Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 587: 36-41, 2022 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-34864393

RESUMEN

LncRNAs are widely involved in various biological processes of plants. Recent evidences indicated that lncRNAs could act as competing endogenous RNAs (ceRNAs) to adsorb complementary miRNAs in a type of target mimicry, thereby indirectly regulating the target genes of miRNAs. In this study, a lncRNA, lncRNA08489 was identified to be the ceRNA of miR482e-3p in tomato plants. The expression patterns of lncRNA08489 and miR482e-3p showed opposite trends after tomato plants infected with Phytophthora infestans. In tomato leaves overexpressing lncRNA08489 (OE08489), the expression level of miR482e-3p decreased and its target gene, NBS-LRR increased. After infection with P. infestans, the resistance of OE08489 plants was stronger than that of the wild type, and the reactive oxygen species (ROS) scavenging ability of OE08489 plants was significantly improved. Taken together, these results indicated that lncRNA08489 acted as a ceRNA to decoy miR482e-3p and regulate the expression of NBS-LRR to enhance tomato resistance through ROS-scavenging system.


Asunto(s)
MicroARNs/genética , Phytophthora infestans/patogenicidad , Enfermedades de las Plantas/genética , ARN Largo no Codificante/genética , ARN de Planta/genética , Solanum lycopersicum/genética , Emparejamiento Base , Secuencia de Bases , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Solanum lycopersicum/inmunología , Solanum lycopersicum/microbiología , MicroARNs/inmunología , Phytophthora infestans/crecimiento & desarrollo , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta/genética , Hojas de la Planta/genética , Hojas de la Planta/inmunología , Hojas de la Planta/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/inmunología , ARN Largo no Codificante/inmunología , ARN de Planta/inmunología , Especies Reactivas de Oxígeno/inmunología , Especies Reactivas de Oxígeno/metabolismo
2.
Plant Commun ; 2(3): 100180, 2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-34027394

RESUMEN

Crops are exposed to attacks by various pathogens that cause substantial yield losses and severely threaten food security. To cope with pathogenic infection, crops have elaborated strategies to enhance resistance against pathogens. In addition to the role of protein-coding genes as key regulators in plant immunity, accumulating evidence has demonstrated the importance of non-coding RNAs (ncRNAs) in the plant immune response. Here, we summarize the roles and molecular mechanisms of endogenous ncRNAs, especially microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs), in plant immunity. We discuss the coordination between miRNAs and small interfering RNAs (siRNAs), between lncRNAs and miRNAs or siRNAs, and between circRNAs and miRNAs in the regulation of plant immune responses. We also address the role of cross-kingdom mobile small RNAs in plant-pathogen interactions. These insights improve our understanding of the mechanisms by which ncRNAs regulate plant immunity and can promote the development of better approaches for breeding disease-resistant crops.


Asunto(s)
Inmunidad de la Planta/genética , ARN de Planta/inmunología , ARN no Traducido/inmunología
3.
Int J Mol Sci ; 22(6)2021 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-33805611

RESUMEN

Plants have evolved diverse molecular mechanisms that enable them to respond to a wide range of pathogens. It has become clear that microRNAs, a class of short single-stranded RNA molecules that regulate gene expression at the transcriptional or post-translational level, play a crucial role in coordinating plant-pathogen interactions. Specifically, miRNAs have been shown to be involved in the regulation of phytohormone signals, reactive oxygen species, and NBS-LRR gene expression, thereby modulating the arms race between hosts and pathogens. Adding another level of complexity, it has recently been shown that specific lncRNAs (ceRNAs) can act as decoys that interact with and modulate the activity of miRNAs. Here we review recent findings regarding the roles of miRNA in plant defense, with a focus on the regulatory modes of miRNAs and their possible applications in breeding pathogen-resistance plants including crops and trees. Special emphasis is placed on discussing the role of miRNA in the arms race between hosts and pathogens, and the interaction between disease-related miRNAs and lncRNAs.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/inmunología , Interacciones Huésped-Patógeno/genética , MicroARNs/genética , Enfermedades de las Plantas/genética , Inmunidad de la Planta/genética , Proteínas de Plantas/genética , Plantas/genética , Interacciones Huésped-Patógeno/inmunología , MicroARNs/inmunología , Hongos Mitospóricos/genética , Hongos Mitospóricos/crecimiento & desarrollo , Hongos Mitospóricos/patogenicidad , Fitomejoramiento/métodos , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Reguladores del Crecimiento de las Plantas/inmunología , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/inmunología , Plantas/inmunología , Plantas/microbiología , ARN Largo no Codificante/genética , ARN Largo no Codificante/inmunología , ARN de Planta/genética , ARN de Planta/inmunología , Especies Reactivas de Oxígeno/inmunología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
4.
Curr Opin Virol ; 42: 25-31, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32480352

