Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nature ; 628(8009): 887-893, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38538796

RESUMEN

Efficient termination is required for robust gene transcription. Eukaryotic organisms use a conserved exoribonuclease-mediated mechanism to terminate the mRNA transcription by RNA polymerase II (Pol II)1-5. Here we report two cryogenic electron microscopy structures of Saccharomyces cerevisiae Pol II pre-termination transcription complexes bound to the 5'-to-3' exoribonuclease Rat1 and its partner Rai1. Our structures show that Rat1 displaces the elongation factor Spt5 to dock at the Pol II stalk domain. Rat1 shields the RNA exit channel of Pol II, guides the nascent RNA towards its active centre and stacks three nucleotides at the 5' terminus of the nascent RNA. The structures further show that Rat1 rotates towards Pol II as it shortens RNA. Our results provide the structural mechanism for the Rat1-mediated termination of mRNA transcription by Pol II in yeast and the exoribonuclease-mediated termination of mRNA transcription in other eukaryotes.


Asunto(s)
Microscopía por Crioelectrón , Exorribonucleasas , ARN Polimerasa II , ARN Mensajero , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Terminación de la Transcripción Genética , Exorribonucleasas/química , Exorribonucleasas/metabolismo , Exorribonucleasas/ultraestructura , Modelos Moleculares , Unión Proteica , ARN Polimerasa II/química , ARN Polimerasa II/metabolismo , ARN Polimerasa II/ultraestructura , ARN Mensajero/biosíntesis , ARN Mensajero/química , ARN Mensajero/genética , ARN Mensajero/ultraestructura , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/ultraestructura , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestructura , Factores de Elongación Transcripcional/química , Factores de Elongación Transcripcional/metabolismo , Factores de Elongación Transcripcional/ultraestructura , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/ultraestructura , Dominios Proteicos , ARN de Hongos/biosíntesis , ARN de Hongos/química , ARN de Hongos/genética , ARN de Hongos/ultraestructura
2.
Science ; 355(6321)2017 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-27980088

RESUMEN

The small subunit (SSU) processome, a large ribonucleoprotein particle, organizes the assembly of the eukaryotic small ribosomal subunit by coordinating the folding, cleavage, and modification of nascent pre-ribosomal RNA (rRNA). Here, we present the cryo-electron microscopy structure of the yeast SSU processome at 5.1-angstrom resolution. The structure reveals how large ribosome biogenesis complexes assist the 5' external transcribed spacer and U3 small nucleolar RNA in providing an intertwined RNA-protein assembly platform for the separate maturation of 18S rRNA domains. The strategic placement of a molecular motor at the center of the particle further suggests a mechanism for mediating conformational changes within this giant particle. This study provides a structural framework for a mechanistic understanding of eukaryotic ribosome assembly in the model organism Saccharomyces cerevisiae.


Asunto(s)
Subunidades Ribosómicas Pequeñas de Eucariotas/química , Subunidades Ribosómicas Pequeñas de Eucariotas/ultraestructura , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/ultraestructura , Microscopía por Crioelectrón , Conformación de Ácido Nucleico , Conformación Proteica en Lámina beta , ARN de Hongos/química , ARN de Hongos/ultraestructura , ARN Ribosómico/química , ARN Ribosómico/ultraestructura , ARN Ribosómico 18S/química , ARN Ribosómico 18S/ultraestructura , ARN Nucleolar Pequeño/química , ARN Nucleolar Pequeño/ultraestructura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/ultraestructura
3.
Nature ; 537(7619): 197-201, 2016 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-27459055

RESUMEN

Precursor mRNA (pre-mRNA) splicing proceeds by two consecutive transesterification reactions via a lariat-intron intermediate. Here we present the 3.8 Å cryo-electron microscopy structure of the spliceosome immediately after lariat formation. The 5'-splice site is cleaved but remains close to the catalytic Mg2+ site in the U2/U6 small nuclear RNA (snRNA) triplex, and the 5'-phosphate of the intron nucleotide G(+1) is linked to the branch adenosine 2'OH. The 5'-exon is held between the Prp8 amino-terminal and linker domains, and base-pairs with U5 snRNA loop 1. Non-Watson-Crick interactions between the branch helix and 5'-splice site dock the branch adenosine into the active site, while intron nucleotides +3 to +6 base-pair with the U6 snRNA ACAGAGA sequence. Isy1 and the step-one factors Yju2 and Cwc25 stabilize docking of the branch helix. The intron downstream of the branch site emerges between the Prp8 reverse transcriptase and linker domains and extends towards the Prp16 helicase, suggesting a plausible mechanism of remodelling before exon ligation.


