Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 268
Filtrar
1.
J Biol Chem ; 300(5): 107235, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38552739

RESUMEN

Defects in mitochondrial RNA metabolism have been linked to sensorineural deafness that often occurs as a consequence of damaged or deficient inner ear hair cells. In this report, we investigated the molecular mechanism underlying a deafness-associated tRNAPhe 593T > C mutation that changed a highly conserved uracil to cytosine at position 17 of the DHU-loop. The m.593T > C mutation altered tRNAPhe structure and function, including increased melting temperature, resistance to S1 nuclease-mediated digestion, and conformational changes. The aberrant tRNA metabolism impaired mitochondrial translation, which was especially pronounced by decreases in levels of ND1, ND5, CYTB, CO1, and CO3 harboring higher numbers of phenylalanine. These alterations resulted in aberrant assembly, instability, and reduced activities of respiratory chain enzyme complexes I, III, IV, and intact supercomplexes overall. Furthermore, we found that the m.593T > C mutation caused markedly diminished membrane potential, and increased the production of reactive oxygen species in the mutant cell lines carrying the m.593T > C mutation. These mitochondrial dysfunctions led to the mitochondrial dynamic imbalance via increasing fission with abnormal mitochondrial morphology. Excessive fission impaired the process of autophagy including the initiation phase, formation, and maturation of the autophagosome. In particular, the m.593T > C mutation upregulated the PARKIN-dependent mitophagy pathway. These alterations promoted an intrinsic apoptotic process for the removal of damaged cells. Our findings provide critical insights into the pathophysiology of maternally inherited deafness arising from tRNA mutation-induced defects in mitochondrial and cellular integrity.


Asunto(s)
Sordera , Mitocondrias , ARN de Transferencia de Fenilalanina , Humanos , Autofagia , Sordera/genética , Sordera/metabolismo , Potencial de la Membrana Mitocondrial , Mitocondrias/metabolismo , Mitocondrias/genética , Mitocondrias/patología , Dinámicas Mitocondriales , Mutación , Especies Reactivas de Oxígeno/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , ARN de Transferencia de Fenilalanina/genética
2.
Sci Adv ; 9(23): eadh8502, 2023 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-37285440

RESUMEN

As a defense strategy against viruses or competitors, some microbes use anticodon nucleases (ACNases) to deplete essential tRNAs, effectively halting global protein synthesis. However, this mechanism has not been observed in multicellular eukaryotes. Here, we report that human SAMD9 is an ACNase that specifically cleaves phenylalanine tRNA (tRNAPhe), resulting in codon-specific ribosomal pausing and stress signaling. While SAMD9 ACNase activity is normally latent in cells, it can be activated by poxvirus infection or rendered constitutively active by SAMD9 mutations associated with various human disorders, revealing tRNAPhe depletion as an antiviral mechanism and a pathogenic condition in SAMD9 disorders. We identified the N-terminal effector domain of SAMD9 as the ACNase, with substrate specificity primarily determined by a eukaryotic tRNAPhe-specific 2'-O-methylation at the wobble position, making virtually all eukaryotic tRNAPhe susceptible to SAMD9 cleavage. Notably, the structure and substrate specificity of SAMD9 ACNase differ from known microbial ACNases, suggesting convergent evolution of a common immune defense strategy targeting tRNAs.


Asunto(s)
Anticodón , ARN de Transferencia de Fenilalanina , Humanos , Anticodón/genética , ARN de Transferencia de Fenilalanina/genética , ARN de Transferencia de Fenilalanina/metabolismo , Codón , ARN de Transferencia/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética
3.
J Am Soc Nephrol ; 33(2): 305-325, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34607911

RESUMEN

BACKGROUND: Gitelman syndrome is the most frequent hereditary salt-losing tubulopathy characterized by hypokalemic alkalosis and hypomagnesemia. Gitelman syndrome is caused by biallelic pathogenic variants in SLC12A3, encoding the Na+-Cl- cotransporter (NCC) expressed in the distal convoluted tubule. Pathogenic variants of CLCNKB, HNF1B, FXYD2, or KCNJ10 may result in the same renal phenotype of Gitelman syndrome, as they can lead to reduced NCC activity. For approximately 10 percent of patients with a Gitelman syndrome phenotype, the genotype is unknown. METHODS: We identified mitochondrial DNA (mtDNA) variants in three families with Gitelman-like electrolyte abnormalities, then investigated 156 families for variants in MT-TI and MT-TF, which encode the transfer RNAs for phenylalanine and isoleucine. Mitochondrial respiratory chain function was assessed in patient fibroblasts. Mitochondrial dysfunction was induced in NCC-expressing HEK293 cells to assess the effect on thiazide-sensitive 22Na+ transport. RESULTS: Genetic investigations revealed four mtDNA variants in 13 families: m.591C>T (n=7), m.616T>C (n=1), m.643A>G (n=1) (all in MT-TF), and m.4291T>C (n=4, in MT-TI). Variants were near homoplasmic in affected individuals. All variants were classified as pathogenic, except for m.643A>G, which was classified as a variant of uncertain significance. Importantly, affected members of six families with an MT-TF variant additionally suffered from progressive chronic kidney disease. Dysfunction of oxidative phosphorylation complex IV and reduced maximal mitochondrial respiratory capacity were found in patient fibroblasts. In vitro pharmacological inhibition of complex IV, mimicking the effect of the mtDNA variants, inhibited NCC phosphorylation and NCC-mediated sodium uptake. CONCLUSION: Pathogenic mtDNA variants in MT-TF and MT-TI can cause a Gitelman-like syndrome. Genetic investigation of mtDNA should be considered in patients with unexplained Gitelman syndrome-like tubulopathies.


