Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88.746
Filtrar
1.
Parasit Vectors ; 17(1): 204, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38715075

RESUMEN

BACKGROUND: Mosquito-borne viruses cause various infectious diseases in humans and animals. Oya virus (OYAV) and Ebinur Lake virus (EBIV), belonging to the genus Orthobunyavirus within the family Peribunyaviridae, are recognized as neglected viruses with the potential to pose threats to animal or public health. The evaluation of vector competence is essential for predicting the arbovirus transmission risk. METHODS: To investigate the range of mosquito vectors for OYAV (strain SZC50) and EBIV (strain Cu20-XJ), the susceptibility of four mosquito species (Culex pipiens pallens, Cx. quinquefasciatus, Aedes albopictus, and Ae. aegypti) was measured through artificial oral infection. Then, mosquito species with a high infection rate (IR) were chosen to further evaluate the dissemination rate (DR), transmission rate (TR), and transmission efficiency. The viral RNA in each mosquito sample was determined by RT-qPCR. RESULTS: The results revealed that for OYAV, Cx. pipiens pallens had the highest IR (up to 40.0%) among the four species, but the DR and TR were 4.8% and 0.0%, respectively. For EBIV, Cx. pipiens pallens and Cx. quinquefasciatus had higher IR compared to Ae. albopictus (1.7%). However, the EBIV RNA and infectious virus were detected in Cx. pipiens pallens, with a TR of up to 15.4% and a transmission efficiency of 3.3%. CONCLUSIONS: The findings indicate that Cx. pipiens pallens was susceptible to OYAV but had an extremely low risk of transmitting the virus. Culex pipiens pallens and Cx. quinquefasciatus were susceptible to EBIV, and Cx. pipiens pallens had a higher transmission risk to EBIV than Cx. quinquefasciatus.


Asunto(s)
Aedes , Culex , Mosquitos Vectores , Orthobunyavirus , Animales , Mosquitos Vectores/virología , Aedes/virología , Culex/virología , Orthobunyavirus/genética , Orthobunyavirus/clasificación , Orthobunyavirus/aislamiento & purificación , ARN Viral/genética , Infecciones por Bunyaviridae/transmisión , Infecciones por Bunyaviridae/virología
2.
J Med Microbiol ; 73(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38722305

RESUMEN

Background. Dengue is an important arboviral infection of considerable public health significance. It occurs in a wide global belt within a variety of tropical regions. The timely laboratory diagnosis of Dengue infection is critical to inform both clinical management and an appropriate public health response. Vaccination against Dengue virus is being introduced in some areas.Discussion. Appropriate diagnostic strategies will vary between laboratories depending on the available resources and skills. Diagnostic methods available include viral culture, the serological detection of Dengue-specific antibodies in using enzyme immunoassays (EIAs), microsphere immunoassays, haemagglutination inhibition or in lateral flow point of care tests. The results of antibody tests may be influenced by prior vaccination and exposure to other flaviviruses. The detection of non-structural protein 1 in serum (NS1) has improved the early diagnosis of Dengue and is available in point-of-care assays in addition to EIAs. Direct detection of viral RNA from blood by PCR is more sensitive than NS1 antigen detection but requires molecular skills and resources. An increasing variety of isothermal nucleic acid detection methods are in development. Timing of specimen collection and choice of test is critical to optimize diagnostic accuracy. Metagenomics and the direct detection by sequencing of viral RNA from blood offers the ability to rapidly type isolates for epidemiologic purposes.Conclusion. The impact of vaccination on immune response must be recognized as it will impact test interpretation and diagnostic algorithms.


Asunto(s)
Vacunas contra el Dengue , Virus del Dengue , Dengue , Humanos , Dengue/diagnóstico , Dengue/prevención & control , Dengue/inmunología , Virus del Dengue/inmunología , Virus del Dengue/genética , Vacunas contra el Dengue/inmunología , Vacunas contra el Dengue/administración & dosificación , Técnicas de Laboratorio Clínico/métodos , Anticuerpos Antivirales/sangre , ARN Viral/genética , Proteínas no Estructurales Virales/inmunología , Proteínas no Estructurales Virales/genética
3.
Methods Mol Biol ; 2808: 19-33, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38743360

RESUMEN

Morbilliviruses such as measles virus (MeV) are responsible for major morbidity and mortality worldwide, despite the availability of an effective vaccine and global vaccination campaigns. MeV belongs to the mononegavirus order of viral pathogens that store their genetic information in non-segmented negative polarity RNA genomes. Genome replication and viral gene expression are carried out by a virus-encoded RNA-dependent RNA polymerase (RdRP) complex that has no immediate host cell analog. To better understand the organization and regulation of the viral RdRP and mechanistically characterize antiviral candidates, biochemical RdRP assays have been developed that employ purified recombinant polymerase complexes and synthetic RNA templates to monitor the initiation of RNA synthesis and RNA elongation in vitro. In this article, we will discuss strategies for the efficient expression and preparation of mononegavirus polymerase complexes, provide detailed protocols for the execution and optimization of RdRP assays, evaluate alternative options for the choice of template and detection system, and describe the application of the assay for the characterization of inhibitor candidates. Although MeV RdRP assays are the focus of this article, the general strategies and experimental approaches are readily transferable to related viruses in the mononegavirus order.