Asunto(s)
Microscopía por Crioelectrón , Precursores del ARN/metabolismo , Empalme del ARN , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestructura , Empalmosomas/metabolismo , Empalmosomas/ultraestructura , Adenosina/metabolismo , Adenosina Trifosfatasas/metabolismo , Emparejamiento Base , Secuencia de Bases , Dominio Catalítico , Esterificación , Exones/genética , Intrones/genética , Magnesio/metabolismo , Modelos Moleculares , Proteínas Nucleares/metabolismo , ARN Helicasas/metabolismo , Precursores del ARN/química , Precursores del ARN/ultraestructura , Sitios de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , ARN de Hongos/química , ARN de Hongos/genética , ARN de Hongos/metabolismo , ARN de Hongos/ultraestructura , ARN Nuclear Pequeño/química , ARN Nuclear Pequeño/genética , ARN Nuclear Pequeño/metabolismo , Ribonucleoproteína Nuclear Pequeña U4-U6/química , Ribonucleoproteína Nuclear Pequeña U4-U6/metabolismo , Ribonucleoproteína Nuclear Pequeña U5/química , Ribonucleoproteína Nuclear Pequeña U5/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/química , Empalmosomas/química
4.
Nature ; 534(7605): 133-7, 2016 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-27251291

RESUMEN

Ribosome biogenesis is a highly complex process in eukaryotes, involving temporally and spatially regulated ribosomal protein (r-protein) binding and ribosomal RNA remodelling events in the nucleolus, nucleoplasm and cytoplasm. Hundreds of assembly factors, organized into sequential functional groups, facilitate and guide the maturation process into productive assembly branches in and across different cellular compartments. However, the precise mechanisms by which these assembly factors function are largely unknown. Here we use cryo-electron microscopy to characterize the structures of yeast nucleoplasmic pre-60S particles affinity-purified using the epitope-tagged assembly factor Nog2. Our data pinpoint the locations and determine the structures of over 20 assembly factors, which are enriched in two areas: an arc region extending from the central protuberance to the polypeptide tunnel exit, and the domain including the internal transcribed spacer 2 (ITS2) that separates 5.8S and 25S ribosomal RNAs. In particular, two regulatory GTPases, Nog2 and Nog1, act as hub proteins to interact with multiple, distant assembly factors and functional ribosomal RNA elements, manifesting their critical roles in structural remodelling checkpoints and nuclear export. Moreover, our snapshots of compositionally and structurally different pre-60S intermediates provide essential mechanistic details for three major remodelling events before nuclear export: rotation of the 5S ribonucleoprotein, construction of the active centre and ITS2 removal. The rich structural information in our structures provides a framework to dissect molecular roles of diverse assembly factors in eukaryotic ribosome assembly.


Asunto(s)
Microscopía por Crioelectrón , Proteínas Ribosómicas/metabolismo , Proteínas Ribosómicas/ultraestructura , Subunidades Ribosómicas Grandes de Eucariotas/química , Subunidades Ribosómicas Grandes de Eucariotas/ultraestructura , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/ultraestructura , Transporte Activo de Núcleo Celular , Secuencia de Bases , Dominio Catalítico , Núcleo Celular/química , Núcleo Celular/metabolismo , Núcleo Celular/ultraestructura , Citoplasma/metabolismo , ADN Espaciador Ribosómico/química , ADN Espaciador Ribosómico/genética , ADN Espaciador Ribosómico/metabolismo , ADN Espaciador Ribosómico/ultraestructura , GTP Fosfohidrolasas/química , GTP Fosfohidrolasas/metabolismo , GTP Fosfohidrolasas/ultraestructura , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/metabolismo , Proteínas de Unión al GTP/ultraestructura , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteínas Nucleares/ultraestructura , Unión Proteica , ARN de Hongos/genética , ARN de Hongos/metabolismo , ARN de Hongos/ultraestructura , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , ARN Ribosómico/ultraestructura , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/ultraestructura , Proteínas Ribosómicas/química , Proteínas Ribosómicas/aislamiento & purificación , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Rotación , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestructura
5.
Science ; 334(6062): 1524-9, 2011 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-22096102

