleico , ARN Ribosómico 23S/ultraestructura , Ribosomas/ultraestructura , Empalmosomas/ultraestructura , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Microscopía por Crioelectrón , Lactococcus lactis/genética , Empalme del ARN , ARN Ribosómico 23S/química , ADN Polimerasa Dirigida por ARN/química , ADN Polimerasa Dirigida por ARN/genética , Ribonucleoproteínas/química , Ribonucleoproteínas/genética , Ribosomas/química , Empalmosomas/química
9.
BMC Mol Biol ; 5: 10, 2004 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-15298702

RESUMEN

BACKGROUND: Most of the existing RNA structure prediction programs fold a completely synthesized RNA molecule. However, within the cell, RNA molecules emerge sequentially during the directed process of transcription. Dedicated experiments with individual RNA molecules have shown that RNA folds while it is being transcribed and that its correct folding can also depend on the proper speed of transcription. METHODS: The main aim of this work is to study if and how co-transcriptional folding is encoded within the primary and secondary structure of RNA genes. In order to achieve this, we study the known primary and secondary structures of a comprehensive data set of 361 RNA genes as well as a set of 48 RNA sequences that are known to differ from the originally transcribed sequence units. We detect co-transcriptional folding by defining two measures of directedness which quantify the extend of asymmetry between alternative helices that lie 5' and those that lie 3' of the known helices with which they compete. RESULTS: We show with statistical significance that co-transcriptional folding strongly influences RNA sequences in two ways: (1) alternative helices that would compete with the formation of the functional structure during co-transcriptional folding are suppressed and (2) the formation of transient structures which may serve as guidelines for the co-transcriptional folding pathway is encouraged. CONCLUSIONS: These findings have a number of implications for RNA secondary structure prediction methods and the detection of RNA genes.


Asunto(s)
ADN Ribosómico/genética , Genes , Modelos Genéticos , Conformación de Ácido Nucleico , ARN/genética , Transcripción Genética , Algoritmos , Emparejamiento Base , ADN Bacteriano/genética , Enlace de Hidrógeno , Intrones/genética , ARN/ultraestructura , Procesamiento Postranscripcional del ARN , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/ultraestructura , ARN Ribosómico 23S/genética , ARN Ribosómico 23S/ultraestructura
10.
IEEE Trans Nanobioscience ; 2(2): 70-4, 2003 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15382661

RESUMEN

RNA molecules play essential roles in many biological processes, including the storage and transfer of information in the cell. These events are mediated via RNA-protein interactions or by catalytic RNA molecules. It is now recognized that unique RNA folds are associated with biological functions. Therefore, to study the intrinsic structural changes and dynamics which regulate the various functions of RNA, it is necessary to probe its three-dimensional structure in solution. In this respect, using single-molecule methodologies may allow study of native RNA molecules independent of their size and in real time. However, this may require the immobilization of RNA on a surface. Here, we report a novel approach to immobilize RNA on a glass. The procedures involve both chemical and enzymatic modifications of long RNA molecules. In addition, we demonstrate the application of an optical tweezers apparatus to measure the length and, hence, the dynamics of immobilized intact ribosomal RNA molecules as a function of different solution conditions.


Asunto(s)
Micromanipulación/métodos , Nanotecnología/métodos , ARN/química , ARN/ultraestructura , Coloración y Etiquetado/métodos , Adsorción , Estudios de Factibilidad , Vidrio/química , Cloruro de Magnesio/química , Movimiento (Física) , Conformación de Ácido Nucleico , Óptica y Fotónica , ARN/análisis , ARN Ribosómico 23S/análisis , ARN Ribosómico 23S/química , ARN Ribosómico 23S/ultraestructura
11.
J Mol Biol ; 307(5): 1341-9, 2001 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-11292346

