Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 173
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(19): 12005-12020, 2024 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-39217469

RESUMEN

The efficiency of translation termination is determined by the nature of the stop codon as well as its context. In eukaryotes, recognition of the A-site stop codon and release of the polypeptide are mediated by release factors eRF1 and eRF3, respectively. Translation termination is modulated by other factors which either directly interact with release factors or bind to the E-site and modulate the activity of the peptidyl transferase center. Previous studies suggested that the Saccharomyces cerevisiae ABCF ATPase New1 is involved in translation termination and/or ribosome recycling, however, the exact function remained unclear. Here, we have applied 5PSeq, single-particle cryo-EM and readthrough reporter assays to provide insight into the biological function of New1. We show that the lack of New1 results in ribosomal stalling at stop codons preceded by a lysine or arginine codon and that the stalling is not defined by the nature of the C-terminal amino acid but rather by the identity of the tRNA isoacceptor in the P-site. Collectively, our results suggest that translation termination is inefficient when ribosomes have specific tRNA isoacceptors in the P-site and that the recruitment of New1 rescues ribosomes at these problematic termination contexts.


Asunto(s)
Codón de Terminación , Terminación de la Cadena Péptídica Traduccional , ARN de Transferencia de Arginina , ARN de Transferencia de Lisina , Ribosomas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ribosomas/metabolismo , ARN de Transferencia de Arginina/metabolismo , ARN de Transferencia de Arginina/genética , ARN de Transferencia de Arginina/química , ARN de Transferencia de Lisina/metabolismo , ARN de Transferencia de Lisina/genética , ARN de Transferencia de Lisina/química , Transportadoras de Casetes de Unión a ATP/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Microscopía por Crioelectrón , Factores de Terminación de Péptidos/metabolismo , Factores de Terminación de Péptidos/genética , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/genética , ARN Helicasas
2.
Nat Commun ; 15(1): 6350, 2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39068213

RESUMEN

The arginyl-transferase ATE1 is a tRNA-dependent enzyme that covalently attaches an arginine molecule to a protein substrate. Conserved from yeast to humans, ATE1 deficiency in mice correlates with defects in cardiovascular development and angiogenesis and results in embryonic lethality, while conditional knockouts exhibit reproductive, developmental, and neurological deficiencies. Despite the recent revelation of the tRNA binding mechanism and the catalytic cycle of yeast ATE1, the structure-function relationship of ATE1 in higher organisms is not well understood. In this study, we present the three-dimensional structure of human ATE1 in an apo-state and in complex with its tRNA cofactor and a peptide substrate. In contrast to its yeast counterpart, human ATE1 forms a symmetric homodimer, which dissociates upon binding of a substrate. Furthermore, human ATE1 includes a unique and extended loop that wraps around tRNAArg, creating extensive contacts with the T-arm of the tRNA cofactor. Substituting key residues identified in the substrate binding site of ATE1 abolishes enzymatic activity and results in the accumulation of ATE1 substrates in cells.


Asunto(s)
Aminoaciltransferasas , Multimerización de Proteína , Humanos , Aminoaciltransferasas/metabolismo , Aminoaciltransferasas/genética , Aminoaciltransferasas/química , ARN de Transferencia/metabolismo , Sitios de Unión , ARN de Transferencia de Arginina/metabolismo , ARN de Transferencia de Arginina/genética , ARN de Transferencia de Arginina/química , Modelos Moleculares , Unión Proteica , Animales , Ratones , Células HEK293
3.
Methods ; 229: 94-107, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38834165