Asunto(s)
Virus del Sarampión , ARN Polimerasa Dependiente del ARN , Replicación Viral , Virus del Sarampión/genética , ARN Polimerasa Dependiente del ARN/metabolismo , ARN Polimerasa Dependiente del ARN/genética , ARN Viral/genética , Mononegavirales/genética , Animales , Proteínas Virales/metabolismo , Proteínas Virales/genética , Humanos
4.
Methods Mol Biol ; 2808: 71-88, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38743363

RESUMEN

Copy-back defective interfering RNAs are major contaminants of viral stock preparations of morbilliviruses and other negative strand RNA viruses. They are hybrid molecules of positive sense antigenome and negative sense genome. They possess perfectly complementary ends allowing the formation of extremely stable double-stranded RNA panhandle structures. The presence of the 3'-terminal promoter allows replication of these molecules by the viral polymerase. They thereby negatively interfere with replication of standard genomes. In addition, the double-stranded RNA stem structures are highly immunostimulatory and activate antiviral cell-intrinsic innate immune responses. Thus, copy-back defective interfering RNAs severely affect the virulence and pathogenesis of morbillivirus stocks. We describe two biochemical methods to analyze copy-back defective interfering RNAs in virus-infected samples, or purified viral RNA. First, we present our Northern blotting protocol that allows accurate size determination of defective interfering RNA molecules and estimation of the relative contamination level of virus preparations. Second, we describe a PCR approach to amplify defective interfering RNAs specifically, which allows detailed sequence analysis.


Asunto(s)
Morbillivirus , ARN Viral , ARN Viral/genética , Morbillivirus/genética , Animales , Northern Blotting , Replicación Viral/genética , Reacción en Cadena de la Polimerasa/métodos , ARN Interferente Pequeño/genética , Genoma Viral , ARN Bicatenario/genética , Humanos
5.
Methods Mol Biol ; 2808: 57-70, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38743362

RESUMEN

RNA viruses generate defective genomes naturally during virus replication. Defective genomes that interfere with the infection dynamics either through resource competition or by interferon stimulation are known as defective interfering (DI) genomes. DI genomes can be successfully packaged into virus-like-particles referred to as defective interfering particles (DIPs). Such DIPs can sustainably coexist with the full-length virus particles and have been shown to negatively impact virus replication in vitro and in vivo. Here, we describe a method to generate a clonal DI genome population by reverse genetics. This method is applicable to other RNA viruses and will enable assessment of DIPs for their antiviral properties.


Asunto(s)
Virus Defectuosos , Genoma Viral , Morbillivirus , Genética Inversa , Replicación Viral , Genética Inversa/métodos , Virus Defectuosos/genética , Animales , Replicación Viral/genética , Morbillivirus/genética , Humanos , Virión/genética , Células Vero , Chlorocebus aethiops , ARN Viral/genética
6.
Methods Mol Biol ; 2808: 121-127, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38743366

RESUMEN

During the infection of a host cell by an infectious agent, a series of gene expression changes occurs as a consequence of host-pathogen interactions. Unraveling this complex interplay is the key for understanding of microbial virulence and host response pathways, thus providing the basis for new molecular insights into the mechanisms of pathogenesis and the corresponding immune response. Dual RNA sequencing (dual RNA-seq) has been developed to simultaneously determine pathogen and host transcriptomes enabling both differential and coexpression analyses between the two partners as well as genome characterization in the case of RNA viruses. Here, we provide a detailed laboratory protocol and bioinformatics analysis guidelines for dual RNA-seq experiments focusing on - but not restricted to - measles virus (MeV) as a pathogen of interest. The application of dual RNA-seq technologies in MeV-infected patients can potentially provide valuable information on the structure of the viral RNA genome and on cellular innate immune responses and drive the discovery of new targets for antiviral therapy.