RESUMEN

Ribosomes translate genetic information encoded by messenger RNA into proteins. Many aspects of translation and its regulation are specific to eukaryotes, whose ribosomes are much larger and intricate than their bacterial counterparts. We report the crystal structure of the 80S ribosome from the yeast Saccharomyces cerevisiae--including nearly all ribosomal RNA bases and protein side chains as well as an additional protein, Stm1--at a resolution of 3.0 angstroms. This atomic model reveals the architecture of eukaryote-specific elements and their interaction with the universally conserved core, and describes all eukaryote-specific bridges between the two ribosomal subunits. It forms the structural framework for the design and analysis of experiments that explore the eukaryotic translation apparatus and the evolutionary forces that shaped it.


Asunto(s)
Ribosomas/ultraestructura , Saccharomyces cerevisiae/ultraestructura , Microscopía por Crioelectrón , Cristalografía por Rayos X , Proteínas de Unión al ADN/ultraestructura , Modelos Moleculares , ARN de Hongos/ultraestructura , ARN Ribosómico/ultraestructura , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/ultraestructura
6.
Structure ; 16(11): 1605-15, 2008 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-19000813

RESUMEN

Most eukaryotic pre-mRNAs contain non-coding sequences (introns) that must be removed in order to accurately place the coding sequences (exons) in the correct reading frame. This critical regulatory pre-mRNA splicing event is fundamental in development and cancer. It occurs within a mega-Dalton multicomponent machine composed of RNA and proteins, which undergoes dynamic changes in RNA-RNA, RNA-protein, and protein-protein interactions during the splicing reaction. Recent years have seen progress in functional and structural analyses of the splicing machine and its subcomponents, and this review is focused on structural aspects of the pre-mRNA splicing machine and their mechanistic implications on the splicing of multi-intronic pre-mRNAs. It brings together, in a comparative manner, structural information on spliceosomes and their intermediates in the stepwise assembly process in vitro, and on the preformed supraspliceosomes, which are isolated from living cell nuclei, with a view of portraying a consistent picture.


Asunto(s)
Precursores del ARN/genética , Empalme del ARN/genética , Microscopía por Crioelectrón , Procesamiento de Imagen Asistido por Computador , Modelos Moleculares , Precursores del ARN/ultraestructura , ARN de Hongos/genética , ARN de Hongos/ultraestructura , Schizosaccharomyces/genética , Empalmosomas/genética , Empalmosomas/fisiología , Empalmosomas/ultraestructura
7.
J Mol Biol ; 369(2): 429-38, 2007 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-17434183

RESUMEN

Compared to the prokaryotic 70 S ribosome, the eukaryotic 80 S ribosome contains additional ribosomal proteins and extra segments of rRNA, referred to as rRNA expansion segments (ES). These eukaryotic-specific rRNA ES are mainly on the periphery of the 80 S ribosome, as revealed by cryo-electron microscopy (cryo-EM) studies, but their precise function is not known. To address the question of whether the rRNA ES are structurally conserved among 80 S ribosomes of different fungi we performed cryo-electron microscopy on 80 S ribosomes from the thermophilic fungus Thermomyces lanuginosus and compared it to the Saccharomyces cerevisiae 80 S ribosome. Our analysis reveals general structural conservation of the rRNA expansion segments but also changes in ES27 and ES7/39, as well as the absence of a tertiary interaction between ES3 and ES6 in T. lanuginosus. The differences provide a hint on the role of rRNA ES in regulating translation. Furthermore, we show that the stalk region and interactions with elongation factor 2 (eEF2) are different in T. lanuginosus, exhibiting a more extensive contact with domain I of eEF2.