RESUMEN

In a tolerant plant-virus interaction, viral multiplication is sustained without substantial effects on plant growth or reproduction. Such interactions are, in natural environments, frequent and sometimes even beneficial for both interactors. Here we compiled evidence showing that small RNAs modulate plant immune responses and growth, hence adjusting its physiology to enable a tolerant interaction. Importantly, the role of small RNAs in tolerant interactions resembles that required for establishment of a mutualistic symbiosis. Tolerance can become a sustainable strategy for breeding for virus resistance as selection pressure for emergence of more aggressive strains is low. Understanding the processes underlying establishment of tolerance is, therefore, important for the development of future crops.


Asunto(s)
Productos Agrícolas/virología , Virus de Plantas/fisiología , ARN de Planta/inmunología , Productos Agrícolas/inmunología , Productos Agrícolas/fisiología , Virus de Plantas/genética , ARN de Planta/genética , Simbiosis
5.
Curr Opin Virol ; 42: 32-39, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32504993

RESUMEN

With the discovery that pattern-triggered immunity (PTI) is active against virus infection in plants less than a decade ago, we began to understand that antiviral immunity goes far beyond RNA silencing and resistance gene-mediated immunity and is much more complex than previously thought. Since then, receptor kinases, signaling components and outputs, and viral suppressors of PTI were discovered and double-stranded RNAs as well as possibly other viral nucleic acids identified as candidates for viral pathogen-associated molecular patterns (PAMPs) in plants. Here, we summarize recent progress in PAMP-triggered antiviral immunity in plants and discuss possible crosstalk between dsRNA-triggered defense pathways.


Asunto(s)
Moléculas de Patrón Molecular Asociado a Patógenos/inmunología , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta , Virus de Plantas/fisiología , ARN de Planta/inmunología , Interacciones Huésped-Patógeno , Enfermedades de las Plantas/virología , Virus de Plantas/genética , ARN Bicatenario/genética , ARN Bicatenario/inmunología , ARN de Planta/genética
6.
Biol Direct ; 14(1): 7, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30987641

RESUMEN

BACKGROUND: Rubber tree (Hevea brasiliensis) acts as an important tropic economic crop and rubber tree anthracnose, mainly caused by Colletotrichum gloeosporioides, is one of the most common fungal disease, which leads to serious loss of rubber production. Therefore, the investigation on disease resistance is of great worldwide significance. In the past decades, substantial progress has been made on coding gene families related with plant disease resistance. However, in rubber tree, whether the disease resistance mechanism involves noncoding RNAs, especially long noncoding RNAs (lncRNAs), still remains poorly understood. RESULTS: Here, we modeled the development of H. brasiliensis leaf samples inoculated with C. gloeosporioides at divergent stages, explored to identify the expressed ncRNAs by RNA-seq, and investigated the dominant lncRNAs responding to the infection, through constructing a co-expressed network systematically. On the dominant lncRNAs, we explored the potential functional role of lncRNA11254 recruiting the transcription factor, and that lncRNA11041 and lncRNA11205 probably stimulate the accumulation of corresponding disease responsive miRNAs, and further modulate the expressions of target genes, accompanying with experimental examination. CONCLUSIONS: Take together, computational analyses in silico and experimental evidences in our research collectively revealed the responsive roles of dominant lncRNAs to the pathogen. The results will provide new perspectives to unveil the plant disease resistance mechanisms, and will presumably provide a new theoretical basis and candidate prognostic markers for the optimization and innovation of genetic breeding for rubber tree. REVIEWERS: This article was reviewed by Ryan McGinty and Roland Huber.