Asunto(s)
Genoma Viral , Interacciones Huésped-Patógeno , Virus del Sarampión , Sarampión , ARN Viral , Humanos , Sarampión/virología , Sarampión/inmunología , Sarampión/genética , Virus del Sarampión/genética , Virus del Sarampión/patogenicidad , ARN Viral/genética , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Biología Computacional/métodos , Análisis de Secuencia de ARN/métodos , RNA-Seq/métodos , Transcriptoma , Perfilación de la Expresión Génica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
7.
J Med Virol ; 96(5): e29675, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38746997

RESUMEN

Early confirmation of sustained virologic response (SVR) or viral relapse after direct-acting antivirals (DAAs) for hepatitis C virus (HCV) infection is essential based on public health perspectives, particularly for patients with high risk of nonadherence to posttreatment follow-ups. A total of 1011 patients who achieved end-of-treatment virologic response, including 526 receiving fixed-dose pangenotypic DAAs, and 485 receiving other types of DAAs, who had available off-treatment weeks 4 and 12 serum HCV RNA data to confirm SVR at off-treatment week 12 (SVR12) or viral relapse were included. The positive predictive value (PPV) and negative predictive value (NPV) of SVR4 to predict patients with SVR12 or viral relapse were reported. Furthermore, we analyzed the proportion of concordance between SVR12 and SVR24 in 943 patients with available SVR24 data. The PPV and NPV of SVR4 to predict SVR12 were 98.5% (95% confidence interval [CI]: 98.0-98.9) and 100% (95% CI: 66.4-100) in the entire population. The PPV of SVR4 to predict SVR12 in patients receiving fixed-dose pangenotypic DAAs was higher than those receiving other types of DAAs (99.8% [95% CI: 98.9-100] vs. 97.1% [95% CI: 96.2-97.8], p < 0.001). The NPVs of SVR4 to predict viral relapse were 100%, regardless of the type of DAAs. Moreover, the concordance between SVR12 and SVR24 was 100%. In conclusion, an off-treatment week 4 serum HCV RNA testing is sufficient to provide an excellent prediction power of SVR or viral relapse at off-treatment week 12 among patients with HCV who are treated with fixed-dose pangenotypic DAAs.


Asunto(s)
Antivirales , Hepacivirus , Hepatitis C Crónica , ARN Viral , Respuesta Virológica Sostenida , Humanos , Antivirales/uso terapéutico , Antivirales/administración & dosificación , Masculino , Femenino , Persona de Mediana Edad , Hepacivirus/genética , Hepacivirus/efectos de los fármacos , Anciano , Adulto , ARN Viral/sangre , Hepatitis C Crónica/tratamiento farmacológico , Hepatitis C Crónica/virología , Recurrencia , Estudios de Seguimiento , Resultado del Tratamiento , Hepatitis C/tratamiento farmacológico , Hepatitis C/virología
8.
J Med Virol ; 96(5): e29676, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38747018

RESUMEN

The SARS-CoV-2 VIrus PERsistence (VIPER) study investigated the presence of long-lasting SARS-CoV-2 RNA in plasma, stool, urine, and nasopharyngeal samples in COVID-19 survivors. The presence of SARS-CoV-2 RNA reverse transcription polymerase chain reactions (RT-PCR) were analyzed within plasma, stool, urine, and nasopharyngeal swab samples in COVID-19 survivors with post-COVID symptoms and a comparison group of COVID-19 survivors without post-COVID symptoms matched by age, sex, body mass index and vaccination status. Participants self-reported the presence of any post-COVID symptom (defined as a symptom that started no later than 3 months after the initial infection). Fifty-seven (57.9% women, age: 51.1, standard deviation [SD]: 10.4 years) previously hospitalized COVID-19 survivors with post-COVID symptoms and 55 (56.4% women, age: 50.0, SD: 12.8 years) matched individuals who had a past SARS-CoV-2 infection without post-COVID symptoms were evaluated 27 (SD 7.5) and 26 (SD 8.7) months after hospital discharge, respectively. The presence of SARS-CoV-2 RNA was identified in three nasopharyngeal samples of patients with post-COVID symptoms (5.2%) but not in plasma, stool, or urine samples. Thus, SARS-CoV-2 RNA was not identified in any sample of survivors without post-COVID symptoms. The most prevalent post-COVID symptoms consisted of fatigue (93%), dyspnea, and pain (both, 87.7%). This study did not find SARS-CoV-2 RNA in plasma, stool, or urine samples, 2 years after the infection. A prevalence of 5.2% of SARS-CoV-2 RNA in nasopharyngeal samples, suggesting a potential active or recent reinfection, was found in patients with post-COVID symptoms. These results do not support the association between SARS-CoV-2 RNA in plasma, stool, urine, or nasopharyngeal swab samples and post-COVID symptomatology in the recruited population.