Asunto(s)
ADN Mitocondrial/genética , Síndrome de Gitelman/genética , Mutación , Adolescente , Adulto , Anciano , Secuencia de Bases , Niño , Preescolar , Femenino , Genotipo , Síndrome de Gitelman/metabolismo , Síndrome de Gitelman/patología , Células HEK293 , Humanos , Lactante , Riñón/metabolismo , Riñón/ultraestructura , Masculino , Persona de Mediana Edad , Mitocondrias/metabolismo , Modelos Biológicos , Conformación de Ácido Nucleico , Linaje , Fenotipo , Polimorfismo de Nucleótido Simple , ARN de Transferencia de Isoleucina/química , ARN de Transferencia de Isoleucina/genética , ARN de Transferencia de Fenilalanina/química , ARN de Transferencia de Fenilalanina/genética , Miembro 3 de la Familia de Transportadores de Soluto 12/genética , Adulto Joven
4.
J Mol Biol ; 433(10): 166942, 2021 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-33744313

RESUMEN

Macrolide antibiotics, such as erythromycin, bind to the nascent peptide exit tunnel (NPET) of the bacterial ribosome and modulate protein synthesis depending on the nascent peptide sequence. Whereas in vitro biochemical and structural methods have been instrumental in dissecting and explaining the molecular details of macrolide-induced peptidyl-tRNA drop-off and ribosome stalling, the dynamic effects of the drugs on ongoing protein synthesis inside live bacterial cells are far less explored. In the present study, we used single-particle tracking of dye-labeled tRNAs to study the kinetics of mRNA translation in the presence of erythromycin, directly inside live Escherichia coli cells. In erythromycin-treated cells, we find that the dwells of elongator tRNAPhe on ribosomes extend significantly, but they occur much more seldom. In contrast, the drug barely affects the ribosome binding events of the initiator tRNAfMet. By overexpressing specific short peptides, we further find context-specific ribosome binding dynamics of tRNAPhe, underscoring the complexity of erythromycin's effect on protein synthesis in bacterial cells.


Asunto(s)
Antibacterianos/farmacología , Eritromicina/farmacología , Escherichia coli/efectos de los fármacos , Biosíntesis de Proteínas/efectos de los fármacos , Inhibidores de la Síntesis de la Proteína/farmacología , Ribosomas/efectos de los fármacos , Secuencia de Aminoácidos , Antibacterianos/metabolismo , Carbocianinas/química , Codón , Eritromicina/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Colorantes Fluorescentes/química , Péptidos/química , Péptidos/genética , Péptidos/metabolismo , Unión Proteica , Inhibidores de la Síntesis de la Proteína/metabolismo , ARN Bacteriano/química , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN de Transferencia de Metionina/química , ARN de Transferencia de Metionina/genética , ARN de Transferencia de Metionina/metabolismo , ARN de Transferencia de Fenilalanina/química , ARN de Transferencia de Fenilalanina/genética , ARN de Transferencia de Fenilalanina/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Ribosomas/ultraestructura , Imagen Individual de Molécula
5.
RNA ; 27(2): 202-220, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33214333

RESUMEN

Transfer RNA (tRNA) is the most diversely modified RNA. Although the strictly conserved purine position 37 in the anticodon stem-loop undergoes modifications that are phylogenetically distributed, we do not yet fully understand the roles of these modifications. Therefore, molecular dynamics simulations are used to provide molecular-level details for how such modifications impact the structure and function of tRNA. A focus is placed on three hypermodified base families that include the parent i6A, t6A, and yW modifications, as well as derivatives. Our data reveal that the hypermodifications exhibit significant conformational flexibility in tRNA, which can be modulated by additional chemical functionalization. Although the overall structure of the tRNA anticodon stem remains intact regardless of the modification considered, the anticodon loop must rearrange to accommodate the bulky, dynamic hypermodifications, which includes changes in the nucleotide glycosidic and backbone conformations, and enhanced or completely new nucleobase-nucleobase interactions compared to unmodified tRNA or tRNA containing smaller (m1G) modifications at the 37th position. Importantly, the extent of the changes in the anticodon loop is influenced by the addition of small functional groups to parent modifications, implying each substituent can further fine-tune tRNA structure. Although the dominant conformation of the ASL is achieved in different ways for each modification, the molecular features of all modified tRNA drive the ASL domain to adopt the functional open-loop conformation. Importantly, the impact of the hypermodifications is preserved in different sequence contexts. These findings highlight the likely role of regulating mRNA structure and translation.