RESUMEN

In this report, non-isomerisable analogs of arginine tRNA (Arg-triazole-tRNA) have been synthesized as tools to study tRNA-dependent aminoacyl-transferases. The synthesis involves the incorporation of 1,4 substituted-1,2,3 triazole ring to mimic the ester bond that connects the amino acid to the terminal adenosine in the natural substrate. The synthetic procedure includes (i) a coupling between 2'- or 3'-azido-adenosine derivatives and a cytidine phosphoramidite to access dinucleotide molecules, (ii) Cu-catalyzed cycloaddition reactions between 2'- or 3'-azido dinucleotide in the presence of an alkyne molecule mimicking the arginine, providing the corresponding Arg-triazole-dinucleotides, (iii) enzymatic phosphorylation of the 5'-end extremity of the Arg-triazole-dinucleotides with a polynucleotide kinase, and (iv) enzymatic ligation of the 5'-phosphorylated dinucleotides with a 23-nt RNA micro helix that mimics the acceptor arm of arg-tRNA or with a full tRNAarg. Characterization of nucleoside and nucleotide compounds involved MS spectrometry, 1H, 13C and 31P NMR analysis. This strategy allows to obtain the pair of the two stable regioisomers of arg-tRNA analogs (2' and 3') which are instrumental to explore the regiospecificity of arginyl transferases enzyme. In our study, a first binding assay of the arg-tRNA micro helix with the Arginyl-tRNA-protein transferase 1 (ATE1) was performed by gel shift assays.


Asunto(s)
Cobre , Reacción de Cicloadición , Catálisis , Cobre/química , Reacción de Cicloadición/métodos , Arginina/química , Arginina/análogos & derivados , ARN de Transferencia de Arginina/química , ARN de Transferencia de Arginina/genética , ARN de Transferencia de Arginina/metabolismo , Fosforilación , Triazoles/química , Triazoles/síntesis química , Estereoisomerismo , Adenosina/análogos & derivados , Adenosina/química , Aminoaciltransferasas/metabolismo , Aminoaciltransferasas/química , Aminoaciltransferasas/genética
4.
Methods Mol Biol ; 2620: 93-99, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37010753

RESUMEN

This chapter describes the preparation of tRNAArg by in vitro transcription. tRNA produced by this method can be efficiently utilized for in vitro arginylation assays, following aminoacylation with Arg-tRNA synthetase, either directly during the arginylation reaction or separately to produce the purified preparation of Arg-tRNAArg. tRNA charging is described in other chapters of this book.


Asunto(s)
Arginino-ARNt Ligasa , ARN de Transferencia de Arginina , ARN de Transferencia de Arginina/genética , ARN de Transferencia de Arginina/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Arginino-ARNt Ligasa/genética , Arginino-ARNt Ligasa/metabolismo , Aminoacilación de ARN de Transferencia
5.
Methods Mol Biol ; 2620: 107-111, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37010755

RESUMEN

This chapter describes the preparation of pre-charged Arg-tRNA that can be used in arginylation reaction. While in a typical arginylation reaction arginyl-tRNA synthetase (RARS) is normally included as a component of the reaction and continually charges tRNA during arginylation, it is sometimes necessary to separate the charging and the arginylation step, in order to perform each reaction under controlled conditions, e.g., for measuring the kinetics or determining the effect of different compounds and chemicals on the reaction. In such cases, tRNAArg can be pre-charged with Arg and purified away from the RARS enzyme prior to arginylation.


Asunto(s)
Aminoacil-ARNt Sintetasas , Arginino-ARNt Ligasa , Arginino-ARNt Ligasa/química , Arginino-ARNt Ligasa/genética , Arginino-ARNt Ligasa/metabolismo , ARN de Transferencia de Arginina/química , ARN de Transferencia de Arginina/genética , ARN de Transferencia de Arginina/metabolismo , Aminoacilación , ARN de Transferencia/genética , Aminoacilación de ARN de Transferencia , Cinética , Aminoacil-ARNt Sintetasas/metabolismo
6.
Methods Mol Biol ; 2620: 263-271, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37010769

RESUMEN

Posttranslational protein arginylation catalyzed by arginyl transferases is a mechanism to regulate multiple physiological processes. This protein arginylation reaction uses a charged Arg-tRNAArg as the donor of arginine (Arg). The inherent instability of the ester linkage of the arginyl group to the tRNA, which is sensitive to hydrolysis at the physiological pH, makes it difficult to obtain structural information on how the arginyl transfer reaction is catalyzed. Here, we describe a methodology to synthesize stably charged Arg-tRNAArg that would facilitate structural analysis. In the stably charged Arg-tRNAArg, the ester linkage is replaced with an amide linkage, which is resistant to hydrolysis even at alkaline pH.