RESUMEN

Insertions were introduced by a two-step mutagenesis procedure into each of five double-helical regions of Escherichia coli 23 S rRNA, so as to extend the helix concerned by 17 bp. The helices chosen were at sites within the 23 S molecule (h9, h25, h45, h63 and h98) where significant length variations between different species are known to occur. At each of these positions, with the exception of h45, there are also significant differences between the 23 S rRNAs of E. coli and Haloarcula marismortui. Plasmids carrying the insertions were introduced into an E. coli strain lacking all seven rrn operons. In four of the five cases the cells were viable and 50 S subunits could be isolated; only the insertion in h63 was lethal. The modified subunits were examined by cryo-electron microscopy (cryo-EM), with a view to locating extra electron density corresponding to the insertion elements. The results were compared both with the recently determined atomic structure of H. marismortui 23 S rRNA in the 50 S subunit, and with previous 23 S rRNA modelling studies based on cryo-EM reconstructions of E. coli ribosomes. The insertion element in h45 was located by cryo-EM at a position corresponding precisely to that of the equivalent helix in H. marismortui. The insertion in h98 (which is entirely absent in H. marismortui) was similarly located at a position corresponding precisely to that predicted from the E. coli modelling studies. In the region of h9, the difference between the E. coli and H. marismortui secondary structures is ambiguous, and the extra electron density corresponding to the insertion was seen at a location intermediate between the position of the nearest helix in the atomic structure and that in the modelled structure. In the case of h25 (which is about 50 nucleotides longer in H. marismortui), no clear extra cryo-EM density corresponding to the insertion could be observed.


Asunto(s)
Microscopía por Crioelectrón , Escherichia coli/genética , Haloarcula marismortui/genética , ARN Bacteriano/ultraestructura , ARN Ribosómico 23S/ultraestructura , Ribosomas/ultraestructura , Secuencia de Bases , División Celular , Gráficos por Computador , Escherichia coli/química , Escherichia coli/crecimiento & desarrollo , Genes Letales/genética , Haloarcula marismortui/química , Haloarcula marismortui/crecimiento & desarrollo , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis/genética , Conformación de Ácido Nucleico , Operón/genética , Conformación Proteica , Subunidades de Proteína , ARN Bacteriano/química , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN Ribosómico 23S/química , ARN Ribosómico 23S/genética , ARN Ribosómico 23S/metabolismo , Ribosomas/química , Ribosomas/genética , Ribosomas/metabolismo
12.
J Mol Biol ; 298(1): 35-59, 2000 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-10756104

RESUMEN

The Escherichia coli 23 S and 5 S rRNA molecules have been fitted helix by helix to a cryo-electron microscopic (EM) reconstruction of the 50 S ribosomal subunit, using an unfiltered version of the recently published 50 S reconstruction at 7.5 A resolution. At this resolution, the EM density shows a well-defined network of fine structural elements, in which the major and minor grooves of the rRNA helices can be discerned at many locations. The 3D folding of the rRNA molecules within this EM density is constrained by their well-established secondary structures, and further constraints are provided by intra and inter-rRNA crosslinking data, as well as by tertiary interactions and pseudoknots. RNA-protein cross-link and foot-print sites on the 23 S and 5 S rRNA were used to position the rRNA elements concerned in relation to the known arrangement of the ribosomal proteins as determined by immuno-electron microscopy. The published X-ray or NMR structures of seven 50 S ribosomal proteins or RNA-protein complexes were incorporated into the EM density. The 3D locations of cross-link and foot-print sites to the 23 S rRNA from tRNA bound to the ribosomal A, P or E sites were correlated with the positions of the tRNA molecules directly observed in earlier reconstructions of the 70 S ribosome at 13 A or 20 A. Similarly, the positions of cross-link sites within the peptidyl transferase ring of the 23 S rRNA from the aminoacyl residue of tRNA were correlated with the locations of the CCA ends of the A and P site tRNA. Sites on the 23 S rRNA that are cross-linked to the N termini of peptides of different lengths were all found to lie within or close to the internal tunnel connecting the peptidyl transferase region with the presumed peptide exit site on the solvent side of the 50 S subunit. The post-transcriptionally modified bases in the 23 S rRNA form a cluster close to the peptidyl transferase area. The minimum conserved core elements of the secondary structure of the 23 S rRNA form a compact block within the 3D structure and, conversely, the points corresponding to the locations of expansion segments in 28 S rRNA all lie on the outside of the structure.