Asunto(s)
Adenosina/análogos & derivados , Anticodón/química , Escherichia coli/genética , Procesamiento Postranscripcional del ARN , ARN de Transferencia de Lisina/química , ARN de Transferencia de Fenilalanina/química , Adenosina/metabolismo , Anticodón/genética , Anticodón/metabolismo , Emparejamiento Base , Secuencia de Bases , Escherichia coli/metabolismo , Isopenteniladenosina/química , Isopenteniladenosina/metabolismo , Simulación de Dinámica Molecular , Conformación de Ácido Nucleico , Nucleósidos/química , Nucleósidos/metabolismo , ARN de Transferencia de Lisina/genética , ARN de Transferencia de Lisina/metabolismo , ARN de Transferencia de Fenilalanina/genética , ARN de Transferencia de Fenilalanina/metabolismo
6.
Nat Commun ; 10(1): 3373, 2019 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-31358763

RESUMEN

Although the biological importance of post-transcriptional RNA modifications in gene expression is widely appreciated, methods to directly detect their introduction during RNA biosynthesis are rare and do not easily provide information on the temporal nature of events. Here, we introduce the application of NMR spectroscopy to observe the maturation of tRNAs in cell extracts. By following the maturation of yeast tRNAPhe with time-resolved NMR measurements, we show that modifications are introduced in a defined sequential order, and that the chronology is controlled by cross-talk between modification events. In particular, we show that a strong hierarchy controls the introduction of the T54, Ψ55 and m1A58 modifications in the T-arm, and we demonstrate that the modification circuits identified in yeast extract with NMR also impact the tRNA modification process in living cells. The NMR-based methodology presented here could be adapted to investigate different aspects of tRNA maturation and RNA modifications in general.


Asunto(s)
Espectroscopía de Resonancia Magnética/métodos , Procesamiento Postranscripcional del ARN , ARN de Transferencia/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , ARNt Metiltransferasas/metabolismo , Secuencia de Bases , Modelos Moleculares , Conformación de Ácido Nucleico , ARN de Transferencia/química , ARN de Transferencia/genética , ARN de Transferencia de Fenilalanina/química , ARN de Transferencia de Fenilalanina/genética , ARN de Transferencia de Fenilalanina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Factores de Tiempo , ARNt Metiltransferasas/genética
7.
Mitochondrion ; 47: 10-17, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31009750

RESUMEN

We present a 14-year-old girl with loss of motor functions, tetraplegia, epilepsy and nystagmus, caused by a novel heteroplasmic m.641A>T transition in an evolutionary conserved region of mitochondrial genome, affecting the aminoacyl stem of mitochondrial tRNA-Phe. In silico prediction, respirometry, Western blot and enzymatic analyses in skin fibroblasts support the pathogenicity of the m.641A>T substitution. This is the 18th MT-TF point mutation associated with a mitochondrial disorder. The onset and the severity of the disease, however, is unique in this case and broadens the clinical picture related to mutations of mitochondrial tRNA-Phe.


Asunto(s)
Encefalopatías/genética , Epilepsia/genética , Genes Mitocondriales , Enfermedades Genéticas Congénitas/genética , Mutación Puntual , ARN Mitocondrial/genética , ARN de Transferencia de Fenilalanina/genética , Adolescente , Femenino , Humanos , Mitocondrias/genética
8.
Biochemistry ; 57(20): 2994-3002, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29733204

RESUMEN

A diverse set of organisms has adapted to live under extreme conditions. The molecular origin of the stability is unclear, however. It is not known whether the adaptation of functional RNAs, which have intricate tertiary structures, arises from strengthening of tertiary or secondary structure. Herein we evaluate effects of sequence changes on the thermostability of tRNAphe using experimental and computational approaches. To separate out effects of secondary and tertiary structure on thermostability, we modify base pairing strength in the acceptor stem, which does not participate in tertiary structure. In dilute solution conditions, strengthening secondary structure leads to non-two-state thermal denaturation curves and has small effects on thermostability, or the temperature at which tertiary structure and function are lost. In contrast, under cellular conditions with crowding and Mg2+-chelated amino acids, where two-state cooperative unfolding is maintained, strengthening secondary structure enhances thermostability. Investigation of stabilities of each tRNA stem across 44 organisms with a range of optimal growing temperatures revealed that organisms that grow in warmer environments have more stable stems. We also used Shannon entropies to identify positions of higher and lower information content, or sequence conservation, in tRNAphe and found that secondary structures have modest information content allowing them to drive thermal adaptation, while tertiary structures have maximal information content hindering them from participating in thermal adaptation. Base-paired regions with no tertiary structure and modest information content thus offer a facile evolutionary route to enhancing the thermostability of functional RNA by the simple molecular rules of base pairing.