Asunto(s)
Arginino-ARNt Ligasa , Arginina , Arginina/metabolismo , Arginino-ARNt Ligasa/química , Arginino-ARNt Ligasa/genética , Arginino-ARNt Ligasa/metabolismo , ARN de Transferencia de Arginina/química , ARN de Transferencia de Arginina/genética , ARN de Transferencia de Arginina/metabolismo , Unión Proteica , ARN de Transferencia/metabolismo
7.
FEBS J ; 290(13): 3480-3489, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36806932

RESUMEN

The CGA codon is a rare codon in Saccharomyces cerevisiae and is known to be inefficiently decoded by wobble pairing with Arg-tRNA(ICG). The tRNAArg (ICG) is post-transcriptionally edited from tRNAArg (ACG) by the anticodon first adenosine deamination enzyme Tad2/Tad3 complex. Experimental consecutive CGA codons cause ribosome stalling to result in the reduction of the encoding protein product. In this study, the additional supply of tRNAArg (ACG) genes that produce decoding Arg-tRNA(ICG) promoted the product level from the CGA12-luc reporter, revealing that the product reduction is essentially due to inefficient decoding and deficiency in the tRNA supply. The mature tRNAArg (ICG) and the precursor tRNAArg (ACG) ratios examined for cellular tRNA fraction revealed that the tRNAArg (ICG) ratio is maintained at less than 30% and is responsive to the Tad2/Tad3 expression level.


Asunto(s)
ARN de Transferencia de Arginina , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , ARN de Transferencia de Arginina/genética , ARN de Transferencia de Arginina/metabolismo , Codón/genética , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Anticodón/genética , Anticodón/metabolismo
8.
Int J Mol Sci ; 23(17)2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-36077558

RESUMEN

Protein arginylation, mediated by arginyltransferase ATE1, is a post-translational modification of emerging biological importance that consists of transfer of the amino acid Arg to protein and peptide substrates. ATE1 utilizes charged tRNAArg as the donor of the arginyl group, which depends on the activity of Arg-tRNA synthetases (RARS) and is also utilized in translation. The mechanisms that regulate the functional balance among ATE1, RARS and translation are unknown. Here, we addressed the question of how these two enzymes can partition Arg-tRNAArg to functionally distinct pathways using an intracellular arginylation sensor in cell lines with overexpression or deletion of ATE1 and RARS isoforms. We found that arginylation levels depend on the physiological state of the cells but are not directly affected by translation activity or the availability of RARS isoforms. However, displacement of RARS from the multi-synthetase complex leads to an increase in intracellular arginylation independently of RARS enzymatic activity. This effect is accompanied by ATE1's redistribution into the cytosol. Our results provide the first comprehensive analysis of the interdependence among translation, arginyl-tRNA synthesis and arginylation.


Asunto(s)
Aminoaciltransferasas , Arginino-ARNt Ligasa , Aminoaciltransferasas/metabolismo , Arginina/metabolismo , Arginino-ARNt Ligasa/química , Arginino-ARNt Ligasa/genética , Arginino-ARNt Ligasa/metabolismo , Procesamiento Proteico-Postraduccional , ARN de Transferencia de Arginina/genética , ARN de Transferencia de Arginina/metabolismo
9.
RNA Biol ; 18(8): 1193-1205, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33211605