Asunto(s)
COVID-19 , Heces , Hospitalización , Nasofaringe , ARN Viral , SARS-CoV-2 , Sobrevivientes , Humanos , COVID-19/virología , COVID-19/complicaciones , Femenino , Masculino , ARN Viral/sangre , ARN Viral/genética , Persona de Mediana Edad , SARS-CoV-2/genética , Nasofaringe/virología , Adulto , Heces/virología , Anciano
9.
Clin Lab ; 70(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38747914

RESUMEN

BACKGROUND: Nucleic acid amplification testing is the gold standard for SARS-CoV-2 diagnostics, although it may produce a certain number of false positive results. There has not been much published about the characteristics of false positive results. In this study, based on retesting, specimens that initially tested positive for SARS-CoV-2 were classified as true or false positive groups to characterize the distribution of cycle threshold (CT) values for N1 and N2 targets and number of targets detected for each group. METHODS: Specimens that were positive for N-gene on retesting and accompanied with S-gene were identified as true positives (true positive based on retesting, rTP), while specimens that retested negative were classified as false positives (false positive based on retesting, rFP). RESULTS: Of the specimens retested, 85/127 (66.9%) were rFP, 16/47 (34.0%) specimens with both N1 and N2 targets initially detected were rFP, and the CT values for each target was higher in rFP than in rTP. ROC curve analysis showed that optimal cutoff values of CT to differentiate between rTP and rFP were 34.8 for N1 and 33.0 for N2. With the optimal cutoff values of CT for each target, out of the 24 specimens that were positive for both N1 and N2 targets and classified as rTP, 23 (95.8%) were correctly identified as true positives. rFP specimens had a single N1 target in 52/61 (85.2%) and a single N2 target in 17/19 (89.5%). Notably, no true positive results were obtained from any specimens with only N2 target detected. CONCLUSIONS: These results suggest that retesting should be performed for positive results with a CT value greater than optimal cutoff value for each target or with a single N1 target amplified, considering the possibility of a false positive. This may provide guidance on indications to perform retesting to minimize the number of false positives.


Asunto(s)
Prueba de Ácido Nucleico para COVID-19 , COVID-19 , SARS-CoV-2 , Humanos , Reacciones Falso Positivas , SARS-CoV-2/genética , COVID-19/diagnóstico , COVID-19/virología , Prueba de Ácido Nucleico para COVID-19/métodos , Prueba de Ácido Nucleico para COVID-19/normas , Curva ROC , Glicoproteína de la Espiga del Coronavirus/genética , Sensibilidad y Especificidad , Proteínas de la Nucleocápside de Coronavirus/genética , ARN Viral/genética , ARN Viral/análisis
10.
PLoS Pathog ; 20(5): e1012125, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38696536

RESUMEN

Major 5'-terminally deleted (5'TD) RNA forms of group-B coxsackievirus (CVB-5'TD) has been associated with myocarditis in both mice and humans. Although it is known that interferon-ß (IFN-ß) signaling is critical for an efficient innate immune response against CVB-induced myocarditis, the link between CVB-5'TD RNA forms and type I IFN signaling in cardiomyocytes remains to be explored. In a mouse model of CVB3/28-induced myocarditis, major early-emerging forms of CVB-5'TD RNA have been characterized as replicative viral populations that impair IFN-ß production in the heart. Synthetic CVB3/28 RNA forms mimicking each of these major 5'TD virus populations were transfected in mice and have been shown to modulate innate immune responses in the heart and to induce myocarditis in mice. Remarkably, transfection of synthetic viral RNA with deletions in the secondary structures of the 5'-terminal CVB3 RNA domain I, modifying stem-loops "b", "c" or "d", were found to impair IFN-ß production in human cardiomyocytes. In addition, the activation of innate immune response by Poly(I:C), was found to restore IFN-ß production and to reduce the burden of CVB-5'TD RNA-forms in cardiac tissues, thereby reducing the mortality rate of infected mice. Overall, our results indicate that major early-emerging CVB3 populations deleted in the domain I of genomic RNA, in the 5' noncoding region, modulate the activation of the type I IFN pathway in cardiomyocytes and induce myocarditis in mice. These findings shed new light on the role of replicative CVB-5'TD RNA forms as key pathophysiological factors in CVB-induced human myocarditis.


Asunto(s)
Infecciones por Coxsackievirus , Enterovirus Humano B , Interferón Tipo I , Miocarditis , Miocitos Cardíacos , ARN Viral , Miocarditis/virología , Miocarditis/inmunología , Miocarditis/genética , Animales , Miocitos Cardíacos/virología , Miocitos Cardíacos/metabolismo , Ratones , Enterovirus Humano B/inmunología , Infecciones por Coxsackievirus/inmunología , Infecciones por Coxsackievirus/virología , Infecciones por Coxsackievirus/genética , Interferón Tipo I/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , Humanos , Inmunidad Innata , Transducción de Señal , Interferón beta/metabolismo , Interferón beta/genética , Interferón beta/inmunología , Masculino , Regiones no Traducidas 5'
11.
Anal Chem ; 96(19): 7479-7486, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38689560

