Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
RNA ; 21(9): 1672-82, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26194135

RESUMEN

In vitro-transcribed suppressor tRNAs are commonly used in site-specific fluorescence labeling for protein and ribosome-bound nascent chains (RNCs) studies. Here, we describe the production of nonorthogonal Bacillus subtilis tRNA(cys)(Amber) from Escherichia coli, a process that is superior to in vitro transcription in terms of yield, ease of manipulation, and tRNA stability. As cysteinyl-tRNA synthetase was previously shown to aminoacylate tRNA(cys)(Amber) with lower efficiency, multiple tRNA synthetase mutants were designed to optimize aminoacylation. Aminoacylated tRNA was conjugated to a fluorophore to produce BODIPY FL-cysteinyl-tRNA(cys)(Amber), which was used to generate ribosome-bound nascent chains of different lengths with the fluorophore incorporated at various predetermined sites. This tRNA tool may be beneficial in the site-specific labeling of full-length proteins as well as RNCs for biophysical and biological research.


Asunto(s)
Aminoacil-ARNt Sintetasas/metabolismo , Bacillus subtilis/genética , Escherichia coli/genética , ARN de Transferencia de Cisteína/biosíntesis , ARN de Transferencia de Cisteína/química , Aminoacil-ARNt Sintetasas/genética , Sistema Libre de Células , Escherichia coli/metabolismo , Colorantes Fluorescentes/química , Técnicas In Vitro , Modelos Moleculares , Biosíntesis de Proteínas , Estabilidad del ARN , ARN Bacteriano/biosíntesis , ARN Bacteriano/química , ARN Bacteriano/genética , ARN de Transferencia de Cisteína/genética , Aminoacilación de ARN de Transferencia
2.
Methods ; 44(2): 129-38, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18241794

RESUMEN

Here we describe the many applications of acid urea polyacrylamide gel electrophoresis (acid urea PAGE) followed by Northern blot analysis to studies of tRNAs and aminoacyl-tRNA synthetases. Acid urea PAGE allows the electrophoretic separation of different forms of a tRNA, discriminated by changes in bulk, charge, and/or conformation that are brought about by aminoacylation, formylation, or modification of a tRNA. Among the examples described are (i) analysis of the effect of mutations in the Escherichia coli initiator tRNA on its aminoacylation and formylation; (ii) evidence of orthogonality of suppressor tRNAs in mammalian cells and yeast; (iii) analysis of aminoacylation specificity of an archaeal prolyl-tRNA synthetase that can aminoacylate archaeal tRNA(Pro) with cysteine, but does not aminoacylate archaeal tRNA(Cys) with cysteine; (iv) identification and characterization of the AUA-decoding minor tRNA(Ile) in archaea; and (v) evidence that the archaeal minor tRNA(Ile) contains a modified base in the wobble position different from lysidine found in the corresponding eubacterial tRNA.


Asunto(s)
Aminoacil-ARNt Sintetasas/análisis , Electroforesis en Gel de Poliacrilamida/métodos , ARN de Transferencia/análisis , Animales , Archaea/metabolismo , Northern Blotting/métodos , Humanos , Concentración de Iones de Hidrógeno , Lisina/análogos & derivados , Lisina/biosíntesis , Ingeniería de Proteínas/métodos , Nucleósidos de Pirimidina/biosíntesis , ARN Bacteriano/aislamiento & purificación , ARN de Transferencia/aislamiento & purificación , ARN de Transferencia de Cisteína/biosíntesis , ARN de Transferencia de Isoleucina/metabolismo , ARN de Transferencia de Metionina/metabolismo , Urea
3.
Mol Biosyst ; 3(6): 408-18, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17533454

RESUMEN

In nature, ribosomally synthesized proteins can contain at least 22 different amino acids: the 20 common amino acids as well as selenocysteine and pyrrolysine. Each of these amino acids is inserted into proteins codon-specifically via an aminoacyl-transfer RNA (aa-tRNA). In most cases, these aa-tRNAs are biosynthesized directly by a set of highly specific and accurate aminoacyl-tRNA synthetases (aaRSs). However, in some cases aaRSs with relaxed or novel substrate specificities cooperate with other enzymes to generate specific canonical and non-canonical aminoacyl-tRNAs.