Asunto(s)
Evolución Molecular , Pliegue del ARN , Estabilidad del ARN/genética , ARN de Transferencia de Fenilalanina/química , Emparejamiento Base/genética , Secuencia Conservada/genética , Calor , Conformación de Ácido Nucleico , ARN de Transferencia de Fenilalanina/genética
9.
RNA Biol ; 15(4-5): 528-536, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28901827

RESUMEN

Retrograde transport of tRNAs from the cytoplasm to the nucleus was first described in Saccharomyces cerevisiae and most recently in mammalian systems. Although the function of retrograde transport is not completely clear, it plays a role in the cellular response to changes in nutrient availability. Under low nutrient conditions tRNAs are sent from the cytoplasm to nucleus and presumably remain in storage there until nutrient levels improve. However, in S. cerevisiae tRNA retrograde transport is constitutive and occurs even when nutrient levels are adequate. Constitutive transport is important, at least, for the proper maturation of tRNAPhe, which undergoes cytoplasmic splicing, but requires the action of a nuclear modification enzyme that only acts on a spliced tRNA. A lingering question in retrograde tRNA transport is whether it is relegated to S. cerevisiae and multicellular eukaryotes or alternatively, is a pathway with deeper evolutionary roots. In the early branching eukaryote Trypanosoma brucei, tRNA splicing, like in yeast, occurs in the cytoplasm. In the present report, we have used a combination of cell fractionation and molecular approaches that show the presence of significant amounts of spliced tRNATyr in the nucleus of T. brucei. Notably, the modification enzyme tRNA-guanine transglycosylase (TGT) localizes to the nucleus and, as shown here, is not able to add queuosine (Q) to an intron-containing tRNA. We suggest that retrograde transport is partly the result of the differential intracellular localization of the splicing machinery (cytoplasmic) and a modification enzyme, TGT (nuclear). These findings expand the evolutionary distribution of retrograde transport mechanisms to include early diverging eukaryotes, while highlighting its importance for queuosine biosynthesis.


Asunto(s)
Núcleo Celular/metabolismo , Citoplasma/metabolismo , Pentosiltransferasa/genética , ARN de Transferencia de Tirosina/genética , Trypanosoma brucei brucei/genética , Transporte Activo de Núcleo Celular , Núcleo Celular/genética , Citoplasma/genética , Cinética , Conformación de Ácido Nucleico , Nucleósido Q/metabolismo , Pentosiltransferasa/metabolismo , Empalme del ARN , Transporte de ARN , ARN de Transferencia de Fenilalanina/genética , ARN de Transferencia de Fenilalanina/metabolismo , ARN de Transferencia de Tirosina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Trypanosoma brucei brucei/metabolismo
10.
Gene ; 641: 310-325, 2018 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-29107006

RESUMEN

Hypermodified bases present at 3'-adjacent (37th) position in anticodon loop of tRNAPhe are well known for their contribution in modulating codon-anticodon interactions. Peroxywybutosine (o2yW), a wyosine family member, is one of such tricyclic modified bases observed at the 37th position in tRNAPhe. Conformational preferences and three-dimensional structural analysis of peroxywybutosine have not been investigated in detail at atomic level. Hence, in the present study quantum chemical semi-empirical RM1 and multiple molecular dynamics (MD) simulations have been used to study structural significance of peroxywybutosine in tRNAPhe. Full geometry optimizations over the peroxywybutosine base have also been performed using ab-initio HF-SCF (6-31G**), DFT (B3LYP/6-31G**) and semi-empirical PM6 method to compare the salient properties. RM1 predicted most stable structure shows that the amino-carboxy-propyl side chain of o2yW remains 'distal' to the five membered imidazole ring of tricyclic guanosine. MD simulation trajectory of the isolated peroxy base showed restricted periodical fluctuations of peroxywybutosine side chain which might be helpful to maintain proper anticodon loop structure and mRNA reading frame during protein biosynthesis process. Another comparative MD simulation study of the anticodon stem loop with codon UUC showed various properties, which justify the functional implications of peroxywybutosine at 37th position along with other modified bases present in ASL of tRNAPhe. Thus, this study presents an atomic view into the structural properties of peroxywybutosine, which can be useful to determine its role in the anticodon stem loop in context of codon-anticodon interactions and frame shift mutations.


Asunto(s)
Anticodón/genética , Codón/genética , Guanosina/análogos & derivados , Nucleósidos/genética , ARN de Transferencia de Fenilalanina/genética , Anticodón/química , Codón/química , Mutación del Sistema de Lectura/genética , Guanosina/química , Guanosina/genética , Conformación Molecular , Simulación de Dinámica Molecular , Nucleósidos/química , Biosíntesis de Proteínas/genética , ARN Mensajero/química , ARN Mensajero/genética , ARN de Transferencia de Fenilalanina/química
11.
Mitochondrion ; 35: 111-118, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28579530

RESUMEN

We report here the clinical, genetic, molecular and biochemical characterization of a four-generation Dongxiang Chinese pedigree with suggestively maternally transmitted non-syndromic hearing loss. Five of 10 matrilineal relatives exhibited variable severity and age at onset of sensorineural hearing loss. The average ages at onset of hearing loss in matrilineal relatives of this family were 29years. Molecular analysis of their mitochondrial genomes identified the tRNAPhe 593T>C variant belonging to Asian haplogroup G2a2a. The m.593T>C variant resided at the position 17 of DHU-loop, where the position is important for the structure and function of tRNA. It was anticipated that the m.593T>C variant altered the structure and function of tRNAPhe. By using lymphoblastoid cell lines derived from the Chinese family, we showed a 46% decreases in the steady-state level of tRNAPhe in mutant cell lines. Western blotting analysis showed ∼35% reduction in the levels of mitochondrial translation in mutant cell lines carrying the m.593T>C variant. Impaired mitochondrial translation is apparently a primary contributor to the marked reduction in the rate of respiratory capacity. The respiratory deficiency lowed mitochondrial ATP production in the mutant cell lines. These data provide the evidence that mitochondrial dysfunctions caused by the m.593T>C variant lead to late-onset nonsyndromic hearing loss. Thus, our findings may provide the new insights into the understanding of pathophysiology and valuable information for management and treatment of maternally inherited hearing loss.