RESUMEN

Colicin D is a plasmid-encoded bacteriocin that specifically cleaves tRNAArg of sensitive Escherichia coli cells. E. coli has four isoaccepting tRNAArgs; the cleavage occurs at the 3' end of anticodon-loop, leading to translation impairment in the sensitive cells. tRNAs form a common L-shaped structure and have many conserved nucleotides that limit tRNA identity elements. How colicin D selects tRNAArgs from the tRNA pool of sensitive E. coli cells is therefore intriguing. Here, we reveal the recognition mechanism of colicin D via biochemical analyses as well as structural modelling. Colicin D recognizes tRNAArgICG, the most abundant species of E. coli tRNAArgs, at its anticodon-loop and D-arm, and selects it as the most preferred substrate by distinguishing its anticodon-loop sequence from that of others. It has been assumed that translation impairment is caused by a decrease in intact tRNA molecules due to cleavage. However, we found that intracellular levels of intact tRNAArgICG do not determine the viability of sensitive cells after such cleavage; rather, an accumulation of cleaved ones does. Cleaved tRNAArgICG dominant-negatively impairs translation in vitro. Moreover, we revealed that EF-Tu, which is required for the delivery of tRNAs, does not compete with colicin D for binding tRNAArgICG, which is consistent with our structural model. Finally, elevation of cleaved tRNAArgICG level decreases the viability of sensitive cells. These results suggest that cleaved tRNAArgICG transiently occupies ribosomal A-site in an EF-Tu-dependent manner, leading to translation impairment. The strategy should also be applicable to other tRNA-targeting RNases, as they, too, recognize anticodon-loops.Abbreviations: mnm5U: 5-methylaminomethyluridine; mcm5s2U: 5-methoxycarbonylmethyl-2-thiouridine.


Asunto(s)
Bacteriocinas/química , Colicinas/química , Escherichia coli/metabolismo , Biosíntesis de Proteínas , ARN Bacteriano/química , ARN de Transferencia de Arginina/química , Ribosomas/metabolismo , Anticodón/química , Anticodón/genética , Anticodón/metabolismo , Bacteriocinas/genética , Bacteriocinas/metabolismo , Emparejamiento Base , Sitios de Unión , Colicinas/genética , Colicinas/metabolismo , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Simulación del Acoplamiento Molecular , Conformación de Ácido Nucleico , Factor Tu de Elongación Peptídica/genética , Factor Tu de Elongación Peptídica/metabolismo , Plásmidos/química , Plásmidos/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN de Transferencia de Arginina/genética , ARN de Transferencia de Arginina/metabolismo , Ribosomas/genética , Especificidad por Sustrato , Tiouridina/análogos & derivados , Tiouridina/metabolismo , Uridina/análogos & derivados , Uridina/metabolismo
10.
Neuron ; 108(1): 193-208.e9, 2020 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-32853550

RESUMEN

The mammalian genome has hundreds of nuclear-encoded tRNAs, but the contribution of individual tRNA genes to cellular and organismal function remains unknown. Here, we demonstrate that mutations in a neuronally enriched arginine tRNA, n-Tr20, increased seizure threshold and altered synaptic transmission. n-Tr20 expression also modulated seizures caused by an epilepsy-linked mutation in Gabrg2, a gene encoding a GABAA receptor subunit. Loss of n-Tr20 altered translation initiation by activating the integrated stress response and suppressing mTOR signaling, the latter of which may contribute to altered neurotransmission in mutant mice. Deletion of a highly expressed isoleucine tRNA similarly altered these signaling pathways in the brain, suggesting that regulation of translation initiation is a conserved response to tRNA loss. Our data indicate that loss of a single member of a tRNA family results in multiple cellular phenotypes, highlighting the disease-causing potential of tRNA mutations.