Asunto(s)
Colletotrichum/fisiología , Hevea/genética , Hevea/inmunología , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta/efectos de los fármacos , ARN Largo no Codificante/genética , ARN de Planta/genética , Resistencia a la Enfermedad/efectos de los fármacos , Hevea/microbiología , Modelos Biológicos , Enfermedades de las Plantas/microbiología , Hojas de la Planta/inmunología , Hojas de la Planta/microbiología , ARN Largo no Codificante/inmunología , ARN de Planta/inmunología
7.
Biochem Biophys Res Commun ; 503(2): 402-407, 2018 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-30055799

RESUMEN

Long non-coding RNA (lncRNA) is a non-coding RNA greater than 200 nucleotides in length. LncRNAs can regulate gene expression at transcription and post-transcription, epigenetic level, and plays an important role in a wide range of biological processes such as genomic imprinting, chromatin remodeling, transcriptional activation, transcriptional interference and cell cycle. It becomes the current hot topics in the study of molecular biology and genetics. Emerging evidence proposed that lncRNAs play important roles in response to both abiotic and biotic stress. In this review, we discuss the role of lncRNAs in drought resistance, salt resistance, disease resistance, and immunity of plants, providing strong evidence for exploring the important role of lncRNAs in plant resistance, in order to explore new ideas and new targets for prevention and control.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Plantas/genética , ARN Largo no Codificante/genética , ARN de Planta/genética , Sequías , Inmunidad Innata , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Fenómenos Fisiológicos de las Plantas , Plantas/inmunología , ARN Largo no Codificante/inmunología , ARN de Planta/inmunología , Estrés Salino , Estrés Fisiológico
8.
Microb Pathog ; 118: 9-17, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29524548

RESUMEN

Plants are attacked by a large number of pathogens. To defend against these pathogens, plants activate or repress a vast array of genes. For genetic expression and reprogramming, host endogenous small RNAs (sRNAs) are the key factors. Among these sRNAs, microRNAs (miRNAs) mediate gene regulation through RNA silencing at the post-transcriptional level and play an essential role in the defense responses to biotic and abiotic stress. In the recent years, high-throughput sequencing has enabled the researchers to uncover the role of plant miRNAs during pathogen invasion. So here we have reviewed the recent research findings illustrating the plant miRNAs active involvement in various defense processes during fungal, bacterial, viral and nematode infections. However, rapid validation of direct targets of miRNAs is the dire need of time, which can be very helpful in improving the plant resistance against various pathogenic diseases.


Asunto(s)
Resistencia a la Enfermedad/inmunología , Resistencia a la Enfermedad/fisiología , MicroARNs/inmunología , MicroARNs/fisiología , Enfermedades de las Plantas/inmunología , Plantas/inmunología , Animales , Infecciones Bacterianas/inmunología , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Secuenciación de Nucleótidos de Alto Rendimiento , Inmunidad , MicroARNs/genética , Micosis/inmunología , Infecciones por Nematodos/inmunología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/parasitología , Inmunidad de la Planta , Plantas/genética , Plantas/microbiología , Plantas/parasitología , ARN de Planta/inmunología , ARN Pequeño no Traducido/inmunología , Estrés Fisiológico , Virosis/inmunología
9.
Curr Opin Microbiol ; 46: 58-64, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29549797

RESUMEN

In plants, small RNA (sRNA)-mediated RNA interference (RNAi) is critical for regulating host immunity against bacteria, fungi, oomycetes, viruses, and pests. Similarly, sRNAs from pathogens and pests also play an important role in modulating their virulence. Strikingly, recent evidence supports that some sRNAs can travel between interacting organisms and induce gene silencing in the counter party, a mechanism termed cross-kingdom RNAi. Exploiting this new knowledge, host-induced gene silencing (HIGS) by transgenic expression of pathogen gene-targeting double-stranded (ds)RNA has the potential to become an important disease-control method. To circumvent transgenic approaches, direct application of dsRNAs or sRNAs (environmental RNAi) onto host plants or post-harvest products leads to silencing of the target microbe/pest gene (referred to spray-induced gene silencing, SIGS) and confers efficient disease control. This review summarizes the current understanding of cross-kingdom RNA trafficking and environmental RNAi and how these findings can be developed into novel effective strategies to fight diseases caused by microbial pathogens and pests.