Asunto(s)
Sordera/genética , Salud de la Familia , Genes Mitocondriales , Enfermedades de Inicio Tardío/genética , Mutación Puntual , ARN de Transferencia de Fenilalanina/genética , Adenosina Trifosfato/biosíntesis , Adulto , Anciano , Anciano de 80 o más Años , Pueblo Asiatico , Niño , Sordera/patología , Femenino , Humanos , Enfermedades de Inicio Tardío/patología , Masculino , Persona de Mediana Edad , Mitocondrias/genética , Mitocondrias/metabolismo , Biosíntesis de Proteínas , Adulto Joven
12.
RNA ; 23(3): 406-419, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28003514

RESUMEN

The 3-methylcytidine (m3C) modification is ubiquitous in eukaryotic tRNA, widely found at C32 in the anticodon loop of tRNAThr, tRNASer, and some tRNAArg species, as well as in the variable loop (V-loop) of certain tRNASer species. In the yeast Saccharomyces cerevisiae, formation of m3C32 requires Trm140 for six tRNA substrates, including three tRNAThr species and three tRNASer species, whereas in Schizosaccharomyces pombe, two Trm140 homologs are used, one for tRNAThr and one for tRNASer The occurrence of a single Trm140 homolog is conserved broadly among Ascomycota, whereas multiple Trm140-related homologs are found in metazoans and other fungi. We investigate here how S. cerevisiae Trm140 protein recognizes its six tRNA substrates. We show that Trm140 has two modes of tRNA substrate recognition. Trm140 recognizes G35-U36-t6A37 of the anticodon loop of tRNAThr substrates, and this sequence is an identity element because it can be used to direct m3C modification of tRNAPhe However, Trm140 recognition of tRNASer substrates is different, since their anticodons do not share G35-U36 and do not have any nucleotides in common. Rather, specificity of Trm140 for tRNASer is achieved by seryl-tRNA synthetase and the distinctive tRNASer V-loop, as well as by t6A37 and i6A37 We provide evidence that all of these components are important in vivo and that seryl-tRNA synthetase greatly stimulates m3C modification of tRNASer(CGA) and tRNASer(UGA) in vitro. In addition, our results show that Trm140 binding is a significant driving force for tRNA modification and suggest separate contributions from each recognition element for the modification.


Asunto(s)
Anticodón/química , Citidina/análogos & derivados , Proteínas de Microfilamentos/metabolismo , ARN de Transferencia de Serina/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , ARNt Metiltransferasas/metabolismo , Anticodón/metabolismo , Secuencia de Bases , Sitios de Unión , Clonación Molecular , Citidina/genética , Citidina/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Proteínas de Microfilamentos/genética , Conformación de Ácido Nucleico , Unión Proteica , Biosíntesis de Proteínas , Dominios Proteicos , ARN de Transferencia de Fenilalanina/química , ARN de Transferencia de Fenilalanina/genética , ARN de Transferencia de Fenilalanina/metabolismo , ARN de Transferencia de Serina/genética , ARN de Transferencia de Serina/metabolismo , ARN de Transferencia de Treonina/química , ARN de Transferencia de Treonina/genética , ARN de Transferencia de Treonina/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Especificidad por Sustrato , ARNt Metiltransferasas/genética
13.
Methods ; 113: 127-131, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-27639881

RESUMEN

Amino acid misincorporation during protein synthesis occurs due to misacylation of tRNAs or defects in decoding at the ribosome. While misincorporation of amino acids has been observed in a variety of contexts, less work has been done to directly assess the extent to which specific tRNAs are misacylated in vivo, and the identity of the misacylated amino acid moiety. Here we describe tRNA isoacceptor specific aminoacylation profiling (ISAP), a method to identify and quantify the amino acids attached to a tRNA species in vivo. ISAP allows compilation of aminoacylation profiles for specific isoacceptors tRNAs. To demonstrate the efficacy and broad applicability of ISAP, tRNAPhe and tRNATyr species were isolated from total aminoacyl-tRNA extracted from both yeast and Escherichia coli. Isolated aminoacyl-tRNAs were washed until free of detectable unbound amino acid and subsequently deacylated. Free amino acids from the deacylated fraction were then identified and quantified by mass spectrometry. Using ISAP allowed quantification of the effects of quality control on the accumulation of misacylated tRNA species under different growth conditions.


