Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Clin Transl Med ; 11(12): e661, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34898034

RESUMEN

BACKGROUND: N7 -methylguanosine (m7 G) modification is one of the most common transfer RNA (tRNA) modifications in humans. The precise function and molecular mechanism of m7 G tRNA modification in hepatocellular carcinoma (HCC) remain poorly understood. METHODS: The prognostic value and expression level of m7 G tRNA methyltransferase complex components methyltransferase-like protein-1 (METTL1) and WD repeat domain 4 (WDR4) in HCC were evaluated using clinical samples and TCGA data. The biological functions and mechanisms of m7 G tRNA modification in HCC progression were studied in vitro and in vivo using cell culture, xenograft model, knockin and knockout mouse models. The m7 G reduction and cleavage sequencing (TRAC-seq), polysome profiling and polyribosome-associated mRNA sequencing methods were used to study the levels of m7 G tRNA modification, tRNA expression and mRNA translation efficiency. RESULTS: The levels of METTL1 and WDR4 are elevated in HCC and associated with advanced tumour stages and poor patient survival. Functionally, silencing METTL1 or WDR4 inhibits HCC cell proliferation, migration and invasion, while forced expression of wild-type METTL1 but not its catalytic dead mutant promotes HCC progression. Knockdown of METTL1 reduces m7 G tRNA modification and decreases m7 G-modified tRNA expression in HCC cells. Mechanistically, METTL1-mediated tRNA m7 G modification promotes the translation of target mRNAs with higher frequencies of m7 G-related codons. Furthermore, in vivo studies with Mettl1 knockin and conditional knockout mice reveal the essential physiological function of Mettl1 in hepatocarcinogenesis using hydrodynamics transfection HCC model. CONCLUSIONS: Our work reveals new insights into the role of the misregulated tRNA modifications in liver cancer and provides molecular basis for HCC diagnosis and treatment.


Asunto(s)
Carcinogénesis/efectos de los fármacos , Carcinoma Hepatocelular/genética , Metiltransferasas/efectos adversos , Pronóstico , ARN de Transferencia/efectos de los fármacos , Animales , Carcinogénesis/metabolismo , Carcinoma Hepatocelular/etiología , Modelos Animales de Enfermedad , Neoplasias Hepáticas/etiología , Neoplasias Hepáticas/genética , Masculino , Ratones , Ratones Noqueados
2.
Nat Commun ; 12(1): 1616, 2021 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-33712620

RESUMEN

The polyketide natural product reveromycin A (RM-A) exhibits antifungal, anticancer, anti-bone metastasis, anti-periodontitis and anti-osteoporosis activities by selectively inhibiting eukaryotic cytoplasmic isoleucyl-tRNA synthetase (IleRS). Herein, a co-crystal structure suggests that the RM-A molecule occupies the substrate tRNAIle binding site of Saccharomyces cerevisiae IleRS (ScIleRS), by partially mimicking the binding of tRNAIle. RM-A binding is facilitated by the copurified intermediate product isoleucyl-adenylate (Ile-AMP). The binding assays confirm that RM-A competes with tRNAIle while binding synergistically with L-isoleucine or intermediate analogue Ile-AMS to the aminoacylation pocket of ScIleRS. This study highlights that the vast tRNA binding site of the Rossmann-fold catalytic domain of class I aminoacyl-tRNA synthetases could be targeted by a small molecule. This finding will inform future rational drug design.


Asunto(s)
Sitios de Unión/efectos de los fármacos , Ligasas/química , Ligasas/efectos de los fármacos , Piranos/antagonistas & inhibidores , ARN de Transferencia/efectos de los fármacos , Compuestos de Espiro/antagonistas & inhibidores , Aminoacil-ARNt Sintetasas/química , Aminoacil-ARNt Sintetasas/efectos de los fármacos , Isoleucina , Isoleucina-ARNt Ligasa/química , Isoleucina-ARNt Ligasa/efectos de los fármacos , Ligandos , Modelos Moleculares , Osteoporosis/tratamiento farmacológico , ARN de Transferencia/química , Saccharomyces cerevisiae
3.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33414181