Asunto(s)
Conformación de Ácido Nucleico , Conformación Proteica , Ribosomas/ultraestructura , Microscopía por Crioelectrón , Proteínas Fúngicas/ultraestructura , Modelos Moleculares , Datos de Secuencia Molecular , Factor 2 de Elongación Peptídica/metabolismo , ARN de Hongos/ultraestructura , ARN Ribosómico/ultraestructura , Ribosomas/química , Saccharomyces cerevisiae/genética
8.
Proc Natl Acad Sci U S A ; 104(14): 5788-93, 2007 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-17389391

RESUMEN

In the process of protein synthesis, the small (40S) subunit of the eukaryotic ribosome is recruited to the capped 5' end of the mRNA, from which point it scans along the 5' untranslated region in search of a start codon. However, the 40S subunit alone is not capable of functional association with cellular mRNA species; it has to be prepared for the recruitment and scanning steps by interactions with a group of eukaryotic initiation factors (eIFs). In budding yeast, an important subset of these factors (1, 2, 3, and 5) can form a multifactor complex (MFC). Here, we describe cryo-EM reconstructions of the 40S subunit, of the MFC, and of 40S complexes with MFC factors plus eIF1A. These studies reveal the positioning of the core MFC on the 40S subunit, and show how eIF-binding induces mobility in the head and platform and reconfigures the head-platform-body relationship. This is expected to increase the accessibility of the mRNA channel, thus enabling the 40S subunit to convert to a recruitment-competent state.


Asunto(s)
Factor 1 Eucariótico de Iniciación/metabolismo , Factor 2 Eucariótico de Iniciación/metabolismo , Factor 3 de Iniciación Eucariótica/metabolismo , Factor 5 Eucariótico de Iniciación/metabolismo , Biosíntesis de Proteínas , Ribosomas/química , Regiones no Traducidas 5' , Codón Iniciador , Microscopía por Crioelectrón , Factor 1 Eucariótico de Iniciación/genética , Factor 1 Eucariótico de Iniciación/ultraestructura , Factor 2 Eucariótico de Iniciación/genética , Factor 2 Eucariótico de Iniciación/ultraestructura , Factor 3 de Iniciación Eucariótica/genética , Factor 3 de Iniciación Eucariótica/ultraestructura , Factor 5 Eucariótico de Iniciación/genética , Factor 5 Eucariótico de Iniciación/ultraestructura , Modelos Químicos , Modelos Moleculares , Unión Proteica , Estructura Secundaria de Proteína , Subunidades de Proteína , ARN de Hongos/genética , ARN de Hongos/metabolismo , ARN de Hongos/ultraestructura , ARN Mensajero/metabolismo , Ribosomas/metabolismo , Ribosomas/ultraestructura , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
9.
J Struct Biol ; 151(1): 106-10, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15964206

RESUMEN

The native polysomes of Saccharomyces cerevisiae were visualized in liquid solution by atomic force microscopy without external contrasting, such as shadowing and negative staining. This study showed native polysomes as lined particle with a height of ca. 27 nm, which is agreement with the height of 80S ribosomes in previous study. We found a small subparticle, located in a ring-shape or at the end of a linear structure, and visualized mRNA chains between adjacent ribosomes. Although the structures of polysomes have been studied for decades, it has remained difficult to visualize the native three-dimensional form. By the observation in liquid solution, we temporarily stopped the translation using an antibiotic to presenting the native three-dimensional structure and function of the polysomes. Our results provide not only new findings on native eukaryotic polysomes, but also great potential to visualize the influence of various environmental conditions on polysomes.