Asunto(s)
Hibridación de Ácido Nucleico/métodos , Fenilalanina-ARNt Ligasa/metabolismo , Fenilalanina/metabolismo , Aminoacilación de ARN de Transferencia , Tirosina-ARNt Ligasa/metabolismo , Tirosina/metabolismo , Biotina/química , Sondas de ADN/química , Escherichia coli/enzimología , Escherichia coli/genética , Hidrólisis , Espectrometría de Masas , Fenilalanina/aislamiento & purificación , Fenilalanina-ARNt Ligasa/genética , ARN de Transferencia de Fenilalanina/genética , ARN de Transferencia de Fenilalanina/metabolismo , ARN de Transferencia de Tirosina/genética , ARN de Transferencia de Tirosina/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Estreptavidina/química , Tirosina/aislamiento & purificación , Tirosina-ARNt Ligasa/genética
14.
J Biol Chem ; 291(30): 15796-805, 2016 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-27226603

RESUMEN

Non-protein amino acids, particularly isomers of the proteinogenic amino acids, present a threat to proteome integrity if they are mistakenly inserted into proteins. Quality control during aminoacyl-tRNA synthesis reduces non-protein amino acid incorporation by both substrate discrimination and proofreading. For example phenylalanyl-tRNA synthetase (PheRS) proofreads the non-protein hydroxylated phenylalanine derivative m-Tyr after its attachment to tRNA(Phe) We now show in Saccharomyces cerevisiae that PheRS misacylation of tRNA(Phe) with the more abundant Phe oxidation product o-Tyr is limited by kinetic discrimination against o-Tyr-AMP in the transfer step followed by o-Tyr-AMP release from the synthetic active site. This selective rejection of a non-protein aminoacyl-adenylate is in addition to known kinetic discrimination against certain non-cognates in the activation step as well as catalytic hydrolysis of mispaired aminoacyl-tRNA(Phe) species. We also report an unexpected resistance to cytotoxicity by a S. cerevisiae mutant with ablated post-transfer editing activity when supplemented with o-Tyr, cognate Phe, or Ala, the latter of which is not a substrate for activation by this enzyme. Our phenotypic, metabolomic, and kinetic analyses indicate at least three modes of discrimination against non-protein amino acids by S. cerevisiae PheRS and support a non-canonical role for SccytoPheRS post-transfer editing in response to amino acid stress.


Asunto(s)
Fenilalanina-ARNt Ligasa/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Acilación , Adenosina Monofosfato/genética , Adenosina Monofosfato/metabolismo , Alanina/genética , Alanina/metabolismo , Mutación , Fenilalanina/genética , Fenilalanina/metabolismo , Fenilalanina-ARNt Ligasa/genética , ARN de Hongos/genética , ARN de Hongos/metabolismo , ARN de Transferencia de Fenilalanina/genética , ARN de Transferencia de Fenilalanina/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
15.
Hum Mutat ; 36(12): 1176-87, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26310293

RESUMEN

tRNA modifications are crucial for efficient and accurate protein synthesis, and modification defects are frequently associated with disease. Yeast trm7Δ mutants grow poorly due to lack of 2'-O-methylated C32 (Cm32 ) and Gm34 on tRNA(Phe) , catalyzed by Trm7-Trm732 and Trm7-Trm734, respectively, which in turn results in loss of wybutosine at G37 . Mutations in human FTSJ1, the likely TRM7 homolog, cause nonsyndromic X-linked intellectual disability (NSXLID), but the role of FTSJ1 in tRNA modification is unknown. Here, we report that tRNA(Phe) from two genetically independent cell lines of NSXLID patients with loss-of-function FTSJ1 mutations nearly completely lacks Cm32 and Gm34 , and has reduced peroxywybutosine (o2yW37 ). Additionally, tRNA(Phe) from an NSXLID patient with a novel FTSJ1-p.A26P missense allele specifically lacks Gm34 , but has normal levels of Cm32 and o2yW37 . tRNA(Phe) from the corresponding Saccharomyces cerevisiae trm7-A26P mutant also specifically lacks Gm34 , and the reduced Gm34 is not due to weaker Trm734 binding. These results directly link defective 2'-O-methylation of the tRNA anticodon loop to FTSJ1 mutations, suggest that the modification defects cause NSXLID, and may implicate Gm34 of tRNA(Phe) as the critical modification. These results also underscore the widespread conservation of the circuitry for Trm7-dependent anticodon loop modification of eukaryotic tRNA(Phe) .


Asunto(s)
Anticodón , Discapacidad Intelectual Ligada al Cromosoma X/genética , Metiltransferasas/genética , Mutación , Proteínas Nucleares/genética , ARN de Transferencia/genética , Alelos , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Línea Celular , Codón , Femenino , Expresión Génica , Genotipo , Humanos , Masculino , Discapacidad Intelectual Ligada al Cromosoma X/diagnóstico , Metilación , Metiltransferasas/química , Modelos Moleculares , Proteínas Nucleares/química , Conformación de Ácido Nucleico , Linaje , Conformación Proteica , ARN de Transferencia/química , ARN de Transferencia/metabolismo , ARN de Transferencia de Fenilalanina/genética , ARN de Transferencia de Fenilalanina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
16.
Am J Med Genet A ; 167A(10): 2366-74, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26061759