RESUMEN

During protein synthesis, nonsense mutations, resulting in premature stop codons (PSCs), produce truncated, inactive protein products. Such defective gene products give rise to many diseases, including cystic fibrosis, Duchenne muscular dystrophy (DMD), and some cancers. Small molecule nonsense suppressors, known as TRIDs (translational read-through-inducing drugs), stimulate stop codon read-through. The best characterized TRIDs are ataluren, which has been approved by the European Medicines Agency for the treatment of DMD, and G418, a structurally dissimilar aminoglycoside. Previously [1], we applied a highly purified in vitro eukaryotic translation system to demonstrate that both aminoglycosides like G418 and more hydrophobic molecules like ataluren stimulate read-through by direct interaction with the cell's protein synthesis machinery. Our results suggested that they might do so by different mechanisms. Here, we pursue this suggestion through a more-detailed investigation of ataluren and G418 effects on read-through. We find that ataluren stimulation of read-through derives exclusively from its ability to inhibit release factor activity. In contrast, G418 increases functional near-cognate tRNA mispairing with a PSC, resulting from binding to its tight site on the ribosome, with little if any effect on release factor activity. The low toxicity of ataluren suggests that development of new TRIDs exclusively directed toward inhibiting termination should be a priority in combatting PSC diseases. Our results also provide rate measurements of some of the elementary steps during the eukaryotic translation elongation cycle, allowing us to determine how these rates are modified when cognate tRNA is replaced by near-cognate tRNA ± TRIDs.


Asunto(s)
Aminoglicósidos/farmacología , Codón sin Sentido/efectos de los fármacos , Oxadiazoles/farmacología , Extensión de la Cadena Peptídica de Translación/efectos de los fármacos , Aminoglicósidos/metabolismo , Animales , Artemia/genética , Codón sin Sentido/metabolismo , Codón de Terminación/efectos de los fármacos , Codón de Terminación/metabolismo , Fibrosis Quística/genética , Distrofia Muscular de Duchenne/genética , Oxadiazoles/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos , Inhibidores de la Síntesis de la Proteína , ARN de Transferencia/efectos de los fármacos , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Ribosomas/efectos de los fármacos , Saccharomyces/genética
4.
Wiley Interdiscip Rev RNA ; 11(6): e1609, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32533808

RESUMEN

A major threat to public health is the resistance and persistence of Gram-negative bacteria to multiple drugs during antibiotic treatment. The resistance is due to the ability of these bacteria to block antibiotics from permeating into and accumulating inside the cell, while the persistence is due to the ability of these bacteria to enter into a nonreplicating state that shuts down major metabolic pathways but remains active in drug efflux. Resistance and persistence are permitted by the unique cell envelope structure of Gram-negative bacteria, which consists of both an outer and an inner membrane (OM and IM, respectively) that lay above and below the cell wall. Unexpectedly, recent work reveals that m1 G37 methylation of tRNA, at the N1 of guanosine at position 37 on the 3'-side of the tRNA anticodon, controls biosynthesis of both membranes and determines the integrity of cell envelope structure, thus providing a novel link to the development of bacterial resistance and persistence to antibiotics. The impact of m1 G37-tRNA methylation on Gram-negative bacteria can reach further, by determining the ability of these bacteria to exit from the persistence state when the antibiotic treatment is removed. These conceptual advances raise the possibility that successful targeting of m1 G37-tRNA methylation can provide new approaches for treating acute and chronic infections caused by Gram-negative bacteria. This article is categorized under: Translation > Translation Regulation RNA Processing > RNA Editing and Modification RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana/efectos de los fármacos , Bacterias Gramnegativas/efectos de los fármacos , ARN de Transferencia/efectos de los fármacos , Antibacterianos/química , Bacterias Gramnegativas/genética , Bacterias Gramnegativas/metabolismo , Humanos , Metilación/efectos de los fármacos , ARN de Transferencia/genética , ARN de Transferencia/metabolismo
5.
PLoS Biol ; 17(12): e3000559, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31877125

RESUMEN

The global rise in obesity and steady decline in sperm quality are two alarming trends that have emerged during recent decades. In parallel, evidence from model organisms shows that paternal diet can affect offspring metabolic health in a process involving sperm tRNA-derived small RNA (tsRNA). Here, we report that human sperm are acutely sensitive to nutrient flux, both in terms of sperm motility and changes in sperm tsRNA. Over the course of a 2-week diet intervention, in which we first introduced a healthy diet followed by a diet rich in sugar, sperm motility increased and stabilized at high levels. Small RNA-seq on repeatedly sampled sperm from the same individuals revealed that tsRNAs were up-regulated by eating a high-sugar diet for just 1 week. Unsupervised clustering identified two independent pathways for the biogenesis of these tsRNAs: one involving a novel class of fragments with specific cleavage in the T-loop of mature nuclear tRNAs and the other exclusively involving mitochondrial tsRNAs. Mitochondrial involvement was further supported by a similar up-regulation of mitochondrial rRNA-derived small RNA (rsRNA). Notably, the changes in sugar-sensitive tsRNA were positively associated with simultaneous changes in sperm motility and negatively associated with obesity in an independent clinical cohort. This rapid response to a dietary intervention on tsRNA in human sperm is attuned with the paternal intergenerational metabolic responses found in model organisms. More importantly, our findings suggest shared diet-sensitive mechanisms between sperm motility and the biogenesis of tsRNA, which provide novel insights about the interplay between nutrition and male reproductive health.