Asunto(s)
Enfermedades de las Plantas/inmunología , Plantas/genética , Interferencia de ARN , Hongos/genética , Hongos/fisiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Plantas/inmunología , Plantas/microbiología , ARN de Planta/genética , ARN de Planta/inmunología , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/inmunología
10.
J Exp Bot ; 69(8): 2023-2036, 2018 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-29390146

RESUMEN

To combat pathogen infection, plants employ local defenses in infected sites and elicit systemic acquired resistance (SAR) in distant tissues. MicroRNAs have been shown to play a significant role in local defense, but their association with SAR is unknown. In addition, no such studies of the interaction between potato and Phytophthora infestans have been reported. We investigated the role of miR160 in local and SAR responses to P. infestans infection in potato. Expression analysis revealed induced levels of miR160 in both local and systemic leaves of infected wild-type plants. miR160 overexpression and knockdown plants exhibited increased susceptibility to infection, suggesting that miR160 levels equivalent to those of wild-type plants may be necessary for mounting local defense responses. Additionally, miR160 knockdown lines failed to elicit SAR, and grafting assays indicated that miR160 is required in both local and systemic leaves to trigger SAR. Consistently, SAR-associated signals and genes were dysregulated in miR160 knockdown lines. Furthermore, analysis of the expression of defense and auxin pathway genes and direct regulation of StGH3.6, a mediator of salicylic acid-auxin cross-talk, by the miR160 target StARF10 revealed the involvement of miR160 in antagonistic cross-talk between salicylic acid-mediated defense and auxin-mediated growth pathways. Overall, our study demonstrates that miR160 plays a crucial role in local defense and SAR responses during the interaction between potato and P. infestans.


Asunto(s)
MicroARNs/inmunología , Phytophthora infestans/fisiología , Enfermedades de las Plantas/inmunología , ARN de Planta/inmunología , Solanum tuberosum/inmunología , Regulación de la Expresión Génica de las Plantas , MicroARNs/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/parasitología , Proteínas de Plantas/genética , Proteínas de Plantas/inmunología , ARN de Planta/genética , Solanum tuberosum/genética , Solanum tuberosum/parasitología
11.
Sci Rep ; 7(1): 4895, 2017 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-28687775

RESUMEN

Potato virus Y (PVY) is a globally and economically important pathogen of potato, tobacco, tomato and other staple crops and caused significant yield losses and reductions in quality.To explore the molecular PVY-host interactions, we analysed changes in the miRNA and mRNA profiles of tobacco in response to PVY infection. A total of 81 differentially expressed miRNAs belonging to 29 families and 8133 mRNAs were identified. The Gene Ontology (GO) enrichment analyses showed that genes encoding the DNA/RNA binding, catalytic activity and signalling molecules were all significantly enriched. Moreover, 88 miRNA-mRNA interaction pairs were identified through a combined analysis of the two datasets. We also found evidence showing that the virus-derived siRNAs (vsiRNAs) from the PVY genome target tobacco translationally controlled tumor protein (NtTCTP) mRNA and mediate plant resistance to PVY. Together, our findings revealed that both miRNA and mRNA expression patterns can be changed in response to PVY infection and novel vsiRNA-plant interactions that may regulate plant resistance to PVY. Both provide fresh insights into the virus-plant interactions.