RESUMEN

We report on clinical, genetic and metabolic investigations in a family with optic neuropathy, non-progressive cardiomyopathy and cognitive disability. Ophthalmic investigations (slit lamp examination, funduscopy, OCT scan of the optic nerve, ERG and VEP) disclosed mild or no decreased visual acuity, but pale optic disc, loss of temporal optic fibers and decreased VEPs. Mitochondrial DNA and exome sequencing revealed a novel homozygous mutation in the nuclear MTO1 gene and the homoplasmic m.593T>G mutation in the mitochondrial MT-TF gene. Muscle biopsy analyses revealed decreased oxygraphic Vmax values for complexes I+III+IV, and severely decreased activities of the respiratory chain complexes (RCC) I, III and IV, while muscle histopathology was normal. Fibroblast analysis revealed decreased complex I and IV activity and assembly, while cybrid analysis revealed a partial complex I deficiency with normal assembly of the RCC. Thus, in patients with a moderate clinical presentation due to MTO1 mutations, the presence of an optic atrophy should be considered. The association with the mitochondrial mutation m.593T>G could act synergistically to worsen the complex I deficiency and modulate the MTO1-related disease.


Asunto(s)
Cardiomiopatías/genética , Proteínas Portadoras/genética , Homocigoto , Discapacidad Intelectual/genética , Mutación , Enfermedades del Nervio Óptico/genética , ARN de Transferencia de Fenilalanina/genética , Adulto , Cardiomiopatías/complicaciones , Cardiomiopatías/diagnóstico , Cardiomiopatías/patología , Análisis Mutacional de ADN , Complejo I de Transporte de Electrón/genética , Complejo II de Transporte de Electrones/genética , Complejo III de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/genética , Femenino , Expresión Génica , Humanos , Discapacidad Intelectual/complicaciones , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/patología , Masculino , Potencial de la Membrana Mitocondrial/genética , Persona de Mediana Edad , Mitocondrias/metabolismo , Mitocondrias/patología , Disco Óptico/metabolismo , Disco Óptico/patología , Enfermedades del Nervio Óptico/complicaciones , Enfermedades del Nervio Óptico/diagnóstico , Enfermedades del Nervio Óptico/patología , Linaje , Proteínas de Unión al ARN , Agudeza Visual
17.
J Biol Chem ; 290(9): 5912-25, 2015 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-25593312

RESUMEN

TrmI generates N(1)-methyladenosine at position 58 (m(1)A58) in tRNA. The Thermus thermophilus tRNA(Phe) transcript was methylated efficiently by T. thermophilus TrmI, whereas the yeast tRNA(Phe) transcript was poorly methylated. Fourteen chimeric tRNA transcripts derived from these two tRNAs revealed that TrmI recognized the combination of aminoacyl stem, variable region, and T-loop. This was confirmed by 10 deletion tRNA variants: TrmI methylated transcripts containing the aminoacyl stem, variable region, and T-arm. The requirement for the T-stem itself was confirmed by disrupting the T-stem. Disrupting the interaction between T- and D-arms accelerated the methylation, suggesting that this disruption is included in part of the reaction. Experiments with 17 point mutant transcripts elucidated the positive sequence determinants C56, purine 57, A58, and U60. Replacing A58 with inosine and 2-aminopurine completely abrogated methylation, demonstrating that the 6-amino group in A58 is recognized by TrmI. T. thermophilus tRNAGGU(Thr)GGU(Thr) contains C60 instead of U60. The tRNAGGU(Thr) transcript was poorly methylated by TrmI, and replacing C60 with U increased the methylation, consistent with the point mutation experiments. A gel shift assay revealed that tRNAGGU(Thr) had a low affinity for TrmI than tRNA(Phe). Furthermore, analysis of tRNAGGU(Thr) purified from the trmI gene disruptant strain revealed that the other modifications in tRNA accelerated the formation of m(1)A58 by TrmI. Moreover, nucleoside analysis of tRNAGGU(Thr) from the wild-type strain indicated that less than 50% of tRNAGG(Thr) contained m(1)A58. Thus, the results from the in vitro experiments were confirmed by the in vivo methylation patterns.


Asunto(s)
Proteínas Bacterianas/metabolismo , ARN Bacteriano/metabolismo , ARN de Transferencia/metabolismo , ARNt Metiltransferasas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión/genética , Electroforesis en Gel de Poliacrilamida , Cinética , Metilación , Modelos Moleculares , Mutación , Conformación de Ácido Nucleico , Unión Proteica , Estructura Terciaria de Proteína , ARN Bacteriano/química , ARN Bacteriano/genética , ARN de Transferencia/química , ARN de Transferencia/genética , ARN de Transferencia de Fenilalanina/química , ARN de Transferencia de Fenilalanina/genética , ARN de Transferencia de Fenilalanina/metabolismo , ARN de Transferencia de Treonina/química , ARN de Transferencia de Treonina/genética , ARN de Transferencia de Treonina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Especificidad por Sustrato , Thermus thermophilus/enzimología , Thermus thermophilus/genética , Thermus thermophilus/metabolismo , ARNt Metiltransferasas/química , ARNt Metiltransferasas/genética
18.
RNA ; 21(1): 61-74, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25404562