Asunto(s)
Dieta/métodos , Motilidad Espermática/efectos de los fármacos , Espermatozoides/efectos de los fármacos , Adulto , Humanos , Masculino , Obesidad/metabolismo , ARN/efectos de los fármacos , ARN/genética , ARN de Transferencia/efectos de los fármacos , ARN de Transferencia/genética , Motilidad Espermática/fisiología , Espermatozoides/metabolismo , Espermatozoides/fisiología
6.
Cells ; 8(12)2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31861112

RESUMEN

Exposure to environmental tobacco smoke (ETS) is a known risk factor for the development of chronic lung diseases, cancer, and the exacerbation of viral infections. Extracellular vesicles (EVs) have been identified as novel mediators of cell-cell communication through the release of biological content. Few studies have investigated the composition/function of EVs derived from human airway epithelial cells (AECs) exposed to cigarette smoke condensate (CSC), as surrogates for ETS. Using novel high-throughput technologies, we identified a diverse range of small noncoding RNAs (sncRNAs), including microRNA (miRNAs), Piwi-interacting RNA (piRNAs), and transfer RNA (tRNAs) in EVs from control and CSC-treated SAE cells. CSC treatment resulted in significant changes in the EV content of miRNAs. A total of 289 miRNAs were identified, with five being significantly upregulated and three downregulated in CSC EVs. A total of 62 piRNAs were also detected in our EV preparations, with five significantly downregulated and two upregulated in CSC EVs. We used TargetScan and Gene Ontology (GO) analysis to predict the biological targets of hsa-miR-3913-5p, the most represented miRNA in CSC EVs. Understanding fingerprint molecules in EVs will increase our knowledge of the relationship between ETS exposure and lung disease, and might identify potential molecular targets for future treatments.


Asunto(s)
Vesículas Extracelulares/efectos de los fármacos , Contaminación por Humo de Tabaco/efectos adversos , Remodelación de las Vías Aéreas (Respiratorias)/efectos de los fármacos , Remodelación de las Vías Aéreas (Respiratorias)/genética , Comunicación Celular/genética , Comunicación Celular/fisiología , Fumar Cigarrillos/efectos adversos , Fumar Cigarrillos/genética , Células Epiteliales , Vesículas Extracelulares/genética , Humanos , MicroARNs/efectos de los fármacos , MicroARNs/genética , Cultivo Primario de Células , ARN Interferente Pequeño/efectos de los fármacos , ARN Interferente Pequeño/genética , ARN de Transferencia/efectos de los fármacos , ARN de Transferencia/genética
7.
Nucleic Acids Res ; 47(17): 9271-9281, 2019 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-31428787

RESUMEN

Cellular response to oxidative stress is a crucial mechanism that promotes the survival of Pseudomonas aeruginosa during infection. However, the translational regulation of oxidative stress response remains largely unknown. Here, we reveal a tRNA modification-mediated translational response to H2O2 in P. aeruginosa. We demonstrated that the P. aeruginosa trmB gene encodes a tRNA guanine (46)-N7-methyltransferase that catalyzes the formation of m7G46 in the tRNA variable loop. Twenty-three tRNA substrates of TrmB with a guanosine residue at position 46 were identified, including 11 novel tRNA substrates. We showed that loss of trmB had a strong negative effect on the translation of Phe- and Asp-enriched mRNAs. The trmB-mediated m7G modification modulated the expression of the catalase genes katA and katB, which are enriched with Phe/Asp codons at the translational level. In response to H2O2 exposure, the level of m7G modification increased, consistent with the increased translation efficiency of Phe- and Asp-enriched mRNAs. Inactivation of trmB led to decreased KatA and KatB protein abundance and decreased catalase activity, resulting in H2O2-sensitive phenotype. Taken together, our observations reveal a novel role of m7G46 tRNA modification in oxidative stress response through translational regulation of Phe- and Asp-enriched genes, such as katA and katB.