Asunto(s)
Biomarcadores de Tumor/genética , MicroARNs/genética , Nicotiana/genética , Proteínas de Plantas/genética , Potyvirus/genética , ARN Mensajero/genética , ARN de Planta/genética , Biomarcadores de Tumor/antagonistas & inhibidores , Biomarcadores de Tumor/inmunología , Biomarcadores de Tumor/metabolismo , Resistencia a la Enfermedad/genética , Ontología de Genes , Redes Reguladoras de Genes , Interacciones Huésped-Patógeno , MicroARNs/inmunología , MicroARNs/metabolismo , Anotación de Secuencia Molecular , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/virología , Proteínas de Plantas/inmunología , Proteínas de Plantas/metabolismo , Potyvirus/metabolismo , Potyvirus/patogenicidad , ARN Mensajero/inmunología , ARN Mensajero/metabolismo , ARN de Planta/inmunología , ARN de Planta/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , Nicotiana/inmunología , Nicotiana/virología , Proteína Tumoral Controlada Traslacionalmente 1
12.
Sci Rep ; 7(1): 4910, 2017 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-28687784

RESUMEN

An outbreak of kiwifruit bacterial canker disease caused by Pseudomonas syringae pv. actinidiae (Psa) beginning in 2008 caused disaster to the kiwifruit industry. However the mechanisms of interaction between kiwifruit and Psa are unknown. Long noncoding RNAs (lncRNAs) are known to regulate many biological processes, but comprehensive repertoires of kiwifruit lncRNAs and their effects on the interaction between kiwifruit and Psa are unknown. Here, based on in-depth transcriptomic analysis of four kiwifruit materials at three stages of infection with Psa, we identified 14,845 transcripts from 12,280 loci as putative lncRNAs. Hierarchical clustering analysis of differentially-expressed transcripts reveals that both protein-coding and lncRNA transcripts are expressed species-specifically. Comparing differentially-expressed transcripts from different species, variations in pattern-triggered immunity (PTI) were the main causes of species-specific responses to infection by Psa. Using weighted gene co-expression network analysis, we identified species-specific expressed key lncRNAs which were closely related to plant immune response and signal transduction. Our results illustrate that different kiwifruit species employ multiple different plant immunity layers to fight against Psa infection, which causes distinct responses. We also discovered that lncRNAs might affect kiwifruit responses to Psa infection, indicating that both protein-coding regions and noncoding regions can affect kiwifruit response to Psa infection.


Asunto(s)
Actinidia/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Pseudomonas syringae/patogenicidad , ARN Largo no Codificante/genética , Transcriptoma , Actinidia/inmunología , Actinidia/microbiología , Análisis por Conglomerados , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Especificidad del Huésped , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta/genética , Proteínas de Plantas/inmunología , Pseudomonas syringae/fisiología , ARN Largo no Codificante/inmunología , ARN de Planta/genética , ARN de Planta/inmunología , Transducción de Señal , Secuenciación del Exoma
13.
Arch Virol ; 162(2): 517-521, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27770216

RESUMEN

The complete genome sequence of Dioscorea bacilliform TR virus (DBTRV) was determined. The closest relatives of DBTRV are Dioscorea bacilliform AL virus (DBALV) and Dioscorea bacilliform RT virus 1 (DBRTV1). Specific primers were designed and used to determine the prevalence of DBTRV in a yam germplasm collection. It was found that this virus infects Dioscorea alata and D. trifida plants in Guadeloupe and French Guyana. DTRBV was not detected in any of the tested D. cayenensis-rotundata accessions. In silico analysis provided evidence for the presence of DBTRV-like endogenous sequences in the genome of D. cayenensis-rotundata, pointing to a possible role of these sequences in antiviral defense.


Asunto(s)
Badnavirus/genética , Dioscorea/virología , Genoma Viral , Filogenia , ARN de Planta/genética , ARN Viral/genética , Badnavirus/clasificación , Badnavirus/aislamiento & purificación , Secuencia de Bases , Mapeo Cromosómico , Dioscorea/inmunología , Variación Genética , Genotipo , Imitación Molecular , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/virología , Inmunidad de la Planta/genética , ARN de Planta/inmunología
14.
BMC Genomics ; 17(1): 614, 2016 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-27515663