Asunto(s)
Neuronas/metabolismo , ARN de Transferencia de Arginina/genética , Convulsiones/genética , Transmisión Sináptica/genética , Animales , Electrochoque/efectos adversos , Antagonistas de Receptores de GABA-A/efectos adversos , Ratones , Pentilenotetrazol/efectos adversos , Iniciación de la Cadena Peptídica Traduccional/genética , ARN de Transferencia de Isoleucina/genética , RNA-Seq , Receptores de GABA-A/genética , Convulsiones/inducido químicamente , Convulsiones/etiología , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
11.
PLoS Genet ; 16(6): e1008836, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32479508

RESUMEN

Codon usage bias is a universal feature of all genomes and plays an important role in regulating protein expression levels. Modification of adenosine to inosine at the tRNA anticodon wobble position (I34) by adenosine deaminases (ADATs) is observed in all eukaryotes and has been proposed to explain the correlation between codon usage and tRNA pool. However, how the tRNA pool is affected by I34 modification to influence codon usage-dependent gene expression is unclear. Using Neurospora crassa as a model system, by combining molecular, biochemical and bioinformatics analyses, we show that silencing of adat2 expression severely impaired the I34 modification levels for the ADAT-related tRNAs, resulting in major ADAT-related tRNA profile changes and reprogramming of translation elongation kinetics on ADAT-related codons. adat2 silencing also caused genome-wide codon usage-biased ribosome pausing on mRNAs and proteome landscape changes, leading to selective translational repression or induction of different mRNAs. The induced expression of CPC-1, the Neurospora ortholog of yeast GCN4p, mediates the transcriptional response after adat2 silencing and amino acid starvation. Together, our results demonstrate that the tRNA I34 modification by ADAT plays a major role in driving codon usage-biased translation to shape proteome landscape.


Asunto(s)
Anticodón/genética , Uso de Codones , Extensión de la Cadena Peptídica de Translación/genética , Proteoma/genética , ARN de Transferencia de Arginina/genética , Adenosina/metabolismo , Adenosina Desaminasa/metabolismo , Anticodón/metabolismo , Biología Computacional , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Inosina/metabolismo , Neurospora crassa/genética , ARN de Transferencia de Arginina/metabolismo , Ribosomas/metabolismo
12.
Nat Commun ; 11(1): 2510, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32427860

RESUMEN

In mammals, a subset of arginine tRNA isoacceptors are methylated in the anticodon loop by the METTL2 methyltransferase to form the 3-methylcytosine (m3C) modification. However, the mechanism by which METTL2 identifies specific tRNA arginine species for m3C formation as well as the biological role of m3C in mammals is unknown. Here, we show that human METTL2 forms a complex with DALR anticodon binding domain containing 3 (DALRD3) protein to recognize particular arginine tRNAs destined for m3C modification. DALRD3-deficient human cells exhibit nearly complete loss of the m3C modification in tRNA-Arg species. Notably, we identify a homozygous nonsense mutation in the DALRD3 gene that impairs m3C formation in human patients exhibiting developmental delay and early-onset epileptic encephalopathy. These findings uncover an unexpected function for the DALRD3 protein in the targeting of distinct arginine tRNAs for m3C modification and suggest a crucial biological role for DALRD3-dependent tRNA modification in proper neurological development.


Asunto(s)
Citosina/análogos & derivados , Epilepsia/metabolismo , ARN de Transferencia de Arginina/metabolismo , ARNt Metiltransferasas/metabolismo , Edad de Inicio , Línea Celular , Citosina/metabolismo , Epilepsia/genética , Humanos , Conformación de Ácido Nucleico , Unión Proteica , ARN de Transferencia de Arginina/química , ARN de Transferencia de Arginina/genética , ARNt Metiltransferasas/genética
14.
IUBMB Life ; 72(2): 266-274, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31509345

RESUMEN

In Escherichia coli, the expression of heterologous genes for the production of recombinant proteins can be challenging due to the codon bias of different organisms. The rare codons AGG and AGA are among the rarest in E. coli. In this work, by using the human gene RioK2 as case study, we found that the presence of consecutive AGG-AGA led to a premature stop, which may be caused by an event of -1 frameshift. We found that translational problems caused by consecutive AGG-AGA are sequence dependent, in particular, in sequences that contain multiple rare AGG or AGA codons elsewhere. Translational problems can be alleviated by different strategies, including codon harmonization, codon optimization, or by substituting the consecutive AGG-AGA codons by more frequent arginine codons. Overall, our results furthered our understanding about the relationship between consecutive rare codons and translational problems. Such information will aid the design of DNA sequence for the production of recombinant proteins.