RESUMEN

In the pathogenesis of microglia, brain immune cells promote nitrergic stress by overproducing nitric oxide (NO), leading to neuroinflammation. Furthermore, NO has been linked to COVID-19 progression, which has caused significant morbidity and mortality. SARS-CoV-2 infection activates inflammation by releasing excess NO and causing cell death in human microglial clone 3 (HMC3). In addition, NO regulates lysosomal functions and complex machinery to neutralize pathogens through phagocytosis. Therefore, developing lysosome-specific NO probes to monitor phagocytosis in microglia during the COVID-19 infection would be a significant study. Herein, a unique synthetic strategy was adopted to develop a NO selective fluorescent probe, PDM-NO, which can discriminate activated microglia from their resting state. The nonfluorescent PDM-NO exhibits a turn-on response toward NO only at lysosomal pH (4.5-5.5). Quantum chemical calculations (DFT/TD-DFT/PCM) and photophysical study revealed that the photoinduced electron transfer (PET) process is pivotal in tuning optical properties. PDM-NO demonstrated good biocompatibility and lysosomal specificity in activated HMC3 cells. Moreover, it can effectively map the dynamics of lysosomal NO against SARS-CoV-2 RNA-induced neuroinflammation in HMC3. Thus, PDM-NO is a potential fluorescent marker for detecting RNA virus infection and monitoring phagocytosis in HMC3.


Asunto(s)
COVID-19 , Colorantes Fluorescentes , Lisosomas , Microglía , Óxido Nítrico , Fagocitosis , SARS-CoV-2 , Microglía/virología , Microglía/metabolismo , SARS-CoV-2/aislamiento & purificación , Humanos , Lisosomas/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico/análisis , COVID-19/virología , COVID-19/diagnóstico , COVID-19/metabolismo , Colorantes Fluorescentes/química , ARN Viral/análisis , ARN Viral/metabolismo , Enfermedades Neuroinflamatorias , Línea Celular , Fenotipo
12.
Virol J ; 21(1): 113, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760812

RESUMEN

BACKGROUND: Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease. SFTS virus (SFTSV) is transmitted by tick bites and contact with the blood or body fluids of SFTS patients. Animal-to-human transmission of SFTS has been reported in Japan, but not in China. In this study, the possible transmission route of two patients who fed and cared for farm-raised fur animals in a mink farm was explored. METHOD: An epidemiological investigation and a genetic analysis of patients, animals and working environment were carried out. RESULTS: It was found that two patients had not been bitten by ticks and had no contact with patients infected with SFTS virus, but both of them had skinned the dying animals. 54.55% (12/22) of the farm workers were positive for SFTS virus antibody. By analyzing the large, medium and small segments sequences, the viral sequences from the two patients, animals and environments showed 99.9% homology. CONCLUSION: It is suspected that the two patients may be directly infected by farm-raised animals, and that the virus may have been transmitted by aerosols when skinning dying animals. Transmission by direct blood contacts or animal bites cannot be ignored.


Asunto(s)
Phlebovirus , Síndrome de Trombocitopenia Febril Grave , Animales , Phlebovirus/genética , Phlebovirus/aislamiento & purificación , Phlebovirus/clasificación , China/epidemiología , Síndrome de Trombocitopenia Febril Grave/transmisión , Síndrome de Trombocitopenia Febril Grave/virología , Síndrome de Trombocitopenia Febril Grave/epidemiología , Humanos , Masculino , Anticuerpos Antivirales/sangre , Filogenia , Femenino , Persona de Mediana Edad , Visón/virología , Granjas , Adulto , Agricultores , ARN Viral/genética
13.
Pak J Pharm Sci ; 37(2): 367-375, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38767104

RESUMEN

The efficacy of 400mg efavirenz (EFV) once daily is reported to be similar to that of 600mg EFV. However, EFV-related toxic and side effects of 400mg EFV are significantly reduced. Here, the feasibility of reducing EFV to 400mg once a day in HIV-infected/AIDS patients was evaluated. Fifty patients were included. Patients were given 3TC+TDF+400mg EFV (n=25) or 3TC+TDF+600mg EFV (n=25). The proportion of patients with HIV RNA < 40 copies/mL and the adverse events served as the primary and secondary outcomes, respectively. HIV inhibition rates of the 3TC+TDF+400mg EFV group and 3TC+TDF+600mg EFV group were both 56.52% at week 24 and respectively 100%, 91.3% at week 48. During 48 weeks, 27 cases of adverse events were reported in the 3TC+TDF+400mg EFV group, lower than those in the 3TC+TDF+600mg EFV group, which had 39 cases. Compared with the 3TC+TDF+400mg EFV group, the incidence of transaminase, dizziness, hyperlipidemia and rashes all increased in the 3TC+TDF+600mg EFV group (P>0.05). No serious adverse events of the central nervous system occurred. The incidence of depression, sleep disturbance, and vertigo were similar (P>0.05). The efficacy of 400mg EFV is comparable to 600mg EFV. However, patients receiving 400mg EFV have fewer adverse events.