RESUMEN

BACKGROUND: Long noncoding RNAs (lncRNAs) represent a class of RNA molecules that are implicated in regulation of gene expression in both mammals and plants. While much progress has been made in determining the biological functions of lncRNAs in mammals, the functional roles of lncRNAs in plants are still poorly understood. Specifically, the roles of long intergenic nocoding RNAs (lincRNAs) in plant defence responses are yet to be fully explored. RESULTS: In this study, we used strand-specific RNA sequencing to identify 1113 lincRNAs in potato (Solanum tuberosum) from stem tissues. The lincRNAs are expressed from all 12 potato chromosomes and generally smaller in size compared to protein-coding genes. Like in other plants, most potato lincRNAs possess single exons. A time-course RNA-seq analysis between a tolerant and a susceptible potato cultivar showed that 559 lincRNAs are responsive to Pectobacterium carotovorum subsp. brasiliense challenge compared to mock-inoculated controls. Moreover, coexpression analysis revealed that 17 of these lincRNAs are highly associated with 12 potato defence-related genes. CONCLUSIONS: Together, these results suggest that lincRNAs have potential functional roles in potato defence responses. Furthermore, this work provides the first library of potato lincRNAs and a set of novel lincRNAs implicated in potato defences against P. carotovorum subsp. brasiliense, a member of the soft rot Enterobacteriaceae phytopathogens.


Asunto(s)
Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Patógeno , Pectobacterium carotovorum/patogenicidad , ARN Largo no Codificante/genética , ARN de Planta/genética , Solanum tuberosum/genética , Cromosomas de las Plantas/química , Exones , Biblioteca de Genes , Ontología de Genes , Anotación de Secuencia Molecular , Pectobacterium carotovorum/crecimiento & desarrollo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta/genética , Tallos de la Planta/genética , Tallos de la Planta/inmunología , Tallos de la Planta/microbiología , ARN Largo no Codificante/clasificación , ARN Largo no Codificante/inmunología , ARN de Planta/clasificación , ARN de Planta/inmunología , Solanum tuberosum/inmunología , Solanum tuberosum/microbiología
15.
Mol Plant Microbe Interact ; 29(3): 165-9, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26867095

RESUMEN

Plant small RNAs play important roles in transcriptional and posttranscriptional regulation, with ongoing work demonstrating their functions in diverse pathways. Their roles in defense responses are a topic of active investigation, particularly the rich set of micro (mi)RNAs that target disease resistance genes such as nucleotide binding/leucine-rich repeat (NB-LRR) genes. The miRNA-NB-LRR interactions result in the production of phased, secondary small interfering (phasi)RNAs, and phasiRNAs function in both cis and trans to propagate negative regulatory effects across additional members of the target gene family. Yet, while phasiRNAs have the capacity to trigger targeted decay of specific targets, both in cis and trans, their functional relevance in NB-LRR regulation remains largely a matter of speculation.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/fisiología , MicroARNs/metabolismo , Enfermedades de las Plantas/inmunología , ARN de Planta/fisiología , Evolución Biológica , MicroARNs/genética , ARN de Planta/inmunología
16.
Virology ; 476: 395-404, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25591174

RESUMEN

Profiling small RNAs in soybean Williams 82 (rsv), susceptible to Soybean mosaic virus (SMV, the genus Potyvirus, family Potyviridae) strains G2 and G7, and soybean PI96983 (Rsv1), resistant to G2 but susceptible to G7, identified the microRNA miR168 that was highly overexpressed only in G7-infected PI96983 showing a lethal systemic hypersensitive response (LSHR). Overexpression of miR168 was in parallel with the high-level expression of AGO1 mRNA, high-level accumulation of miR168-mediated AGO1 mRNA cleavage products but with severely repressed AGO1 protein. In contrast, AGO1 mRNA, degradation products and protein remained without significant changes in G2- and G7-infected Williams 82. Moreover, knock-down of SGS3, an essential component in RNA silencing, suppressed AGO1 siRNA, partially recovered repressed AGO1 protein, and alleviated LSHR severity in G7-infected Rsv1 soybean. These results suggest that both miRNA and siRNA pathways are involved in G7 infection of Rsv1 soybean, and LSHR is associated with breakdown of AGO1 homeostasis.