Asunto(s)
Polirribosomas/ultraestructura , Saccharomyces cerevisiae/ultraestructura , Microscopía de Fuerza Atómica , Polirribosomas/química , ARN de Hongos/ultraestructura , ARN Mensajero/ultraestructura , Saccharomyces cerevisiae/química , Soluciones/química
10.
EMBO J ; 19(11): 2710-8, 2000 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-10835368

RESUMEN

Using a sordarin derivative, an antifungal drug, it was possible to determine the structure of a eukaryotic ribosome small middle dotEF2 complex at 17.5 A resolution by three-dimensional (3D) cryo-electron microscopy. EF2 is directly visible in the 3D map and the overall arrangement of the complex from Saccharomyces cerevisiae corresponds to that previously seen in Escherichia coli. However, pronounced differences were found in two prominent regions. First, in the yeast system the interaction between the elongation factor and the stalk region of the large subunit is much more extensive. Secondly, domain IV of EF2 contains additional mass that appears to interact with the head of the 40S subunit and the region of the main bridge of the 60S subunit. The shape and position of domain IV of EF2 suggest that it might interact directly with P-site-bound tRNA.


Asunto(s)
Microscopía por Crioelectrón , Proteínas Fúngicas/ultraestructura , Factor 2 de Elongación Peptídica/ultraestructura , Ribosomas/ultraestructura , Saccharomyces cerevisiae/ultraestructura , Proteínas Fúngicas/análisis , Proteínas Fúngicas/química , Sustancias Macromoleculares , Modelos Moleculares , Conformación de Ácido Nucleico , Factor 2 de Elongación Peptídica/análisis , Factor 2 de Elongación Peptídica/química , Conformación Proteica , Estructura Terciaria de Proteína , ARN de Hongos/química , ARN de Hongos/metabolismo , ARN de Hongos/ultraestructura , ARN de Transferencia/química , ARN de Transferencia/metabolismo , ARN de Transferencia/ultraestructura , Ribosomas/química , Saccharomyces cerevisiae/química
11.
Cell ; 98(6): 791-8, 1999 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-10499796

RESUMEN

The structure of an actively transcribing complex, containing yeast RNA polymerase II with associated template DNA and product RNA, was determined by electron crystallography. Nucleic acid, in all likelihood the "transcription bubble" at the active center of the enzyme, occupies a previously noted 25 A channel in the protein structure. Details are indicative of a roughly 90 degrees bend of the DNA between upstream and downstream regions. The DNA apparently lies entirely on one face of the polymerase, rather than passing through a hole to the opposite side, as previously suggested.


Asunto(s)
ADN de Hongos/química , ARN Polimerasa II/química , ARN de Hongos/química , ARN Mensajero/química , Saccharomyces cerevisiae/enzimología , Cristalografía , ADN de Hongos/ultraestructura , Procesamiento de Imagen Asistido por Computador , Microscopía Electrónica , Modelos Moleculares , ARN Polimerasa II/ultraestructura , ARN de Hongos/ultraestructura , ARN Mensajero/ultraestructura , Estreptavidina/química , Estreptavidina/ultraestructura , Transcripción Genética
12.
Mol Cell ; 2(1): 135-40, 1998 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-9702200

RESUMEN

Communication between the 5' cap structure and 3' poly(A) tail of eukaryotic mRNA results in the synergistic enhancement of translation. The cap and poly(A) tail binding proteins, eIF4E and Pab1p, mediate this effect in the yeast S. cerevisiae through their interactions with different parts of the translation factor eIF4G. Here, we demonstrate the reconstitution of an eIF4E/eIF4G/Pab1p complex with recombinant proteins, and show by atomic force microscopy that the complex can circularize capped, polyadenylated RNA. Our results suggest that formation of circular mRNA by translation factors could contribute to the control of mRNA expression in the eukaryotic cell.


Asunto(s)
Conformación de Ácido Nucleico , Factores de Iniciación de Péptidos/metabolismo , ARN de Hongos/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , ARN/biosíntesis , Saccharomyces cerevisiae/genética , Factor 4E Eucariótico de Iniciación , Factor 4G Eucariótico de Iniciación , Proteínas Fúngicas/metabolismo , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Sustancias Macromoleculares , Microscopía de Fuerza Atómica , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Factores de Iniciación de Péptidos/genética , Factores de Iniciación de Péptidos/ultraestructura , Proteínas de Unión a Poli(A) , Biosíntesis de Proteínas , ARN/ultraestructura , ARN Circular , ARN de Hongos/química , ARN de Hongos/ultraestructura , ARN Mensajero/química , ARN Mensajero/ultraestructura , Proteínas de Unión al ARN/ultraestructura , Proteínas Recombinantes de Fusión/metabolismo , Proteínas de Saccharomyces cerevisiae
13.
EMBO J ; 15(11): 2820-5, 1996 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-8654379