Asunto(s)
Proteínas Bacterianas/genética , Catalasa/genética , Estrés Oxidativo/genética , ARNt Metiltransferasas/genética , Secuencia de Aminoácidos , Guanosina/genética , Humanos , Peróxido de Hidrógeno/química , Oxidación-Reducción , Estrés Oxidativo/efectos de los fármacos , Infecciones por Pseudomonas/genética , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidad , ARN de Transferencia/efectos de los fármacos , ARN de Transferencia/genética
9.
J Biomol Struct Dyn ; 37(16): 4133-4139, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-30417741

RESUMEN

We report the binding of testo and testo-Pt(II) complexes (testosterone derivatives) with tRNA in aqueous solution at physiological pH. Thermodynamic parameter ΔH0 -8 to -3 (kJ mol-1), ΔS0 35 to 18 (J mol-1K-1) and ΔG0 -14 to -13 (kJ mol-1) and other spectroscopic results showed drug-tRNA binding occurs via ionic contacts with testo-Pt(II) forming more stable tRNA complexes in comparison to testo: Ktesto-Pt(II)-tRNA= 3.2 (± 0.9) × 105 M-1 > Ktesto-tRNA= 2.1 (± 0.7) × 105 M-1. Molecular modeling showed multiple binding sites for testo and testo-Pt(II) on tRNA molecule. Some of the useful molecular descriptors are calculated. Major structural changes were observed for biopolymers upon drug complexation, while tRNA remains in the A-family structures.


Asunto(s)
Antineoplásicos/química , ARN de Transferencia/química , Testosterona/análogos & derivados , Antineoplásicos/farmacología , Sitios de Unión , Concentración de Iones de Hidrógeno , Modelos Moleculares , Simulación del Acoplamiento Molecular , Conformación de Ácido Nucleico/efectos de los fármacos , Compuestos Organoplatinos , ARN de Transferencia/efectos de los fármacos , Espectroscopía Infrarroja por Transformada de Fourier , Testosterona/química , Termodinámica
10.
PLoS One ; 12(9): e0184722, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28910383

RESUMEN

Temperature adaptation of bacterial RNAs is a subject of both fundamental and practical interest because it will allow a better understanding of molecular mechanism of RNA folding with potential industrial application of functional thermophilic or psychrophilic RNAs. Here, we performed a comprehensive study of rRNA, tRNA, and mRNA of more than 200 bacterial species with optimal growth temperatures (OGT) ranging from 4°C to 95°C. We investigated temperature adaptation at primary, secondary and tertiary structure levels. We showed that unlike mRNA, tRNA and rRNA were optimized for their structures at compositional levels with significant tertiary structural features even for their corresponding randomly permutated sequences. tRNA and rRNA are more exposed to solvent but remain structured for hyperthermophiles with nearly OGT-independent fluctuation of solvent accessible surface area within a single RNA chain. mRNA in hyperthermophiles is essentially the same as random sequences without tertiary structures although many mRNA in mesophiles and psychrophiles have well-defined tertiary structures based on their low overall solvent exposure with clear separation of deeply buried from partly exposed bases as in tRNA and rRNA. These results provide new insight into temperature adaptation of different RNAs.


Asunto(s)
Bacterias/genética , ARN Mensajero/química , ARN Ribosómico/química , ARN de Transferencia/química , Bases de Datos Genéticas , Modelos Moleculares , Conformación de Ácido Nucleico , Pliegue del ARN/efectos de los fármacos , ARN Bacteriano/química , ARN Bacteriano/efectos de los fármacos , ARN Mensajero/efectos de los fármacos , ARN Ribosómico/efectos de los fármacos , ARN de Transferencia/efectos de los fármacos , Solventes/farmacología , Temperatura
11.
Proc Natl Acad Sci U S A ; 113(44): E6796-E6805, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27791159