Asunto(s)
Codón , Escherichia coli/metabolismo , Biosíntesis de Proteínas , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Mensajero/metabolismo , ARN de Transferencia de Arginina/genética , Proteínas Recombinantes/metabolismo , Escherichia coli/genética , Humanos , Proteínas Serina-Treonina Quinasas/genética , ARN Mensajero/genética , Proteínas Recombinantes/genética , Ribosomas/metabolismo
15.
Acta Neurol Belg ; 120(3): 573-580, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30430429

RESUMEN

Non-dystrophic myotonias (NDM) are rare diseases caused by defects in skeletal muscle chloride and sodium ion channels. It is well established that high-energy consuming tissues such as muscular and nervous systems are exclusively dependent on the ATP generation by mitochondria. The mitochondrial dysfunction, which is caused by mitochondrial DNA mutations, played an important role in the pathogenesis of non-dystrophic myotonias. The purpose of this study is to identify mitochondrial tRNA mutations in non-dystrophic myotonias patients. In this study, 45 Iranian patients with non-dystrophic myotonia were investigated for intracellular ATP content and the mutation screening in all the mitochondrial tRNA genes by DNA sequencing. Our findings showed that lymphocyte intracellular ATP is significantly decreased in NDM patients compared with control subjects (p = 0.001). We found nine mutations in mitochondrial tRNA genes, including m.4454 T > C (in the TψC loop of tRNAMet), m.5568 A > G (tRNATrp), m.5794 T > C (in the anticodon loop of tRNACys), novel m.10438 A > T, and m.10462 T > C (in anticodon loop and ACC stem of tRNAArg), m.12308 A > G (tRNALeu(CUN)) and m.15907 A > G, m.15924 A > G, and m.15928 G > A (in the anticodon stem of tRNAThr) in 31 NDM patients. These results suggest that novel m.10438 A > T mutation is involved in NDM patients and reinforces the significant association between this mutation in mitochondrial tRNAArg Gene and NDM patients (p = 0.008).


Asunto(s)
Heteroplasmia/genética , Miotonía/genética , ARN Mitocondrial/genética , ARN de Transferencia de Arginina/genética , Humanos , Irán , Mutación
16.
RNA ; 25(5): 607-619, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30737359

RESUMEN

Adenosine deaminase acting on transfer RNA (ADAT) is an essential eukaryotic enzyme that catalyzes the deamination of adenosine to inosine at the first position of tRNA anticodons. Mammalian ADATs modify eight different tRNAs, having increased their substrate range from a bacterial ancestor that likely deaminated exclusively tRNAArg Here we investigate the recognition mechanisms of tRNAArg and tRNAAla by human ADAT to shed light on the process of substrate expansion that took place during the evolution of the enzyme. We show that tRNA recognition by human ADAT does not depend on conserved identity elements, but on the overall structural features of tRNA. We find that ancestral-like interactions are conserved for tRNAArg, while eukaryote-specific substrates use alternative mechanisms. These recognition studies show that human ADAT can be inhibited by tRNA fragments in vitro, including naturally occurring fragments involved in important regulatory pathways.