Asunto(s)
Proteínas Argonautas/inmunología , Glycine max/inmunología , MicroARNs/inmunología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/virología , Potyvirus/fisiología , ARN de Planta/inmunología , ARN Interferente Pequeño/inmunología , Proteínas Argonautas/genética , Resistencia a la Enfermedad , Silenciador del Gen , Interacciones Huésped-Patógeno , MicroARNs/genética , Enfermedades de las Plantas/inmunología , Potyvirus/patogenicidad , ARN de Planta/genética , ARN Interferente Pequeño/genética , Glycine max/genética , Glycine max/virología
17.
Proc Natl Acad Sci U S A ; 111(40): 14613-8, 2014 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-25201959

RESUMEN

Antiviral immunity controlled by RNA interference (RNAi) in plants and animals is thought to specifically target only viral RNAs by the virus-derived small interfering RNAs (siRNAs). Here we show that activation of antiviral RNAi in Arabidopsis plants is accompanied by the production of an abundant class of endogenous siRNAs mapped to the exon regions of more than 1,000 host genes and rRNA. These virus-activated siRNAs (vasiRNAs) are predominantly 21 nucleotides long with an approximately equal ratio of sense and antisense strands. Genetically, vasiRNAs are distinct from the known plant endogenous siRNAs characterized to date and instead resemble viral siRNAs by requiring Dicer-like 4 and RNA-dependent RNA polymerase 1 (RDR1) for biogenesis. However, loss of exoribonuclease4/thylene-insensitive5 enhances vasiRNA biogenesis and virus resistance without altering the biogenesis of viral siRNAs. We show that vasiRNAs are active in directing widespread silencing of the target host genes and that Argonaute-2 binds to and is essential for the silencing activity of vasiRNAs. Production of vasiRNAs is readily detectable in Arabidopsis after infection by viruses from two distinct supergroups of plant RNA virus families and is targeted for inhibition by the silencing suppressor protein 2b of Cucumber mosaic virus. These findings reveal RDR1 production of Arabidopsis endogenous siRNAs and identify production of vasiRNAs to direct widespread silencing of host genes as a conserved response of plants to infection by diverse viruses. A possible function for vasiRNAs to confer broad-spectrum antiviral activity distinct to the virus-specific antiviral RNAi by viral siRNAs is discussed.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Virus de Plantas/genética , ARN Interferente Pequeño/genética , Arabidopsis/inmunología , Arabidopsis/virología , Northern Blotting , Cucumovirus/genética , Cucumovirus/inmunología , Cucumovirus/fisiología , Resistencia a la Enfermedad/genética , Resistencia a la Enfermedad/inmunología , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Mutación , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/virología , Virus de Plantas/inmunología , Virus de Plantas/fisiología , Interferencia de ARN , ARN de Planta/genética , ARN de Planta/inmunología , ARN Interferente Pequeño/inmunología
18.
PLoS One ; 8(11): e78457, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24223809

RESUMEN

Ontogenic scab resistance in apple leaves and fruits is a horizontal resistance against the plant pathogen Venturia inaequalis and is expressed as a decrease in disease symptoms and incidence with the ageing of the leaves. Several studies at the biochemical level tried to unveil the nature of this resistance; however, no conclusive results were reported. We decided therefore to investigate the genetic origin of this phenomenon by performing a full quantitative transcriptome sequencing and comparison of young (susceptible) and old (ontogenic resistant) leaves, infected or not with the pathogen. Two time points at 72 and 96 hours post-inoculation were chosen for RNA sampling and sequencing. Comparison between the different conditions (young and old leaves, inoculated or not) should allow the identification of differentially expressed genes which may represent different induced plant defence reactions leading to ontogenic resistance or may be the cause of a constitutive (uninoculated with the pathogen) shift toward resistance in old leaves. Differentially expressed genes were then characterised for their function by homology to A. thaliana and other plant genes, particularly looking for genes involved in pathways already suspected of appertaining to ontogenic resistance in apple or other hosts, or to plant defence mechanisms in general. IN THIS WORK, FIVE CANDIDATE GENES PUTATIVELY INVOLVED IN THE ONTOGENIC RESISTANCE OF APPLE WERE IDENTIFIED: a gene encoding an "enhanced disease susceptibility 1 protein" was found to be down-regulated in both uninoculated and inoculated old leaves at 96 hpi, while the other four genes encoding proteins (metallothionein3-like protein, lipoxygenase, lipid transfer protein, and a peroxidase 3) were found to be constitutively up-regulated in inoculated and uninoculated old leaves. The modulation of the five candidate genes has been validated using the real-time quantitative PCR. Thus, ontogenic resistance may be the result of the corresponding up- and down-regulation of these genes.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/inmunología , Malus/genética , Hojas de la Planta/genética , Proteínas de Plantas/genética , ARN de Planta/genética , Spiroplasma/fisiología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/inmunología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/inmunología , Interacciones Huésped-Patógeno , Lipooxigenasa/genética , Lipooxigenasa/inmunología , Malus/inmunología , Malus/microbiología , Metalotioneína/genética , Metalotioneína/inmunología , Peroxidasa/genética , Peroxidasa/inmunología , Enfermedades de las Plantas , Inmunidad de la Planta , Hojas de la Planta/inmunología , Hojas de la Planta/microbiología , Proteínas de Plantas/inmunología , ARN de Planta/inmunología , Análisis de Secuencia de ARN , Spiroplasma/patogenicidad , Factores de Tiempo
19.
PLoS Pathog ; 9(10): e1003713, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24204264