RESUMEN

Two structurally unique ribosomal antibiotics belonging to the orthosomycin family, avilamycin and evernimicin, possess activity against Enterococci, Staphylococci, and Streptococci, and other Gram-positive bacteria. Here, we describe the high-resolution crystal structures of the eubacterial large ribosomal subunit in complex with them. Their extended binding sites span the A-tRNA entrance corridor, thus inhibiting protein biosynthesis by blocking the binding site of the A-tRNA elbow, a mechanism not shared with other known antibiotics. Along with using the ribosomal components that bind and discriminate the A-tRNA-namely, ribosomal RNA (rRNA) helices H89, H91, and ribosomal proteins (rProtein) uL16-these structures revealed novel interactions with domain 2 of the CTC protein, a feature typical to various Gram-positive bacteria. Furthermore, analysis of these structures explained how single nucleotide mutations and methylations in helices H89 and H91 confer resistance to orthosomycins and revealed the sequence variations in 23S rRNA nucleotides alongside the difference in the lengths of the eukaryotic and prokaryotic α1 helix of protein uL16 that play a key role in the selectivity of those drugs. The accurate interpretation of the crystal structures that could be performed beyond that recently reported in cryo-EM models provide structural insights that may be useful for the design of novel pathogen-specific antibiotics, and for improving the potency of orthosomycins. Because both drugs are extensively metabolized in vivo, their environmental toxicity is very low, thus placing them at the frontline of drugs with reduced ecological hazards.


Asunto(s)
Aminoglicósidos/farmacología , Proteínas Bacterianas/efectos de los fármacos , Sitios de Unión/efectos de los fármacos , Oligosacáridos/farmacología , ARN de Transferencia/efectos de los fármacos , Proteínas Ribosómicas/efectos de los fármacos , Aminoglicósidos/química , Antibacterianos/farmacología , Cristalografía por Rayos X , Farmacorresistencia Bacteriana/efectos de los fármacos , Farmacorresistencia Bacteriana/genética , Bacterias Grampositivas/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Mutación , Conformación de Ácido Nucleico , Oligosacáridos/química , Biosíntesis de Proteínas/efectos de los fármacos , ARN Ribosómico , ARN Ribosómico 23S/efectos de los fármacos , ARN Ribosómico 23S/genética , ARN de Transferencia/metabolismo , Proteínas Ribosómicas/metabolismo , Ribosomas/efectos de los fármacos , Ribosomas/metabolismo , Alineación de Secuencia , Especificidad de la Especie
12.
Antimicrob Agents Chemother ; 59(4): 2016-28, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25605356

RESUMEN

New agents are urgently needed for the therapeutic treatment of Staphylococcus aureus infections. In that regard, S. aureus RNase RnpA may represent a promising novel dual-function antimicrobial target that participates in two essential cellular processes, RNA degradation and tRNA maturation. Accordingly, we previously used a high-throughput screen to identify small-molecule inhibitors of the RNA-degrading activity of the enzyme and showed that the RnpA inhibitor RNPA1000 is an attractive antimicrobial development candidate. In this study, we used a series of in vitro and cellular assays to characterize a second RnpA inhibitor, RNPA2000, which was identified in our initial screening campaign and is structurally distinct from RNPA1000. In doing so, it was found that S. aureus RnpA does indeed participate in 5'-precursor tRNA processing, as was previously hypothesized. Further, we show that RNPA2000 is a bactericidal agent that inhibits both RnpA-associated RNA degradation and tRNA maturation activities both in vitro and within S. aureus. The compound appears to display specificity for RnpA, as it did not significantly affect the in vitro activities of unrelated bacterial or eukaryotic ribonucleases and did not display measurable human cytotoxicity. Finally, we show that RNPA2000 exhibits antimicrobial activity and inhibits tRNA processing in efflux-deficient Gram-negative pathogens. Taken together, these data support the targeting of RnpA for antimicrobial development purposes, establish that small-molecule inhibitors of both of the functions of the enzyme can be identified, and lend evidence that RnpA inhibitors may have broad-spectrum antimicrobial activities.


Asunto(s)
Antibacterianos/farmacología , ARN Bacteriano/efectos de los fármacos , ARN de Transferencia/efectos de los fármacos , Ribonucleasa P/antagonistas & inhibidores , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/metabolismo , Línea Celular , Supervivencia Celular/efectos de los fármacos , Ensayos Analíticos de Alto Rendimiento , Humanos , Hidrazinas/farmacología , Pruebas de Sensibilidad Microbiana , Bibliotecas de Moléculas Pequeñas , Tiourea/análogos & derivados , Tiourea/farmacología , Transcripción Genética/efectos de los fármacos
13.
Int J Biol Macromol ; 72: 692-8, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25263468