Asunto(s)
Escherichia coli/química , Escherichia coli/genética , ARN Ribosómico 23S/química , ARN Ribosómico 23S/ultraestructura , ARN Ribosómico 5S/química , ARN Ribosómico 5S/ultraestructura , Ribosomas/ultraestructura , Secuencia de Bases , Sitios de Unión , Simulación por Computador , Secuencia Conservada/genética , Reactivos de Enlaces Cruzados , Microscopía por Crioelectrón , Cristalografía por Rayos X , Proteínas Fúngicas/metabolismo , Microscopía Inmunoelectrónica , Modelos Moleculares , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Conformación de Ácido Nucleico , Factor Tu de Elongación Peptídica/metabolismo , ARN Bacteriano/química , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN Bacteriano/ultraestructura , ARN Ribosómico 23S/genética , ARN Ribosómico 23S/metabolismo , ARN Ribosómico 5S/genética , ARN Ribosómico 5S/metabolismo , ARN de Transferencia/química , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , ARN de Transferencia/ultraestructura , Ribonucleasas/metabolismo , Proteínas Ribosómicas/metabolismo , Ribosomas/química , Ribosomas/genética , Ribosomas/metabolismo , Ricina/metabolismo , Termodinámica
13.
Structure ; 7(12): 1567-73, 1999 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-10647187

RESUMEN

BACKGROUND: Ribosomes are complex macromolecular machines that perform the translation of the genetic message. Cryo-electron microscopic (cryo-EM) maps of the Escherichia coli 70S ribosome are approaching a resolution of 10 A and X-ray maps of the 30S and 50S subunits are now available at 5 A. These maps show a lot of details about the inner architecture of the ribosome and ribosomal RNA helices are clearly visible. However, in the absence of further biological information, even at the higher resolution of the X-ray maps many rRNA helices can be placed only tentatively. Here we show that genetic tagging in combination with cryo-EM can place and orient double-stranded RNA helices with high accuracy. RESULTS: A tRNA sequence inserted into the E. coli 23S ribosomal RNA gene, at one of the points of sequence expansion in eukaryotic ribosomes, is visible in the cryo-EM map as a peripheral 'foot' structure. By tracing its acceptor-stem end, the location of helix 63 in domain IV and helix 98 in domain VI of the 50S subunit could be precisely determined. CONCLUSIONS: Our study demonstrates for the first time that features of a three-dimensional cryo-EM map of an asymmetric macromolecular complex can be interpreted in terms of secondary and primary structure. Using the identified helices as a starting point, it is possible to model and interpret, in molecular terms, a larger portion of the ribosome. Our results might be also useful in interpreting and refining the current X-ray maps.


Asunto(s)
Escherichia coli/genética , Escherichia coli/ultraestructura , Conformación de Ácido Nucleico , ARN Ribosómico 23S/ultraestructura , ARN de Transferencia/ultraestructura , Ribosomas/ultraestructura , Secuencia de Bases , Microscopía por Crioelectrón/métodos , Cartilla de ADN , Procesamiento de Imagen Asistido por Computador , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Insercional , Reacción en Cadena de la Polimerasa , ARN Bacteriano/genética , ARN Bacteriano/ultraestructura , ARN Ribosómico 23S/genética , ARN de Transferencia/genética
14.
J Mol Biol ; 279(2): 403-21, 1998 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-9642046