Asunto(s)
Adenosina Desaminasa/metabolismo , Anticodón/química , ARN de Transferencia de Alanina/química , ARN de Transferencia de Arginina/química , Adenosina/metabolismo , Adenosina Desaminasa/genética , Anticodón/genética , Anticodón/metabolismo , Secuencia de Bases , Desaminación , Evolución Molecular , Expresión Génica , Humanos , Inosina/metabolismo , Conformación de Ácido Nucleico , ARN de Transferencia de Alanina/genética , ARN de Transferencia de Alanina/metabolismo , ARN de Transferencia de Arginina/genética , ARN de Transferencia de Arginina/metabolismo , Alineación de Secuencia , Especificidad por Sustrato
17.
Biochemistry ; 57(39): 5641-5647, 2018 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-30199619

RESUMEN

Inosine at the "wobble" position (I34) is one of the few essential posttranscriptional modifications in tRNAs (tRNAs). It results from the deamination of adenosine and occurs in bacteria on tRNAArgACG and in eukarya on six or seven additional tRNA substrates. Because inosine is structurally a guanosine analogue, reverse transcriptases recognize it as a guanosine. Most methods used to examine the presence of inosine rely on this phenomenon and detect the modified base as a change in the DNA sequence that results from the reverse transcription reaction. These methods, however, cannot always be applied to tRNAs because reverse transcription can be compromised by the presence of other posttranscriptional modifications. Here we present SL-ID (splinted ligation-based inosine detection), a reverse transcription-free method for detecting inosine based on an I34-dependent specific cleavage of tRNAs by endonuclease V, followed by a splinted ligation and polyacrylamide gel electrophoresis analysis. We show that the method can detect I34 on different tRNA substrates and can be applied to total RNA derived from different species, cell types, and tissues. Here we apply the method to solve previous controversies regarding the modification status of mammalian tRNAArgACG.


Asunto(s)
Desoxirribonucleasa IV (Fago T4-Inducido)/química , Electroforesis en Gel de Poliacrilamida/métodos , Inosina/análisis , Oligodesoxirribonucleótidos/química , ARN de Transferencia de Arginina/química , ARN de Transferencia de Valina/química , Animales , Secuencia de Bases , Células HEK293 , Células HeLa , Humanos , Inosina/genética , Ratones , Hibridación de Ácido Nucleico , Oligodesoxirribonucleótidos/genética , ARN de Transferencia de Arginina/genética , ARN de Transferencia de Valina/genética
18.
RNA Biol ; 15(4-5): 500-507, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28880718

RESUMEN

The modification of adenosine to inosine at position 34 of tRNA anticodons has a profound impact upon codon-anticodon recognition. In bacteria, I34 is thought to exist only in tRNAArg, while in eukaryotes the modification is present in eight different tRNAs. In eukaryotes, the widespread use of I34 strongly influenced the evolution of genomes in terms of tRNA gene abundance and codon usage. In humans, codon usage indicates that I34 modified tRNAs are preferred for the translation of highly repetitive coding sequences, suggesting that I34 is an important modification for the synthesis of proteins of highly skewed amino acid composition. Here we extend the analysis of distribution of codons that are recognized by I34 containing tRNAs to all phyla known to use this modification. We find that the preference for codons recognized by such tRNAs in genes with highly biased codon compositions is universal among eukaryotes, and we report that, unexpectedly, some bacterial phyla show a similar preference. We demonstrate that the genomes of these bacterial species contain previously undescribed tRNA genes that are potential substrates for deamination at position 34.


Asunto(s)
Codón/química , Cianobacterias/genética , Eucariontes/genética , Firmicutes/genética , Código Genético , Inosina/metabolismo , ARN de Transferencia de Arginina/genética , Adenosina/genética , Adenosina/metabolismo , Aminoácidos/genética , Aminoácidos/metabolismo , Anticodón/química , Anticodón/metabolismo , Evolución Biológica , Codón/metabolismo , Cianobacterias/metabolismo , Eucariontes/metabolismo , Firmicutes/metabolismo , Humanos , Inosina/genética , Biosíntesis de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Transferencia de Arginina/metabolismo , Transcriptoma
19.
Curr Genet ; 64(3): 589-598, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29098364