RESUMEN

The binding sites of breast anticancer drug tamoxifen and its metabolites with tRNA were located by FTIR, CD, UV-visible, and fluorescence spectroscopic methods and molecular modeling. Structural analysis showed that tamoxifen and its metabolites bind tRNA at several binding sites with overall binding constants of K(tam-tRNA) = 5.2 (± 0.6) × 10(4) M(-1), K(4-hydroxytam-tRNA) = 6.5 ( ± 0.5) × 10(4) M(-1) and K(endox-tRNA) = 1.3 (± 0.2) × 10(4) M(-1). The number of binding sites occupied by drug molecules on tRNA were 1 (tamoxifen), 0.8 (4-hydroxitamoxifen) and 1.2 (endoxifen). Docking showed the participation of several nucleobases in drug-tRNA complexes with the free binding energy of -4.31 (tamoxifen), -4.45 (4-hydroxtamoxifen) and -4.38 kcal/mol (endoxifen). The order of binding is 4-hydroxy-tamoxifen > tamoxifen > endoxifen. Drug binding did not alter tRNA conformation from A-family structure, while biopolymer aggregation occurred at high drug concentration.


Asunto(s)
Sitios de Unión , Neoplasias de la Mama/tratamiento farmacológico , ARN de Transferencia/química , Tamoxifeno/química , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Dicroismo Circular , Femenino , Humanos , Conformación de Ácido Nucleico/efectos de los fármacos , ARN de Transferencia/efectos de los fármacos , Espectrometría de Fluorescencia , Espectroscopía Infrarroja por Transformada de Fourier , Tamoxifeno/farmacología
14.
BMC Genomics ; 14: 298, 2013 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-23638709

RESUMEN

BACKGROUND: Small RNAs complex with proteins to mediate a variety of functions in animals and plants. Some small RNAs, particularly miRNAs, circulate in mammalian blood and may carry out a signaling function by entering target cells and modulating gene expression. The subject of this study is a set of circulating 30-33 nt RNAs that are processed derivatives of the 5' ends of a small subset of tRNA genes, and closely resemble cellular tRNA derivatives (tRFs, tiRNAs, half-tRNAs, 5' tRNA halves) previously shown to inhibit translation initiation in response to stress in cultured cells. RESULTS: In sequencing small RNAs extracted from mouse serum, we identified abundant 5' tRNA halves derived from a small subset of tRNAs, implying that they are produced by tRNA type-specific biogenesis and/or release. The 5' tRNA halves are not in exosomes or microvesicles, but circulate as particles of 100-300 kDa. The size of these particles suggest that the 5' tRNA halves are a component of a macromolecular complex; this is supported by the loss of 5' tRNA halves from serum or plasma treated with EDTA, a chelating agent, but their retention in plasma anticoagulated with heparin or citrate. A survey of somatic tissues reveals that 5' tRNA halves are concentrated within blood cells and hematopoietic tissues, but scant in other tissues, suggesting that they may be produced by blood cells. Serum levels of specific subtypes of 5' tRNA halves change markedly with age, either up or down, and these changes can be prevented by calorie restriction. CONCLUSIONS: We demonstrate that 5' tRNA halves circulate in the blood in a stable form, most likely as part of a nucleoprotein complex, and their serum levels are subject to regulation by age and calorie restriction. They may be produced by blood cells, but their cellular targets are not yet known. The characteristics of these circulating molecules, and their known function in suppression of translation initiation, suggest that they are a novel form of signaling molecule.


Asunto(s)
Envejecimiento/genética , Células Sanguíneas/metabolismo , Restricción Calórica , ARN de Transferencia/sangre , ARN de Transferencia/genética , Animales , Ácido Edético/farmacología , Masculino , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Nucleoproteínas/sangre , Iniciación de la Cadena Peptídica Traduccional/efectos de los fármacos , ARN de Transferencia/efectos de los fármacos , Distribución Tisular
15.
RNA ; 19(2): 158-66, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23249745

RESUMEN

In the absence of elongation factor EF-G, ribosomes undergo spontaneous, thermally driven fluctuation between the pre-translocation (classical) and intermediate (hybrid) states of translocation. These fluctuations do not result in productive mRNA translocation. Extending previous findings that the antibiotic sparsomycin induces translocation, we identify additional peptidyl transferase inhibitors that trigger productive mRNA translocation. We find that antibiotics that bind the peptidyl transferase A site induce mRNA translocation, whereas those that do not occupy the A site fail to induce translocation. Using single-molecule FRET, we show that translocation-inducing antibiotics do not accelerate intersubunit rotation, but act solely by converting the intrinsic, thermally driven dynamics of the ribosome into translocation. Our results support the idea that the ribosome is a Brownian ratchet machine, whose intrinsic dynamics can be rectified into unidirectional translocation by ligand binding.