RESUMEN

Four small RNA self-cleaving domains, the hammerhead, hairpin, hepatitis delta virus and Neurospora VS ribozymes, have been identified previously in naturally occurring RNAs. The secondary structures of these ribozymes are reasonably well understood, but little is known about long-range interactions that form the catalytically active tertiary conformations. Our previous work, which identified several secondary structure elements of the VS ribozyme, also showed that many additional bases were protected by magnesium-dependent interactions, implying that several tertiary contacts remained to be identified. Here we have used site-directed mutagenesis and chemical modification to characterize the first long-range interaction identified in VS RNA. This interaction contains a 3 bp pseudoknot helix that is required for tertiary folding and self-cleavage activity of the VS ribozyme.


Asunto(s)
Neurospora/enzimología , ARN Catalítico/química , Dietil Pirocarbonato/química , Magnesio/química , Conformación de Ácido Nucleico , ARN de Hongos/química , ARN de Hongos/ultraestructura , Relación Estructura-Actividad
14.
Mol Cell Biochem ; 148(2): 165-81, 1995 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-8594421

RESUMEN

Small ribosomal subunits from the prokaryote Escherichia coli and the eukaryote Thermomyces lanuginosus were imaged electron spectroscopically, and single particle analysis used to yield three-dimensional reconstructions of the net phosphorus distribution representing the nucleic acid (RNA) backbone. This direct approach showed both ribosomal RNAs to have a three domain structure and other characteristic morphological features. The eukaryotic small ribosomal subunit had a prominent bill present in the head domain, while the prokaryotic subunit had a small vestigial bill. Both ribosomal subunits contained a thick 'collar' central domain which correlates to the site of the evolutionarily conserved ribosomal RNA core, and the location of the majority of ribosomal RNA bases that have been implicated in translation. The reconstruction of the prokaryotic subunit had a prominent protrusion extending from the collar, forming a channel approximately 1.5 nm wide and potentially representing a 'bridge' to the large subunit in the intact monosome. The basal domain of the prokaryotic ribosomal subunit was protein free. In this region of the eukaryotic subunit, there were two basal lobes composed of ribosomal RNA, consistent with previous hypotheses that this is a site for the 'non-conserved core' ribosomal RNA.


Asunto(s)
Escherichia coli/ultraestructura , Procesamiento de Imagen Asistido por Computador , Hongos Mitospóricos/química , ARN Bacteriano/ultraestructura , ARN Ribosómico 16S/ultraestructura , ARN Ribosómico 18S/ultraestructura , Ribosomas/ultraestructura , Escherichia coli/química , Microscopía Electrónica , Hongos Mitospóricos/ultraestructura , ARN de Hongos/ultraestructura , Ribosomas/química , Análisis Espectral/métodos
15.
Biochem Biophys Res Commun ; 205(3): 1869-74, 1994 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-7811276

RESUMEN

The large ribosomal subunit of the thermophilic fungus Thermomyces lanuginosus was treated with 2.96 M NH4Cl to remove specific complements of ribosomal proteins, and the core particles thereby derived were imaged by bright field transmission electron microscopy, and recurring views computed by single particle electron image analysis. A new characteristic projection was elucidated which showed a large depression or channel passing through the subunit. Such a channel has been perceived in the prokaryotic large ribosomal subunit under certain conditions and has been postulated to be the exit pathway for the nascent polypeptide chain, but its existence has not hitherto been demonstrated in eukaryotes.