Asunto(s)
Alquinos , Fármacos Anti-VIH , Benzoxazinas , Ciclopropanos , Infecciones por VIH , Humanos , Benzoxazinas/efectos adversos , Benzoxazinas/administración & dosificación , Benzoxazinas/uso terapéutico , Ciclopropanos/administración & dosificación , Masculino , Femenino , Adulto , Fármacos Anti-VIH/efectos adversos , Fármacos Anti-VIH/administración & dosificación , Fármacos Anti-VIH/uso terapéutico , Infecciones por VIH/tratamiento farmacológico , Persona de Mediana Edad , Resultado del Tratamiento , Lamivudine/administración & dosificación , Lamivudine/efectos adversos , Lamivudine/uso terapéutico , Tenofovir/efectos adversos , Tenofovir/administración & dosificación , Tenofovir/uso terapéutico , Quimioterapia Combinada , Carga Viral/efectos de los fármacos , ARN Viral , Síndrome de Inmunodeficiencia Adquirida/tratamiento farmacológico
14.
J Gen Virol ; 105(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38767609

RESUMEN

Hepeviruses have been identified in a broad range of animal hosts, including mammals, birds, and fish. In this study, rodents (n=91) from seven different species and ten pikas (Ochotona curzoniae) were collected in Qinghai Province, China. Using transcriptomic sequencing and confirmatory molecular testing, hepeviruses were detected in 27 of 45 (60 %) long-tailed dwarf hamsters (Cricetulus longicaudatus) and were undetected in other rodents and pika. The complete genome sequences from 14 representative strains were subsequently obtained, and phylogenetic analyses suggested that they represent a novel species within the genus Rocahepevirus, which we tentatively designated as Cl-2018QH. The virus was successfully isolated in human hepatoma (Huh-7) and murine fibroblast (17 Cl-1) cell lines, though both exhibited limited replication as assayed by detection of negative-sense RNA intermediates. A129 immunodeficient mice were inoculated with Cl-2018QH and the virus was consistently detected in multiple organs, despite relatively low viral loads. In summary, this study has described a novel rodent hepevirus, which enhances our knowledge of the genetic diversity of rodent hepeviruses and highlights its potential for cross-species transmission.


Asunto(s)
Genoma Viral , Hepevirus , Filogenia , Animales , China , Cricetinae , Ratones , Hepevirus/genética , Hepevirus/aislamiento & purificación , Hepevirus/clasificación , Humanos , Línea Celular , ARN Viral/genética
15.
Sci Signal ; 17(837): eadi9844, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38771918

RESUMEN

Oligoadenylate synthetase 3 (OAS3) and ribonuclease L (RNase L) are components of a pathway that combats viral infection in mammals. Upon detection of viral double-stranded RNA (dsRNA), OAS3 synthesizes 2'-5'-oligo(A), which activates the RNase domain of RNase L by promoting the homodimerization and oligomerization of RNase L monomers. Activated RNase L rapidly degrades all cellular mRNAs, shutting off several cellular processes. We sought to understand the molecular mechanisms underlying the rapid activation of RNase L in response to viral infection. Through superresolution microscopy and live-cell imaging, we showed that OAS3 and RNase L concentrated into higher-order cytoplasmic complexes known as dsRNA-induced foci (dRIF) in response to dsRNA or infection with dengue virus, Zika virus, or West Nile virus. The concentration of OAS3 and RNase L at dRIF corresponded with the activation of RNase L-mediated RNA decay. We showed that dimerized/oligomerized RNase L concentrated in a liquid-like shell surrounding a core OAS3-dRIF structure and dynamically exchanged with the cytosol. These data establish that the condensation of dsRNA, OAS3, and RNase L into dRIF is a molecular switch that promotes the rapid activation of RNase L upon detection of dsRNA in mammalian cells.


Asunto(s)
2',5'-Oligoadenilato Sintetasa , Endorribonucleasas , ARN Bicatenario , Virus Zika , Endorribonucleasas/metabolismo , Endorribonucleasas/genética , Endorribonucleasas/química , Humanos , 2',5'-Oligoadenilato Sintetasa/metabolismo , 2',5'-Oligoadenilato Sintetasa/genética , 2',5'-Oligoadenilato Sintetasa/química , ARN Bicatenario/metabolismo , ARN Bicatenario/química , ARN Bicatenario/genética , Virus Zika/metabolismo , Animales , Virus del Dengue/metabolismo , ARN Viral/metabolismo , ARN Viral/genética , Estabilidad del ARN , Virus del Nilo Occidental/metabolismo , Virus del Nilo Occidental/genética , Infección por el Virus Zika/metabolismo , Infección por el Virus Zika/virología , Activación Enzimática , Células HeLa , Células HEK293
16.
Anal Chim Acta ; 1309: 342693, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38772660