RESUMEN

Samples of 80 S ribosomes from rabbit reticulocytes were subjected to electron cryomicroscopy combined with angular reconstitution. A three-dimensional reconstruction at 21 A resolution was obtained, which was compared with the corresponding (previously published) reconstruction of Escherichia coli 70 S ribosomes carrying tRNAs at the A and P sites. In the region of the intersubunit cavity, the principal features observed in the 70 S ribosome (such as the L1 protuberance, the central protuberance and A site finger in the large subunit) could all be clearly identified in the 80 S particle. On the other hand, significant additional features were observed in the 80 S ribosomes on the solvent sides and lower regions of both subunits. In the case of the small (40 S) subunit, the most prominent additions are two extensions at the base of the particle. By comparing the secondary structure of the rabbit 18 S rRNA with our model for the three-dimensional arrangement of E. coli 16 S rRNA, these two extensions could be correlated with the rabbit expansion segments (each totalling ca 170 bases) in the regions of helix 21, and of helices 8, 9 and 44, respectively. A similar comparison of the secondary structures of mammalian 28 S rRNA and E. coli 23 S rRNA, combined with preliminary modelling studies on the 23 S rRNA within the 50 S subunit, enabled the additional features in the 60 S subunit to be sub-divided into five groups. The first (corresponding to a total of ca 335 extra bases in helices 45, 98 and 101) is located on the solvent side of the 60 S subunit, close to the L7/L12 area. The second (820 bases in helices 25 and 38) is centrally placed on the solvent side of the subunit, whereas the third group (totaling 225 bases in helices 18/19, 27/29, 52 and 54) lies towards the L1 side of the subunit. The fourth feature (80 bases in helices 78 and 79) lies within or close to the L1 protuberance itself, and the fifth (560 bases in helix 63) is located underneath the L1 protuberance on the interface side of the 60 S subunit.


Asunto(s)
ARN Ribosómico/química , ARN Ribosómico/ultraestructura , Ribosomas/química , Ribosomas/ultraestructura , Animales , Secuencia de Bases , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/ultraestructura , Procesamiento de Imagen Asistido por Computador , Microscopía Electrónica , Modelos Moleculares , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , ARN Bacteriano/química , ARN Bacteriano/genética , ARN Bacteriano/ultraestructura , ARN Ribosómico/genética , ARN Ribosómico 16S/química , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/ultraestructura , ARN Ribosómico 18S/química , ARN Ribosómico 18S/genética , ARN Ribosómico 18S/ultraestructura , ARN Ribosómico 23S/química , ARN Ribosómico 23S/genética , ARN Ribosómico 23S/ultraestructura , ARN Ribosómico 28S/química , ARN Ribosómico 28S/genética , ARN Ribosómico 28S/ultraestructura , Conejos , Reticulocitos/química , Ribosomas/genética , Especificidad de la Especie
15.
Nucleic Acids Res ; 23(17): 3426-33, 1995 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-7567452

RESUMEN

Ribosomal protein L11 and an antibiotic, thiostrepton, bind to the same highly conserved region of large subunit ribosomal RNA and stabilize a set of NH4(+)-dependent tertiary interactions within the domain. In vitro selection from partially randomized pools of RNA sequences has been used to ask what aspects of RNA structure are recognized by the ligands. L11-selected RNAs showed little sequence variation over the entire 70 nucleotide randomized region, while thiostrepton required a slightly smaller 58 nucleotide domain. All the selected mutations preserved or stabilized the known secondary and tertiary structure of the RNA. L11-selected RNAs from a pool mutagenized only around a junction structure yielded a very different consensus sequence, in which the RNA tertiary structure was substantially destabilized and L11 binding was no longer dependent on NH4+. We propose that L11 can bind the RNA in two different 'modes', depending on the presence or absence of the NH4(+)-dependent tertiary structure, while thiostrepton can only recognize the RNA tertiary structure. The different RNA recognition mechanisms for the two ligands may be relevant to their different effects on protein synthesis.