Asunto(s)
Hongos Mitospóricos/ultraestructura , Ribosomas/ultraestructura , Proteínas Fúngicas/química , Proteínas Fúngicas/ultraestructura , Procesamiento de Imagen Asistido por Computador , Microscopía Electrónica , Hongos Mitospóricos/química , ARN de Hongos/química , ARN de Hongos/ultraestructura , ARN Ribosómico/química , ARN Ribosómico/ultraestructura , Proteínas Ribosómicas/química , Proteínas Ribosómicas/ultraestructura , Ribosomas/química
16.
Nucleic Acids Res ; 22(3): 514-21, 1994 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-8127692

RESUMEN

Normal mode calculation is applied to tRNAPhe and tRNAAsp, and their structural and vibrational aspects are analyzed. Dihedral angles along the phosphate-ribose backbone (alpha, beta, gamma, epsilon, zeta) and dihedral angles of glycosyl bonds (chi) are selected as movable parameters. The calculated displacement of each atom agrees with experimental data. In modes with frequencies higher than 130 cm-1, the motions are localized around each stem and the elbow region of the L-shape. On the other hand, collective motions such as bending or twisting of arms are seen in modes with lower frequencies. Hinge axes and bend angles are calculated without prior knowledge. Movements in modes with very low frequencies are combinations of hinge bending motions with various hinge axes and bend angles. The thermal fluctuations of dihedral angles well reflect the structural characters of transfer RNAs. There are some dihedral angles of nucleotides located around the elbow region of L-shape, which fluctuate about five to six times more than the average value. Nucleotides in the position seem to be influential in the dynamics of the entire structure. The normal mode calculation seems to provide much information for the study of conformational changes of transfer RNAs induced by aminoacyl-tRNA synthetase or codon during molecular recognition.


Asunto(s)
ARN de Transferencia de Aspártico/química , ARN de Transferencia de Fenilalanina/química , Movimiento (Física) , Conformación de Ácido Nucleico , ARN de Hongos/química , ARN de Hongos/ultraestructura , ARN de Transferencia de Aspártico/ultraestructura , ARN de Transferencia de Fenilalanina/ultraestructura , Saccharomyces cerevisiae
17.
Cell ; 72(6): 893-901, 1993 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-8458083

RESUMEN

Many of the mechanisms that govern splice site selection and splice site partner assignment during pre-mRNA splicing are obscure. To address this problem, we analyzed the splicing of transcripts containing chimeric introns or splice site duplications derived from two natural yeast genes. Our experiments indicate that there are strong context effects that influence splicing efficiency and relative splice site strength. Cis-competition experiments showed that the context effects are not only local, as the source of the 3' splice site region influences 5' splice site selection and the source of the 5' splice site affects 3' splice site selection. A significant fraction of the long-range context effect appears to be due to base pairing between two intronic regions near the 5' splice site and branchpoint, an interaction that positively affects splicing efficiency as well as splice site selection.


Asunto(s)
Empalme del ARN , ARN Mensajero/genética , Saccharomyces cerevisiae/genética , Secuencia de Bases , Análisis Mutacional de ADN , Genes Fúngicos , Enlace de Hidrógeno , Intrones , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Conformación de Ácido Nucleico , ARN de Hongos/genética , ARN de Hongos/ultraestructura , ARN Mensajero/ultraestructura , Proteínas Ribosómicas/genética
18.
J Mol Biol ; 226(2): 323-33, 1992 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-1640453

RESUMEN

The structure and function of in vitro transcribed tRNA(Asp) variants with inserted conformational features characteristic of yeast tRNA(Phe), such as the length of the variable region or the arrangement of the conserved residues in the D-loop, have been investigated. Although they exhibit significant conformational alterations as revealed by Pb2+ treatment, these variants are still efficiently aspartylated by yeast aspartyl-tRNA synthetase. Thus, this synthetase can accommodate a variety of tRNA conformers. In a second series of variants, the identity determinants of yeast tRNA(Phe) were transplanted into the previous structural variants of tRNA(Asp). The phenylalanine acceptance of these variants improves with increasing the number of structural characteristics of tRNA(Phe), suggesting that phenylalanyl-tRNA synthetase is sensitive to the conformational frame embedding the cognate identity nucleotides. These results contrast with the efficient transplantation of tRNA(Asp) identity elements into yeast tRNA(Phe). This indicates that synthetases respond differently to the detailed conformation of their tRNA substrates. Efficient aminoacylation is not only dependent on the presence of the set of identity nucleotides, but also on a precise conformation of the tRNA.