RESUMEN

The tRNA population reflects the codon bias of the organism and affects the translation of heterologous target mRNA molecules. In this study, Saccharomyces cerevisiae strains with modified levels of rare tRNA were engineered, that allowed efficient generation of recombinant proteins with unfavorable codon usage. We established a novel synthetic tRNA expression cassette and verified functional nonsense suppressor tRNAGlnSCUA generation in a stop codon read-through assay with a modified ß-galactosidase reporter gene. Correlation between altered tRNA and protein level was shown by survival of copper sensitive S. cerevisiae cells in the presence of copper ions by an increased transcription of tRNAArgCCG molecules, recognizing rare codons in a modified CUP1 gene. Genome integration of tRNA expression cassette led to the generation of arginine-tRNA-adapted S. cerevisiae strains, which showed elevated tRNA levels (tRNAArgCCG, tRNAArgGCG and tRNAArgUCG) pairing to rare codons. The modified strain MNY3 revealed a considerably improved monitoring of protein-protein interaction from Aspergillus fumigatus bait and prey sequences in yeast two-hybrid experiments. In future, this principle to overcome limited recombinant protein expression by tRNA adaption of expression strains instead of codon adaption might provide new designer yeast cells for an efficient protein production and for improved genome-wide protein-protein interaction analyses.


Asunto(s)
ARN de Transferencia de Arginina/genética , Saccharomyces cerevisiae/genética , Aspergillus fumigatus/genética , Codón , Codón de Terminación , Genes Fúngicos , ARN de Hongos/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Técnicas del Sistema de Dos Híbridos
20.
J Virol ; 91(11)2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28331090

RESUMEN

P-element-induced wimpy-like (Piwil) proteins restrict the replication of mobile genetic elements in the germ line. They are also expressed in many transformed cell lines. In this study, we discovered that the human Piwil 2 (Hili) protein can also inhibit HIV replication, especially in activated CD4+ T cells that are the preferred target cells for this virus in the infected host. Although resting cells did not express Hili, its expression was rapidly induced following T cell activation. In these cells and transformed cell lines, depletion of Hili increased levels of viral proteins and new viral particles. Further studies revealed that Hili binds to tRNA. Some of the tRNAs represent rare tRNA species, whose codons are overrepresented in the viral genome. Targeting tRNAArg(UCU) with an antisense oligonucleotide replicated effects of Hili and also inhibited HIV replication. Finally, Hili also inhibited the retrotransposition of the endogenous intracysternal A particle (IAP) by a similar mechanism. Thus, Hili joins a list of host proteins that inhibit the replication of HIV and other mobile genetic elements.IMPORTANCE Piwil proteins inhibit the movement of mobile genetic elements in the germ line. In their absence, sperm does not form and male mice are sterile. This inhibition is thought to occur via small Piwi-interacting RNAs (piRNAs). However, in some species and in human somatic cells, Piwil proteins bind primarily to tRNA. In this report, we demonstrate that human Piwil proteins, especially Hili, not only bind to select tRNA species, including rare tRNAs, but also inhibit HIV replication. Importantly, T cell activation induces the expression of Hili in CD4+ T cells. Since Hili also inhibited the movement of an endogenous retrovirus (IAP), our finding shed new light on this intracellular resistance to exogenous and endogenous retroviruses as well as other mobile genetic elements.


Asunto(s)
Proteínas Argonautas/metabolismo , VIH-1/fisiología , Activación de Linfocitos , Replicación Viral , Proteínas Argonautas/deficiencia , Proteínas Argonautas/genética , Proteínas Argonautas/inmunología , Línea Celular , Retrovirus Endógenos/metabolismo , Células HEK293 , VIH-1/genética , Células HeLa , Humanos , Oligonucleótidos Antisentido/genética , Unión Proteica , ARN Interferente Pequeño/metabolismo , ARN de Transferencia/metabolismo , ARN de Transferencia de Arginina/genética , ARN de Transferencia de Arginina/metabolismo , Linfocitos T/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...