Asunto(s)
Aminoacilación de ARN de Transferencia , Aminoacil-ARNt Sintetasas/metabolismo , Aspartato-ARNt Ligasa/metabolismo , Bacterias/enzimología , Aminoacil-ARN de Transferencia/biosíntesis , Aminoacil-ARN de Transferencia/química , Aminoacil-ARN de Transferencia/metabolismo , ARN de Transferencia de Asparagina/biosíntesis , ARN de Transferencia de Asparagina/química , ARN de Transferencia de Cisteína/biosíntesis , ARN de Transferencia de Cisteína/química , ARN de Transferencia de Glutamina/biosíntesis , ARN de Transferencia de Glutamina/química
4.
Proc Natl Acad Sci U S A ; 104(8): 2620-5, 2007 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-17301225

RESUMEN

A number of archaeal organisms generate Cys-tRNA(Cys) in a two-step pathway, first charging phosphoserine (Sep) onto tRNA(Cys) and subsequently converting it to Cys-tRNA(Cys). We have determined, at 3.2-A resolution, the structure of the Methanococcus maripaludis phosphoseryl-tRNA synthetase (SepRS), which catalyzes the first step of this pathway. The structure shows that SepRS is a class II, alpha(4) synthetase whose quaternary structure arrangement of subunits closely resembles that of the heterotetrameric (alphabeta)(2) phenylalanyl-tRNA synthetase (PheRS). Homology modeling of a tRNA complex indicates that, in contrast to PheRS, a single monomer in the SepRS tetramer may recognize both the acceptor terminus and anticodon of a tRNA substrate. Using a complex with tungstate as a marker for the position of the phosphate moiety of Sep, we suggest that SepRS and PheRS bind their respective amino acid substrates in dissimilar orientations by using different residues.


Asunto(s)
Aminoacil-ARNt Sintetasas/química , Methanococcus/química , Methanococcus/enzimología , Fosfoserina/metabolismo , ARN de Transferencia de Cisteína/biosíntesis , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , Difosfatos/metabolismo , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Mutantes/química , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Homología Estructural de Proteína , Thermus thermophilus/enzimología
5.
Nucleic Acids Res ; 23(22): 4591-7, 1995 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-8524647

RESUMEN

We have isolated and sequenced chloroplast (chl) and cytoplasmic (cyt) cysteine tRNAs from Nicotiana rustica. Both tRNAs carry a GCA anticodon but beyond that differ considerably in their nucleotide sequences. One obvious distinction resides in the presence of N6-isopentenyladenosine (i6A) and 1-methylguanosine (m1G) at position 37 in chl and cyt tRNA(Cys) respectively. In order to study the potential suppressor activity of tRNAs(Cys) we used in vitro synthesized zein mRNA transcripts in which an internal UGA stop codon had been placed in either the tobacco rattle virus (TRV)- or tobacco mosaic virus (TMV)-specific codon context. In vitro translation was carried out in a messenger- and tRNA-dependent wheat germ extract. Both tRNA(Cys) isoacceptors stimulate read-through over the UGA stop codon, however, chl tRNA(GCA)Cys is more efficient than the cytoplasmic counterpart. The UGA in the two viral codon contexts is suppressed to about the same extent by either of the two tRNAs(Cys), whereas UGA in the beta-globin context is not recognized at all. The interaction of tRNA(GCA)Cys with UGA requires an unconventional G:A base pair in the wobble position, as postulated earlier for plant tRNA(G psi A)Tyr misreading the UAA stop codon. This is the first case that a cysteine-accepting tRNA has been characterized as a natural UGA suppressor.


Asunto(s)
Cloroplastos/metabolismo , Codón/genética , Nicotiana/metabolismo , Plantas Tóxicas , ARN Mensajero/biosíntesis , ARN de Planta/metabolismo , ARN de Transferencia de Cisteína/metabolismo , Supresión Genética , Secuencia de Aminoácidos , Anticodón , Composición de Base , Secuencia de Bases , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Oligodesoxirribonucleótidos , Virus de Plantas/genética , ARN de Planta/biosíntesis , ARN de Planta/química , ARN de Transferencia de Cisteína/biosíntesis , ARN de Transferencia de Cisteína/química , Virus del Mosaico del Tabaco/genética , Transcripción Genética , Zeína/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...