RESUMEN

Post-transcriptional tRNA modifications are critical for efficient and accurate translation, and have multiple different roles. Lack of modifications often leads to different biological consequences in different organisms, and in humans is frequently associated with neurological disorders. We investigate here the conservation of a unique circuitry for anticodon loop modification required for healthy growth in the yeast Saccharomyces cerevisiae. S. cerevisiae Trm7 interacts separately with Trm732 and Trm734 to 2'-O-methylate three substrate tRNAs at anticodon loop residues C32 and N34, and these modifications are required for efficient wybutosine formation at m(1)G37 of tRNA(Phe). Moreover, trm7Δ and trm732Δ trm734Δ mutants grow poorly due to lack of functional tRNA(Phe). It is unknown if this circuitry is conserved and important for tRNA(Phe) modification in other eukaryotes, but a likely human TRM7 ortholog is implicated in nonsyndromic X-linked intellectual disability. We find that the distantly related yeast Schizosaccharomyces pombe has retained this circuitry for anticodon loop modification, that S. pombe trm7Δ and trm734Δ mutants have more severe phenotypes than the S. cerevisiae mutants, and that tRNA(Phe) is the major biological target. Furthermore, we provide evidence that Trm7 and Trm732 function is widely conserved throughout eukaryotes, since human FTSJ1 and THADA, respectively, complement growth defects of S. cerevisiae trm7Δ and trm732Δ trm734Δ mutants by modifying C32 of tRNA(Phe), each working with the corresponding S. cerevisiae partner protein. These results suggest widespread importance of 2'-O-methylation of the tRNA anticodon loop, implicate tRNA(Phe) as the crucial substrate, and suggest that this modification circuitry is important for human neuronal development.


Asunto(s)
Procesamiento Postranscripcional del ARN , ARN de Transferencia de Fenilalanina/genética , Secuencia de Aminoácidos , Animales , Anticodón , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Humanos , Metiltransferasas/genética , Metiltransferasas/metabolismo , Datos de Secuencia Molecular , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , ARN de Transferencia de Fenilalanina/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , ARNt Metiltransferasas/genética , ARNt Metiltransferasas/metabolismo
19.
Mitochondrial DNA ; 26(1): 2-6, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24021014

RESUMEN

Mutations in mitochondrial genome are one of the most important causes of hearing loss, of these, mitochondrial tRNA (mt-tRNA) genes are the hot spots for mutations associated with deafness. Most recently, a novel mt-tRNA(Phe) C628T variant has been reported to be associated with non-syndromic and sensorineural hearing loss. To test this association, we characterized the C628T variant using a phylogenetic approach; in addition, we employed the bioinformatics tool to predict the thermodynamic change of the mt-tRNA(Phe) gene with and without this variant. Intriguingly, the C628T variant was not evolutionary conserved and had little effect on mt-tRNA(Phe) folding. Moreover, through the application of the pathogenicity scoring system, we classified the C628T variant as a "neutral polymorphism", suggesting that this variant currently lacked sufficient evident to support as a "pathogenic" mutation.


Asunto(s)
Sordera/genética , Expresión Génica , Variación Genética , ARN de Transferencia de Fenilalanina/genética , ARN/genética , Alelos , Secuencia de Bases , Biología Computacional , Bases de Datos de Ácidos Nucleicos , Sordera/diagnóstico , Evolución Molecular , Genes Mitocondriales , Predisposición Genética a la Enfermedad , Genoma Mitocondrial , Humanos , Mutación , Conformación de Ácido Nucleico , Filogenia , ARN/química , ARN Mitocondrial , ARN de Transferencia de Fenilalanina/química , Termodinámica
20.
RNA ; 20(6): 747-53, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24837075

RESUMEN

The presence of tricyclic wyosine derivatives 3'-adjacent to anticodon is a hallmark of tRNA(Phe) in eukaryotes and archaea. In yeast, formation of wybutosine (yW) results from five enzymes acting in a strict sequential order. In archaea, the intermediate compound imG-14 (4-demethylwyosine) is a target of three different enzymes, leading to the formation of distinct wyosine derivatives (yW-86, imG, and imG2). We focus here on a peculiar methyltransferase (aTrm5a) that catalyzes two distinct reactions: N(1)-methylation of guanosine and C(7)-methylation of imG-14, whose function is to allow the production of isowyosine (imG2), an intermediate of the 7-methylwyosine (mimG) biosynthetic pathway. Based on the formation of mesomeric forms of imG-14, a rationale for such dual enzymatic activities is proposed. This bifunctional tRNA:m(1)G/imG2 methyltransferase, acting on two chemically distinct guanosine derivatives located at the same position of tRNA(Phe), is unique to certain archaea and has no homologs in eukaryotes. This enzyme here referred to as Taw22, probably played an important role in the emergence of the multistep biosynthetic pathway of wyosine derivatives in archaea and eukaryotes.


Asunto(s)
Archaea/genética , Vías Biosintéticas/genética , Guanosina/análogos & derivados , ARN de Transferencia de Fenilalanina/biosíntesis , ARNt Metiltransferasas/biosíntesis , Anticodón/genética , Archaea/metabolismo , Guanosina/biosíntesis , Guanosina/genética , Guanosina/metabolismo , Nucleósidos/genética , Nucleósidos/metabolismo , ARN de Transferencia de Fenilalanina/genética , ARN de Transferencia de Fenilalanina/metabolismo , ARNt Metiltransferasas/genética , ARNt Metiltransferasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...