Asunto(s)
Antibacterianos/farmacología , Escherichia coli/efectos de los fármacos , Biosíntesis de Proteínas/efectos de los fármacos , Transporte de ARN/efectos de los fármacos , ARN Mensajero/efectos de los fármacos , Subunidades Ribosómicas Grandes Bacterianas/efectos de los fármacos , Antibacterianos/metabolismo , Cloranfenicol/metabolismo , Cloranfenicol/farmacología , Clindamicina/metabolismo , Clindamicina/farmacología , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/efectos de los fármacos , Proteínas de Escherichia coli/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Lincomicina/metabolismo , Lincomicina/farmacología , Factor G de Elongación Peptídica/efectos de los fármacos , Factor G de Elongación Peptídica/metabolismo , Peptidil Transferasas/efectos de los fármacos , Peptidil Transferasas/metabolismo , ARN Bacteriano/efectos de los fármacos , ARN Bacteriano/metabolismo , ARN Mensajero/metabolismo , ARN de Transferencia/efectos de los fármacos , ARN de Transferencia/metabolismo , Subunidades Ribosómicas Grandes Bacterianas/metabolismo , Esparsomicina/metabolismo , Esparsomicina/farmacología
16.
Biochemistry ; 49(45): 9732-8, 2010 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-20886842

RESUMEN

Viomycin belongs to the tuberactinomycin family of antibiotics against tuberculosis. However, its inhibition mechanism remains elusive. Although it is clear that viomycin inhibits the ribosome intersubunit ratcheting, there are contradictory reports about whether the antibiotic viomycin stabilizes the tRNA hybrid or classical state. By using a single-molecule FRET method to directly observe the tRNA dynamics relative to ribosomal protein L27, we have found that viomycin trapped the hybrid state within certain ribosome subgroups but did not significantly suppress the tRNA dynamics. The persistent fluctuation of tRNA implied that tRNA motions were decoupled from the ribosome intersubunit ratcheting. Viomycin also promoted peptidyl-tRNA fluctuation in the posttranslocation complex, implying that, in addition to acylated P-site tRNA, the decoding center also played an important role of ribosome locking after translocation. Therefore, viomycin inhibits translocation by trapping the hybrid state in the pretranslocation complex and disturbing the stability of posttranslocation complex. Our results imply that ribosome translocation is possibly a synergistic process of multiple decoupled local dynamics.


Asunto(s)
Ribosomas/efectos de los fármacos , Viomicina/farmacología , Transporte Biológico/efectos de los fármacos , Transferencia Resonante de Energía de Fluorescencia/métodos , Oligopéptidos/biosíntesis , Oligopéptidos/metabolismo , Factor G de Elongación Peptídica/genética , Factor G de Elongación Peptídica/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos , Transporte de Proteínas , ARN Mensajero/genética , ARN de Transferencia/efectos de los fármacos , ARN de Transferencia/genética , Ribosomas/genética , Ribosomas/metabolismo , Translocación Genética/efectos de los fármacos
17.
Bioorg Med Chem Lett ; 18(12): 3541-4, 2008 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-18502126

RESUMEN

The T box transcription antitermination system is a riboswitch found primarily in Gram-positive bacteria which monitors the aminoacylation of the cognate tRNA and regulates a variety of amino acid-related genes. Novel 4,5-disubstituted oxazolidinones were identified as high affinity RNA molecular effectors that modulate the transcription antitermination function of the T box riboswitch.


Asunto(s)
Oxazolidinonas/química , ARN Bacteriano/efectos de los fármacos , ARN de Transferencia/efectos de los fármacos , Antibacterianos/síntesis química , Antibacterianos/química , Antibacterianos/farmacología , Bacillus subtilis/genética , Diseño de Fármacos , Conformación Molecular , Oxazolidinonas/síntesis química , Oxazolidinonas/farmacología , ARN Bacteriano/genética , ARN de Transferencia/genética , Estereoisomerismo , Regiones Terminadoras Genéticas/efectos de los fármacos , Regiones Terminadoras Genéticas/genética , Transcripción Genética/efectos de los fármacos , Transcripción Genética/genética
18.
Nucleic Acids Res ; 36(5): 1654-64, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18263620