Asunto(s)
ARN Ribosómico 23S/ultraestructura , Proteínas Ribosómicas/química , Tioestreptona/metabolismo , Secuencia de Bases , Sitios de Unión , Enlace de Hidrógeno , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , ARN Ribosómico 23S/química , Proteínas de Unión al ARN/química , Relación Estructura-Actividad
16.
Proc Natl Acad Sci U S A ; 91(8): 2989-93, 1994 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-8159692

RESUMEN

A putative base-pairing interaction that determines the folding of the central region of 23S rRNA has been investigated by mutagenesis. Each of the possible base substitutions has been made at the phylogenetically covariant positions adenine-1262 (A1262) and U2017 in Escherichia coli 23S rRNA. Every substitution that disrupts the potential for Watson-Crick base pairing between these positions reduces or abolishes the participation of 23S rRNA in protein synthesis. All mutant 23S rRNAs are assembled into 50S subunits, but the mutant subunits are less able to stably interact with 30S subunits to form translationally active ribosomes. The function of 23S rRNA is largely reestablished by introduction of an alternative G1262.C2017 or U1262.A2017 pair, although neither of these supports polysome formation quite as effectively as the wild-type pair. A 23S rRNA with a C1262.G2017 pair is nonfunctional. In contrast to the considerable effect the mutations have on function, they impart only slight structural changes on the naked rRNA, and these are limited to the immediate vicinity of the mutations. The data show that positions 1262 and 2017 pair in a Watson-Crick manner, but the data also indicate that these nucleotides engage in additional interactions within the ribosome and that these interactions determine what base pairs are acceptable there.


Asunto(s)
Conformación de Ácido Nucleico , ARN Ribosómico 23S/química , Secuencia de Bases , Cartilla de ADN/química , Escherichia coli , Enlace de Hidrógeno , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Filogenia , ARN Ribosómico 23S/ultraestructura , Ribosomas/ultraestructura , Homología de Secuencia de Ácido Nucleico , Relación Estructura-Actividad
17.
J Mol Biol ; 234(4): 1013-20, 1993 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-8263910

RESUMEN

The Escherichia coli ribosomal protein (r-protein) L11 and its binding site on 23 S ribosomal RNA (rRNA) are associated with ribosomal hydrolysis of guanosine 5'-triphosphate (GTP). We have used hydroxyl radical footprinting to map the contacts between L11 and the backbone riboses in 23 S rRNA, and to investigate how this interaction is influenced by other ribosomal components. Complexes were characterized in both naked 23 S rRNA and ribosomes from an E. coli L11-minus strain, before and after reconstitution with L11. The protein protects 17 riboses between positions 1058 and 1085 in the naked 23 S rRNA. Within the ribosome, L11 also interacts with this rRNA region, although the protection effects are subtly different and extend to nucleotide 1098. The pentameric r-protein complex L10.(L12)4 binds to an adjacent site on the rRNA, protecting riboses at positions 1043, 1046 to 1049, 1053 to 1055 and increasing the accessibility of position 1068. The overlap in the positions affected by r-proteins L11 and L10.(L12)4, and the increase in protection between positions 1078 and 1084 when they are bound at the same time, reflect the mutually cooperative nature of their interaction with the rRNA. The data support a model for the tertiary configuration of the rRNA region, in which two stem-loop structures fold so that the loops lie in close proximity, with the main ribose interactions of L11 within the minor groove of one of the stems. The conformation of the rRNA-L11 interaction is modulated by L10.(L12)4 and other proteins within the ribosome. The antibiotics thiostrepton and micrococcin inhibit the catalytic functions of this region by slotting in between the accessible loops and interacting with nucleotides there.


Asunto(s)
Endorribonucleasas , ARN Ribosómico 23S/metabolismo , Proteínas Ribosómicas/metabolismo , Ribosomas/ultraestructura , Tioestreptona/metabolismo , Secuencia de Bases , Sitios de Unión , Escherichia coli , Proteínas Fúngicas/metabolismo , GTP Fosfohidrolasas/química , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Unión Proteica , ARN Ribosómico 23S/ultraestructura , Proteína Ribosómica L10 , Ribosomas/efectos de los fármacos , Ribosomas/metabolismo
18.
EMBO J ; 12(4): 1499-504, 1993 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-7682175