Asunto(s)
Aspartato-ARNt Ligasa/metabolismo , Fenilalanina-ARNt Ligasa/metabolismo , ARN de Transferencia de Aspártico/ultraestructura , ARN de Transferencia de Fenilalanina/ultraestructura , Secuencia de Bases , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , ARN de Hongos/metabolismo , ARN de Hongos/ultraestructura , ARN de Transferencia de Aspártico/metabolismo , ARN de Transferencia de Fenilalanina/metabolismo , Saccharomyces cerevisiae , Relación Estructura-Actividad , Especificidad por Sustrato , Aminoacilación de ARN de Transferencia
19.
J Struct Biol ; 107(1): 1-5, 1991 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-1817605

RESUMEN

Scanning transmission electron microscopic images of transfer RNAs reveal the molecular dimensions and compact morphology of these small macromolecules in unprecedented detail. Selective labeling of a sulfhydryl group on 2-thiocytidine enzymatically inserted at position 75 at the 3' end of yeast tRNA(Phe) with an undecagold cluster permits identification of this specific tRNA site by dark field STEM. Imaging of a single nucleotide at a defined location on the tRNA molecule should make it possible to localize in situ tRNAs at the A, P, and E sites of the ribosomal peptidyl transferase center, and in complexes of tRNA with enzymes and elongation factors. In addition, this approach may be used for the highly specific topographical mapping of other RNAs and/or biological macromolecular complexes.


Asunto(s)
Nucleótidos/análisis , ARN de Hongos/ultraestructura , ARN de Transferencia/ultraestructura , Saccharomyces cerevisiae/genética , Oro , Microscopía Electrónica de Rastreo , Conformación de Ácido Nucleico , Compuestos Orgánicos de Oro , Compuestos Organometálicos , ARN de Hongos/química , ARN de Transferencia/química , Saccharomyces cerevisiae/ultraestructura , Difracción de Rayos X
20.
Science ; 252(5013): 1682-9, 1991 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-2047877

RESUMEN

The crystal structure of the binary complex tRNA(Asp)-aspartyl tRNA synthetase from yeast was solved with the use of multiple isomorphous replacement to 3 angstrom resolution. The dimeric synthetase, a member of class II aminoacyl tRNA synthetases (aaRS's) exhibits the characteristic signature motifs conserved in eight aaRS's. These three sequence motifs are contained in the catalytic site domain, built around an antiparallel beta sheet, and flanked by three alpha helices that form the pocket in which adenosine triphosphate (ATP) and the CCA end of tRNA bind. The tRNA(Asp) molecule approaches the synthetase from the variable loop side. The two major contact areas are with the acceptor end and the anticodon stem and loop. In both sites the protein interacts with the tRNA from the major groove side. The correlation between aaRS class II and the initial site of aminoacylation at 3'-OH can be explained by the structure. The molecular association leads to the following features: (i) the backbone of the GCCA single-stranded portion of the acceptor end exhibits a regular helical conformation; (ii) the loop between residues 320 and 342 in motif 2 interacts with the acceptor stem in the major groove and is in contact with the discriminator base G and the first base pair UA; and (iii) the anticodon loop undergoes a large conformational change in order to bind the protein. The conformation of the tRNA molecule in the complex is dictated more by the interaction with the protein than by its own sequence.


Asunto(s)
Aspartato-ARNt Ligasa/ultraestructura , Proteínas Fúngicas/ultraestructura , ARN de Transferencia de Aspártico/ultraestructura , Aspartato-ARNt Ligasa/clasificación , Secuencia de Bases , Sitios de Unión , Gráficos por Computador , Cristalografía , Sustancias Macromoleculares , Modelos Moleculares , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Conformación Proteica , ARN de Hongos/ultraestructura , Aminoacil-ARN de Transferencia/metabolismo , Aminoacil-ARN de Transferencia/ultraestructura , ARN de Transferencia de Aspártico/metabolismo , Saccharomyces cerevisiae/enzimología , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...