RESUMEN

The selective and potent inhibition of mitochondrial translation in Saccharomyces cerevisiae by pentamidine suggests a novel antimicrobial action for this drug. Electrophoresis mobility shift assay, T1 ribonuclease footprinting, hydroxyl radical footprinting and isothermal titration calorimetry collectively demonstrated that pentamidine non-specifically binds to two distinct classes of sites on tRNA. The binding was driven by favorable entropy changes indicative of a large hydrophobic interaction, suggesting that the aromatic rings of pentamidine are inserted into the stacked base pairs of tRNA helices. Pentamidine binding disrupts the tRNA secondary structure and masks the anticodon loop in the tertiary structure. Consistently, we showed that pentamidine specifically inhibits tRNA aminoacylation but not the cognate amino acid adenylation. Pentamidine inhibited protein translation in vitro with an EC(50) equivalent to that binds to tRNA and inhibits tRNA aminoacylation in vitro, but drastically higher than that inhibits translation in vivo, supporting the established notion that the antimicrobial activity of pentamidine is largely due to its selective accumulation by the pathogen rather than by the host cell. Therefore, interrupting tRNA aminoacylation by the entropy-driven non-specific binding is an important mechanism of pentamidine in inhibiting protein translation, providing new insights into the development of antimicrobial drugs.


Asunto(s)
Aminoacilación/efectos de los fármacos , Antiinfecciosos/química , Pentamidina/química , Inhibidores de la Síntesis de la Proteína/química , ARN de Transferencia/efectos de los fármacos , Antiinfecciosos/farmacología , Anticodón/química , Secuencia de Bases , Interacciones Hidrofóbicas e Hidrofílicas , Datos de Secuencia Molecular , Conformación de Ácido Nucleico/efectos de los fármacos , Pentamidina/farmacología , Biosíntesis de Proteínas/efectos de los fármacos , Inhibidores de la Síntesis de la Proteína/farmacología , ARN de Transferencia/química , ARN de Transferencia de Leucina/química , ARN de Transferencia de Leucina/efectos de los fármacos
19.
Biochem Soc Trans ; 35(Pt 6): 1533-7, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18031261

RESUMEN

Growth inhibition of Saccharomyces cerevisiae by the plasmid-encoded trimeric (alphabetagamma) zymocin toxin from dairy yeast, Kluyveromyces lactis, depends on a multistep response pathway in budding yeast. Following early processes that mediate cell-surface contact by the chitinase alpha-subunit of zymocin, later steps enable import of the gamma-toxin tRNase subunit and cleavage of target tRNAs that carry modified U34 (wobble uridine) bases. With the emergence of zymocin-like toxins, continued zymocin research is expected to yield new insights into the evolution of yeast pathosystems and their lethal modes of action.


Asunto(s)
Micotoxinas/farmacología , Saccharomyces cerevisiae/efectos de los fármacos , Factores Asesinos de Levadura , ARN de Transferencia/efectos de los fármacos , ARN de Transferencia/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo
20.
RNA ; 13(12): 2091-7, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17951333

RESUMEN

Ribosome-stimulated hydrolysis of guanosine-5'-triphosphate (GTP) by guanosine triphosphatase (GTPase) translation factors drives protein synthesis by the ribosome. Allosteric coupling of GTP hydrolysis by elongation factor Tu (EF-Tu) at the ribosomal GTPase center to messenger RNA (mRNA) codon:aminoacyl-transfer RNA (aa-tRNA) anticodon recognition at the ribosomal decoding site is essential for accurate and rapid aa-tRNA selection. Here we use single-molecule methods to investigate the mechanism of action of the antibiotic thiostrepton and show that the GTPase center of the ribosome has at least two discrete functions during aa-tRNA selection: binding of EF-Tu(GTP) and stimulation of GTP hydrolysis by the factor. We separate these two functions of the GTPase center and assign each to distinct, conserved structural regions of the ribosome. The data provide a specific model for the coupling between the decoding site and the GTPase center during aa-tRNA selection as well as a general mechanistic model for ribosome-stimulated GTP hydrolysis by GTPase translation factors.


Asunto(s)
ARN Mensajero/genética , ARN de Transferencia/genética , Ribosomas/fisiología , Tioestreptona/farmacología , Antibacterianos/farmacología , GTP Fosfohidrolasas/metabolismo , Guanosina Trifosfato/metabolismo , Modelos Moleculares , Biología Molecular , Conformación de Ácido Nucleico , Factor Tu de Elongación Peptídica/efectos de los fármacos , Factor Tu de Elongación Peptídica/metabolismo , ARN de Transferencia/efectos de los fármacos , Ribosomas/efectos de los fármacos , Espectrometría de Fluorescencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...