RESUMEN

BACKGROUND: CRISPR-Cas12a based one-step assays are widely used for nucleic acid detection, particularly for pathogen detection. However, the detection capability of the one-step assay is reduced because the Cas12a protein competes with the isothermal amplification enzymes for the target DNA and cleaves it. Therefore, the key to improving the sensitivity of the one-step assay is to address the imbalance between isothermal amplification and CRISPR detection. In previous study, we developed a Cas12a one-step assay using single-stranded DNA (ssDNA)-modified crRNA (mD-crRNA) and applied this method for the detection of pathogenic DNA. RESULTS: Here, we utilized mD-crRNA to establish a sensitive one-step assay that enables the visual detection of SARS-CoV-2 under ultraviolet light, achieving a detection limit of 5 aM without cross-reactivity. The sensitivity of mD-crRNA in the one-step assay was 100-fold higher than that of wild-type crRNA. Mechanistic studies revealed that the addition of ssDNA at the 3' end of mD-crRNA attenuates the binding affinity between the Cas12a-mD-crRNA complex and the target DNA. Consequently, this reduction in binding affinity decreases the cis-cleavage activity of Cas12a, mitigating its cleavage of the target DNA in the one-step assay. As a result, there is an augmentation in the amplification and accumulation of target DNA, thereby enhancing detection sensitivity. In the clinical testing of 40 SARS-CoV-2 RNA samples, the concordance between the results of the one-step assay and known qPCR results was 97.5 %. SIGNIFICANCE: The one-step assay using mD-crRNA proves to be highly sensitive and specificity and visually effective for the detection of SARS-CoV-2. Our study delves into the application of the mD-crRNA-mediated one-step assay in nucleic acid detection and its associated reaction mechanism. This holds great significance in addressing the inherent incompatibility issues between isothermal amplification and CRISPR detection.


Asunto(s)
COVID-19 , ADN de Cadena Simple , Técnicas de Amplificación de Ácido Nucleico , ARN Viral , SARS-CoV-2 , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , ADN de Cadena Simple/química , ADN de Cadena Simple/genética , Técnicas de Amplificación de Ácido Nucleico/métodos , Humanos , ARN Viral/análisis , ARN Viral/genética , COVID-19/diagnóstico , COVID-19/virología , Límite de Detección , Sistemas CRISPR-Cas/genética , Endodesoxirribonucleasas/química , Endodesoxirribonucleasas/metabolismo , Endodesoxirribonucleasas/genética , Proteínas Asociadas a CRISPR/metabolismo , Proteínas Asociadas a CRISPR/genética , Proteínas Bacterianas
17.
BMC Genomics ; 25(1): 433, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693476

RESUMEN

BACKGROUND: The increasing burden of dengue virus on public health due to more explosive and frequent outbreaks highlights the need for improved surveillance and control. Genomic surveillance of dengue virus not only provides important insights into the emergence and spread of genetically diverse serotypes and genotypes, but it is also critical to monitor the effectiveness of newly implemented control strategies. Here, we present DengueSeq, an amplicon sequencing protocol, which enables whole-genome sequencing of all four dengue virus serotypes. RESULTS: We developed primer schemes for the four dengue virus serotypes, which can be combined into a pan-serotype approach. We validated both approaches using genetically diverse virus stocks and clinical specimens that contained a range of virus copies. High genome coverage (>95%) was achieved for all genotypes, except DENV2 (genotype VI) and DENV 4 (genotype IV) sylvatics, with similar performance of the serotype-specific and pan-serotype approaches. The limit of detection to reach 70% coverage was 10-100 RNA copies/µL for all four serotypes, which is similar to other commonly used primer schemes. DengueSeq facilitates the sequencing of samples without known serotypes, allows the detection of multiple serotypes in the same sample, and can be used with a variety of library prep kits and sequencing instruments. CONCLUSIONS: DengueSeq was systematically evaluated with virus stocks and clinical specimens spanning the genetic diversity within each of the four dengue virus serotypes. The primer schemes can be plugged into existing amplicon sequencing workflows to facilitate the global need for expanded dengue virus genomic surveillance.


Asunto(s)
Virus del Dengue , Genoma Viral , Serogrupo , Secuenciación Completa del Genoma , Virus del Dengue/genética , Virus del Dengue/aislamiento & purificación , Virus del Dengue/clasificación , Secuenciación Completa del Genoma/métodos , Humanos , Genotipo , Dengue/virología , Dengue/diagnóstico , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , ARN Viral/genética
18.
Sci Rep ; 14(1): 10612, 2024 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-38719936