RESUMEN

Replacement of the protein L11 binding domain within Escherichia coli 23S ribosomal RNA (rRNA) by the equivalent region from yeast 26S rRNA appeared to have no effect on the growth rate of E.coli cells harbouring a plasmid carrying the mutated rrnB operon. The hybrid rRNA was correctly processed and assembled into ribosomes, which accumulated normally in polyribosomes. Of the total ribosomal population, < 25% contained wild-type, chromosomally encoded rRNA; the remainder were mutant. The hybrid ribosomes supported GTP hydrolysis dependent upon E.coli elongation factor G, although at a somewhat reduced rate compared with wild-type particles, and were sensitive to the antibiotic, thiostrepton, a potent inhibitor of ribosomal GTPase activity that binds to 23S rRNA within the L11 binding domain. That thiostrepton could indeed bind to the mutant ribosomes, although at a reduced level relative to that seen with wild-type ribosomes, was confirmed in a non-equilibrium assay. The rationale for the ability of the hybrid ribosomes to bind the antibiotic, given that yeast ribosomes do not, was provided when yeast rRNA was shown by equilibrium dialysis to bind thiostrepton only 10-fold less tightly than did E.coli rRNA. The extreme conservation of secondary, but not primary, structure in this region between E.coli and yeast rRNAs allows the hybrid ribosomes to function competently in protein synthesis and also preserves the interaction with thiostrepton.


Asunto(s)
Factores de Elongación Enlazados a GTP Fosfohidrolasas/metabolismo , ARN Ribosómico 23S/química , Proteínas Ribosómicas/metabolismo , Ribosomas/ultraestructura , Secuencia de Bases , Sitios de Unión , Análisis Mutacional de ADN , Guanosina Trifosfato/metabolismo , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Factor G de Elongación Peptídica , Factores de Elongación de Péptidos/metabolismo , ARN Bacteriano/química , ARN Bacteriano/genética , ARN de Hongos/química , ARN de Hongos/genética , ARN Ribosómico 23S/ultraestructura , Ribosomas/metabolismo , Relación Estructura-Actividad , Tioestreptona/metabolismo
19.
J Cell Biol ; 115(3): 597-605, 1991 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-1918155

RESUMEN

A reconstruction, at 40 A, of the Escherichia coli ribosome imaged by cryo-electron microscopy, obtained from 303 projections by a single-particle method of reconstruction, shows the two subunits with unprecedented clarity. In the interior of the subunits, a complex distribution of higher mass density is recognized, which is attributed to ribosomal RNA. The masses corresponding to the 16S and 23S components are linked in the region of the platform of the small subunit. Thus the topography of the rRNA regions responsible for protein synthesis can be described.


Asunto(s)
Escherichia coli/ultraestructura , ARN Ribosómico/ultraestructura , Ribosomas/ultraestructura , Gráficos por Computador , Modelos Estructurales , ARN Ribosómico 16S/ultraestructura , ARN Ribosómico 23S/ultraestructura
20.
Biochim Biophys Acta ; 1050(1-3): 8-13, 1990 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-2207172

RESUMEN

A large number of intra-RNA and RNA-protein cross-link sites have been localized within the 23S RNA from E. coli 50 S ribosomal subunits. These sites, together with other data, are sufficient to constrain the secondary structure of the 23 S molecule into a compact three-dimensional shape. Some of the features of this structure are discussed, in particular, those relating to the orientation of tRNA on the 50 S subunit as studied by site-directed cross-linking techniques. A corresponding model for the 16S RNA within the 30 S subunit has already been described, and here a site-directed cross-linking approach is being used to determine the path followed through the subunit by messenger RNA.


Asunto(s)
Escherichia coli/genética , ARN Ribosómico/genética , Secuencia de Bases , Reactivos de Enlaces Cruzados , Modelos Estructurales , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , ARN Ribosómico/ultraestructura , ARN Ribosómico 23S/genética , ARN Ribosómico 23S/ultraestructura , Ribosomas/metabolismo , Ribosomas/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...