RESUMEN

Plant regulatory circuits coordinating nuclear and plastid gene expression have evolved in response to external stimuli. RNA editing is one of such control mechanisms. We determined the Arabidopsis nuclear-encoded homeodomain-containing protein OCP3 is incorporated into the chloroplast, and contributes to control over the extent of ndhB transcript editing. ndhB encodes the B subunit of the chloroplast NADH dehydrogenase-like complex (NDH) involved in cyclic electron flow (CEF) around photosystem I. In ocp3 mutant strains, ndhB editing efficiency decays, CEF is impaired and disease resistance to fungal pathogens substantially enhanced, a process recapitulated in plants defective in editing plastid RNAs encoding NDH complex subunits due to mutations in previously described nuclear-encoded pentatricopeptide-related proteins (i.e. CRR21, CRR2). Furthermore, we observed that following a pathogenic challenge, wild type plants respond with editing inhibition of ndhB transcript. In parallel, rapid destabilization of the plastidial NDH complex is also observed in the plant following perception of a pathogenic cue. Therefore, NDH complex activity and plant immunity appear as interlinked processes.


Asunto(s)
Arabidopsis/metabolismo , Inmunidad de la Planta/fisiología , Plastidios/metabolismo , Edición de ARN/fisiología , Estabilidad del ARN/fisiología , ARN de Planta/metabolismo , Arabidopsis/genética , Arabidopsis/inmunología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/inmunología , Proteínas de Arabidopsis/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/inmunología , Proteínas de Homeodominio/metabolismo , Mutación , NADH Deshidrogenasa/genética , NADH Deshidrogenasa/inmunología , NADH Deshidrogenasa/metabolismo , Plastidios/genética , Plastidios/inmunología , ARN de Planta/genética , ARN de Planta/inmunología , Factores de Transcripción/genética , Factores de Transcripción/inmunología , Factores de Transcripción/metabolismo
20.
Yi Chuan ; 34(1): 41-9, 2012 Jan.
Artículo en Chino | MEDLINE | ID: mdl-22306872

RESUMEN

Small RNAs are involved in a multitude of biological processes in plants. Based on their origins and precursor structures, small RNAs can be divided into two major classes: microRNAs (miRNAs) and small interference RNAs (siRNAs). Small RNAs are typically 21-24 nucleotide (nt) long, and differ in both biogenesis and biological function. In the pathogenic process, pathogens can either induce or suppress the synthesis of small RNAs, which, in turn, regulate the expression of pathogenesis-related genes to mediate diverse plant-pathogen interactions. The biogenesis and biological functions of small RNAs, together with possible regulation mechanisms underlying the host-pathogen interactions, are summarized in this review.


Asunto(s)
Interacciones Huésped-Patógeno , Plantas/inmunología , ARN de Planta/inmunología , ARN Pequeño no Traducido/inmunología , Resistencia a la Enfermedad , Inmunidad , Plantas/genética , ARN de Planta/genética , ARN Pequeño no Traducido/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...