RESUMEN

Molecular diagnostics involving nucleic acids (DNA and RNA) are regarded as extremely functional tools. During the 2020 global health crisis, efforts intensified to optimize the production and delivery of molecular diagnostic kits for detecting SARS-CoV-2. During this period, RT-LAMP emerged as a significant focus. However, the thermolability of the reagents used in this technique necessitates special low-temperature infrastructure for transport, storage, and conservation. These requirements limit distribution capacity and necessitate cost-increasing adaptations. Consequently, this report details the development of a lyophilization protocol for reagents in a colorimetric RT-LAMP diagnostic kit to detect SARS-CoV-2, facilitating room-temperature transport and storage. We conducted tests to identify the ideal excipients that maintain the molecular integrity of the reagents and ensure their stability during room-temperature storage and transport. The optimal condition identified involved adding 5% PEG 8000 and 75 mM trehalose to the RT-LAMP reaction, which enabled stability at room temperature for up to 28 days and yielded an analytical and diagnostic sensitivity and specificity of 83.33% and 90%, respectively, for detecting SARS-CoV-2. This study presents the results of a lyophilized colorimetric RT-LAMP COVID-19 detection assay with diagnostic sensitivity and specificity comparable to RT-qPCR, particularly in samples with high viral load.


Asunto(s)
COVID-19 , Colorimetría , Liofilización , Técnicas de Diagnóstico Molecular , Técnicas de Amplificación de Ácido Nucleico , ARN Viral , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , COVID-19/virología , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/genética , Colorimetría/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Técnicas de Diagnóstico Molecular/métodos , ARN Viral/análisis , ARN Viral/genética , Sensibilidad y Especificidad , Juego de Reactivos para Diagnóstico/normas , Prueba de Ácido Nucleico para COVID-19/métodos
19.
Commun Biol ; 7(1): 557, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730276

RESUMEN

The high abundance of most viruses in infected host cells benefits their structural characterization. However, endogenous viruses are present in low copy numbers and are therefore challenging to investigate. Here, we retrieve cell extracts enriched with an endogenous virus, the yeast L-A virus. The determined cryo-EM structure discloses capsid-stabilizing cation-π stacking, widespread across viruses and within the Totiviridae, and an interplay of non-covalent interactions from ten distinct capsomere interfaces. The capsid-embedded mRNA decapping active site trench is supported by a constricting movement of two flexible opposite-facing loops. tRNA-loaded polysomes and other biomacromolecules, presumably mRNA, are found in virus proximity within the cell extract. Mature viruses participate in larger viral communities resembling their rare in-cell equivalents in terms of size, composition, and inter-virus distances. Our results collectively describe a 3D-architecture of a viral milieu, opening the door to cell-extract-based high-resolution structural virology.


Asunto(s)
Microscopía por Crioelectrón , Cápside/metabolismo , Cápside/ultraestructura , Cápside/química , Extractos Celulares , Saccharomyces cerevisiae/genética , ARN Viral/metabolismo , ARN Viral/genética , ARN Mensajero/metabolismo , ARN Mensajero/genética
20.
Biochem Biophys Res Commun ; 715: 149994, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38692139

RESUMEN

Many virus lysis/transport buffers used in molecular diagnostics, including the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA, contain guanidine-based chaotropic salts, primarily guanidine hydrochloride (GuHCl) or guanidine isothiocyanate (GITC). Although the virucidal effects of GuHCl and GITC alone against some enveloped viruses have been established, standardized data on their optimum virucidal concentrations against SARS-CoV-2 and effects on viral RNA stability are scarce. Thus, we aimed to determine the optimum virucidal concentrations of GuHCl and GITC against SARS-CoV-2 compared to influenza A virus (IAV), another enveloped respiratory virus. We also evaluated the effectiveness of viral RNA stabilization at the determined optimum virucidal concentrations under high-temperature conditions (35°C) using virus-specific real-time reverse transcription polymerase chain reaction. Both viruses were potently inactivated by 1.0 M GITC and 2.5 M GuHCl, but the GuHCl concentration for efficient SARS-CoV-2 inactivation was slightly higher than that for IAV inactivation. GITC showed better viral RNA stability than GuHCl at the optimum virucidal concentrations. An increased concentration of GuHCl or GITC increased viral RNA degradation at 35°C. Our findings highlight the need to standardize GuHCl and GITC concentrations in virus lysis/transport buffers and the potential application of these guanidine-based salts alone as virus inactivation solutions in SARS-CoV-2 and IAV molecular diagnostics.


Asunto(s)
Guanidina , Virus de la Influenza A , ARN Viral , SARS-CoV-2 , Manejo de Especímenes , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/genética , Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza A/genética , Guanidina/farmacología , Guanidina/química , ARN Viral/genética , Humanos , Manejo de Especímenes/métodos , Genoma Viral , COVID-19/virología , COVID-19/diagnóstico , Chlorocebus aethiops , Células Vero , Inactivación de Virus/efectos de los fármacos , Animales , Estabilidad del ARN/efectos de los fármacos , Contención de Riesgos Biológicos , Guanidinas/farmacología , Guanidinas/química , Sales (Química)/farmacología , Sales (Química)/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA