Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
1.
J Mol Neurosci ; 73(11-12): 912-920, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37845428

RESUMEN

Parkinson's disease (PD) is speculated with genetic and environmental factors. At molecular level, the mitochondrial impact is stated to be one of the causative reasons for PD. In this study, we investigated the mitochondrial membrane potential (MMP), reactive oxygen species (ROS) and adenosine triphosphate (ATP) levels along with mitochondrial tRNA alterations among three age categories of PD. By determining the genetic and organellar functionality using molecular techniques, the ROS levels were reported to be high with decreased MMP and ATP in the late-onset age group than in other two age categories. Likewise, the tRNA significancy in tRNAThr and tRNAGln was noticed with C4335T and G15927A mutations in late-onset and early-onset PD groups respectively. Therefore, from the findings, ageing has shown a disruption in tRNA metabolism leading to critical functioning of ATP synthesis and MMP, causing oxidative stress in PD patients. These physiological outcomes show that ageing has a keen role in the divergence of mitochondrial function, thereby proving a correlation with ageing and maintenance of mitochondrial homeostasis in PD.


Asunto(s)
Enfermedad de Parkinson , ARN de Transferencia de Treonina , Humanos , ARN de Transferencia de Treonina/genética , ARN de Transferencia de Treonina/metabolismo , ARN de Transferencia de Glutamina/genética , ARN de Transferencia de Glutamina/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Especies Reactivas de Oxígeno/metabolismo , India , Mitocondrias/genética , Mitocondrias/metabolismo , Adenosina Trifosfato/metabolismo
2.
FEBS Lett ; 597(12): 1638-1650, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37079003

RESUMEN

Each tRNA is aminoacylated (charged) with a genetic codon-specific amino acid. It remains unclear what factors are associated with tRNA charging and how tRNA charging is maintained. By using the individual tRNA acylation PCR method, we found that the charging ratio of tRNAGln (CUG) reflects cellular glutamine level. When uncharged tRNAGln (CUG) increased under amino acid starvation, the kinase GCN2, which is a key stimulator of the integrated stress response, was activated. Activation of GCN2 led to the upregulation of ubiquitin C (UBC) expression. Upregulated UBC, in turn, suppressed the further reduction in tRNAGln (CUG) charging levels. Thus, tRNA charging is sensitive to intracellular nutrient status and is an important initiator of intracellular signaling.


Asunto(s)
Aminoácidos , Proteínas de Saccharomyces cerevisiae , Aminoácidos/metabolismo , Glutamina/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , ARN de Transferencia de Glutamina/metabolismo , Ubiquitina C/genética , Ubiquitina C/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Regulación hacia Arriba
3.
mBio ; 12(4): e0110021, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34225495

RESUMEN

Most bacteria employ a two-step indirect tRNA aminoacylation pathway for the synthesis of aminoacylated tRNAGln and tRNAAsn. The heterotrimeric enzyme GatCAB performs a critical amidotransferase reaction in the second step of this pathway. We have previously demonstrated in mycobacteria that this two-step pathway is error prone and translational errors contribute to adaptive phenotypes such as antibiotic tolerance. Furthermore, we identified clinical isolates of the globally important pathogen Mycobacterium tuberculosis with partial loss-of-function mutations in gatA, and demonstrated that these mutations result in high, specific rates of translational error and increased rifampin tolerance. However, the mechanisms by which these clinically derived mutations in gatA impact GatCAB function were unknown. Here, we describe biochemical and biophysical characterization of M. tuberculosis GatCAB, containing either wild-type gatA or one of two gatA mutants from clinical strains. We show that these mutations have minimal impact on enzymatic activity of GatCAB; however, they result in destabilization of the GatCAB complex as well as that of the ternary asparaginyl-transamidosome. Stabilizing complex formation with the solute trehalose increases specific translational fidelity of not only the mutant strains but also of wild-type mycobacteria. Therefore, our data suggest that alteration of GatCAB stability may be a mechanism for modulation of translational fidelity. IMPORTANCE Most bacteria use a two-step indirect pathway to aminoacylate tRNAGln and tRNAAsn, despite the fact that the indirect pathway consumes more energy and is error prone. We have previously shown that the higher protein synthesis errors from this indirect pathway in mycobacteria allow adaptation to hostile environments such as antibiotic treatment through generation of novel alternate proteins not coded by the genome. However, the precise mechanisms of how translational fidelity is tuned were not known. Here, we biochemically and biophysically characterize the critical enzyme of the Mycobacterium tuberculosis indirect pathway, GatCAB, as well as two mutant enzymes previously identified from clinical isolates that were associated with increased mistranslation. We show that the mutants dysregulate the pathway via destabilizing the enzyme complex. Importantly, increasing stability improves translational fidelity in both wild-type and mutant bacteria, demonstrating a mechanism by which mycobacteria may tune mistranslation rates.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Mutación , Mycobacterium smegmatis/enzimología , Mycobacterium smegmatis/genética , Transferasas de Grupos Nitrogenados/genética , Biosíntesis de Proteínas/genética , Humanos , ARN de Transferencia de Glutamina/metabolismo , Aminoacilación de ARN de Transferencia , Tuberculosis/microbiología
4.
Nucleic Acids Res ; 49(7): 3603-3616, 2021 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-33341895

RESUMEN

During mRNA translation, tRNAs are charged by aminoacyl-tRNA synthetases and subsequently used by ribosomes. A multi-enzyme aminoacyl-tRNA synthetase complex (MSC) has been proposed to increase protein synthesis efficiency by passing charged tRNAs to ribosomes. An alternative function is that the MSC repurposes specific synthetases that are released from the MSC upon cues for functions independent of translation. To explore this, we generated mammalian cells in which arginyl-tRNA synthetase and/or glutaminyl-tRNA synthetase were absent from the MSC. Protein synthesis, under a variety of stress conditions, was unchanged. Most strikingly, levels of charged tRNAArg and tRNAGln remained unchanged and no ribosome pausing was observed at codons for arginine and glutamine. Thus, increasing or regulating protein synthesis efficiency is not dependent on arginyl-tRNA synthetase and glutaminyl-tRNA synthetase in the MSC. Alternatively, and consistent with previously reported ex-translational roles requiring changes in synthetase cellular localizations, our manipulations of the MSC visibly changed localization.


Asunto(s)
Aminoacil-ARNt Sintetasas/metabolismo , Biosíntesis de Proteínas , ARN de Transferencia de Arginina/metabolismo , ARN de Transferencia de Glutamina/metabolismo , Ribosomas/metabolismo , Animales , Fibroblastos , Células HEK293 , Humanos , Ratones
5.
Elife ; 92020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33289483

RESUMEN

An inadequate supply of amino acids leads to accumulation of uncharged tRNAs, which can bind and activate GCN2 kinase to reduce translation. Here, we show that glutamine-specific tRNAs selectively become uncharged when extracellular amino acid availability is compromised. In contrast, all other tRNAs retain charging of their cognate amino acids in a manner that is dependent upon intact lysosomal function. In addition to GCN2 activation and reduced total translation, the reduced charging of tRNAGln in amino-acid-deprived cells also leads to specific depletion of proteins containing polyglutamine tracts including core-binding factor α1, mediator subunit 12, transcriptional coactivator CBP and TATA-box binding protein. Treating amino-acid-deprived cells with exogenous glutamine or glutaminase inhibitors restores tRNAGln charging and the levels of polyglutamine-containing proteins. Together, these results demonstrate that the activation of GCN2 and the translation of polyglutamine-encoding transcripts serve as key sensors of glutamine availability in mammalian cells.


Asunto(s)
Aminoácidos/deficiencia , Biosíntesis de Proteínas , ARN de Transferencia de Glutamina/metabolismo , Aminoacilación de ARN de Transferencia , Animales , Línea Celular Tumoral , Glutaminasa/antagonistas & inhibidores , Glutaminasa/metabolismo , Glutamina/metabolismo , Humanos , Ratones , Péptidos/metabolismo
6.
Nucleic Acids Res ; 48(6): 3071-3088, 2020 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-32016368

RESUMEN

During protein synthesis, charged tRNAs deliver amino acids to translating ribosomes, and are then re-charged by tRNA synthetases (aaRS). In humans, mutant aaRS cause a diversity of neurological disorders, but their molecular aetiologies are incompletely characterised. To understand system responses to aaRS depletion, the yeast glutamine aaRS gene (GLN4) was transcriptionally regulated using doxycycline by tet-off control. Depletion of Gln4p inhibited growth, and induced a GCN4 amino acid starvation response, indicative of uncharged tRNA accumulation and Gcn2 kinase activation. Using a global model of translation that included aaRS recharging, Gln4p depletion was simulated, confirming slowed translation. Modelling also revealed that Gln4p depletion causes negative feedback that matches translational demand for Gln-tRNAGln to aaRS recharging capacity. This maintains normal charged tRNAGln levels despite Gln4p depletion, confirmed experimentally using tRNA Northern blotting. Model analysis resolves the paradox that Gln4p depletion triggers a GCN4 response, despite maintenance of tRNAGln charging levels, revealing that normally, the aaRS population can sequester free, uncharged tRNAs during aminoacylation. Gln4p depletion reduces this sequestration capacity, allowing uncharged tRNAGln to interact with Gcn2 kinase. The study sheds new light on mutant aaRS disease aetiologies, and explains how aaRS sequestration of uncharged tRNAs can prevent GCN4 activation under non-starvation conditions.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Proteínas Serina-Treonina Quinasas/genética , ARN de Transferencia de Glutamina/genética , ARN de Transferencia/genética , Proteínas de Saccharomyces cerevisiae/genética , Aminoácidos/genética , Aminoácidos/metabolismo , Aminoacil-ARNt Sintetasas/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Homeostasis , Fosforilación , ARN de Transferencia de Glutamina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Inanición/genética , Inanición/metabolismo
7.
J Biol Chem ; 294(23): 9308-9315, 2019 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-31010827

RESUMEN

CRISPR/Cas9 nucleases are widely used for genome editing but can induce unwanted off-target mutations. High-fidelity Cas9 variants have been identified; however, they often have reduced activity, constraining their utility, which presents a major challenge for their use in research applications and therapeutics. Here we developed a tRNAGln-processing system to restore the activity of multiple high-fidelity Cas9 variants in human cells, including SpCas9-HF1, eSpCas9, and xCas9. Specifically, acting on previous observations that small guide RNAs (sgRNAs) harboring an extra A or G (A/G) in the first 5' nucleotide greatly affect the activity of high-fidelity Cas9 variants and that tRNA-sgRNA fusions improve Cas9 activity, we investigated whether a GN20 sgRNA fused to different tRNAs (G-tRNA-N20) could restore the activity of SpCas9 variants in human cells. Using flow cytometry, a T7E1 assay, deep sequencing-based DNA cleavage activity assays, and HEK-293 cells, we observed that a tRNAGln-sgRNA fusion system enhanced the activity of Cas9 variants, which could be harnessed for efficient correction of a pathogenic mutation in the retinoschisin 1 (RS1) gene, resulting in 6- to 8-fold improved Cas9 activity. We propose that the tRNA-processing system developed here specifically for human cells could facilitate high-fidelity Cas9-mediated human genome-editing applications.


Asunto(s)
Sistemas CRISPR-Cas/genética , Edición Génica/métodos , ARN de Transferencia de Glutamina/metabolismo , División del ADN , Células HEK293 , Humanos , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo
8.
RNA Biol ; 15(9): 1167-1173, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30249152

RESUMEN

The MnmE-MnmG complex of Escherichia coli uses either ammonium or glycine as a substrate to incorporate the 5-aminomethyl or 5-carboxymethylaminomethyl group into the wobble uridine of certain tRNAs. Both modifications can be converted into a 5-methylaminomethyl group by the independent oxidoreductase and methyltransferase activities of MnmC, which respectively reside in the MnmC(o) and MnmC(m) domains of this bifunctional enzyme. MnmE and MnmG, but not MnmC, are evolutionarily conserved. Bacillus subtilis lacks genes encoding MnmC(o) and/or MnmC(m) homologs. The glycine pathway has been considered predominant in this typical gram-positive species because only the 5-carboxymethylaminomethyl group has been detected in tRNALysUUU and bulk tRNA to date. Here, we show that the 5-methylaminomethyl modification is prevalent in B. subtilis tRNAGlnUUG and tRNAGluUUC. Our data indicate that B. subtilis has evolved MnmC(o)- and MnmC(m)-like activities that reside in non MnmC homologous protein(s), which suggests that both activities provide some sort of biological advantage.


Asunto(s)
ARN de Transferencia de Glutamina/metabolismo , ARN de Transferencia de Ácido Glutámico/metabolismo , Uridina/metabolismo , Bacillus subtilis/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas de Escherichia coli/metabolismo , Complejos Multienzimáticos/metabolismo , Mutación , Transferasas del Grupo 1-Carbono/genética , Transferasas del Grupo 1-Carbono/metabolismo , Procesamiento Postranscripcional del ARN
9.
Mol Med Rep ; 16(5): 6029-6033, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28849157

RESUMEN

Mitochondrial DNA mutations have been reported to be associated with essential hypertension. The present study reported the clinical and molecular features of a Chinese pedigree with maternally inherited hypertension. A total of 6 matrilineal relatives in this pedigree presented with variable degrees of hypertension; the age of onset ranged between 39 and 63 years, and the average age of onset was 53 years. Analysis of the mitochondrial genome in members of this family demonstrated the occurrence of a homoplasmic T4363C mutation in the transfer (t)RNAGln gene and 25 genetic polymorphisms belonging to mitochondrial haplogroup B4. Notably, the T4363C mutation was localized at the anticodon stem of tRNAGln, which is highly conserved across various species (conventional position 38). To determine its potential pathogenicity, RNA Fold software was used to predict the secondary structure of tRNAGln with and without this mutation. The results indicated that the T4363C mutation induced a significant alteration in the secondary structure of tRNAGln, and may reduce the steady­state levels of tRNAGln. Furthermore, matrilineal relatives carrying the T4363C mutation exhibited different age of onset and variable degrees of blood pressure, thus indicating that the T4363C mutation itself was insufficient to produce the clinical phenotype. Therefore, other modified factors, including environmental factors, and nuclear gene and epigenetic modifications, may be involved in the pathogenesis of hypertension. In conclusion, the present study provided valuable information regarding the association between tRNA mutations and hypertension.


Asunto(s)
Predisposición Genética a la Enfermedad , Hipertensión/genética , Mutación Puntual , ARN de Transferencia de Glutamina/genética , ARN/genética , Adulto , Anciano , Pueblo Asiatico , Secuencia de Bases , Femenino , Humanos , Hipertensión/etnología , Hipertensión/metabolismo , Hipertensión/fisiopatología , Masculino , Herencia Materna , Persona de Mediana Edad , Conformación de Ácido Nucleico , Linaje , Fenotipo , ARN/química , ARN/metabolismo , ARN Mitocondrial , ARN de Transferencia de Glutamina/química , ARN de Transferencia de Glutamina/metabolismo
10.
Mol Biol Cell ; 26(2): 270-82, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25392298

RESUMEN

Although tRNA modifications have been well catalogued, the precise functions of many modifications and their roles in mediating gene expression are still being elucidated. Whereas tRNA modifications were long assumed to be constitutive, it is now apparent that the modification status of tRNAs changes in response to different environmental conditions. The URM1 pathway is required for thiolation of the cytoplasmic tRNAs tGlu(UUC), tGln(UUG), and tLys(UUU) in Saccharomyces cerevisiae. We demonstrate that URM1 pathway mutants have impaired translation, which results in increased basal activation of the Hsf1-mediated heat shock response; we also find that tRNA thiolation levels in wild-type cells decrease when cells are grown at elevated temperature. We show that defects in tRNA thiolation can be conditionally advantageous, conferring resistance to endoplasmic reticulum stress. URM1 pathway proteins are unstable and hence are more sensitive to changes in the translational capacity of cells, which is decreased in cells experiencing stresses. We propose a model in which a stress-induced decrease in translation results in decreased levels of URM1 pathway components, which results in decreased tRNA thiolation levels, which further serves to decrease translation. This mechanism ensures that tRNA thiolation and translation are tightly coupled and coregulated according to need.


Asunto(s)
Respuesta al Choque Térmico/genética , Biosíntesis de Proteínas/genética , ARN de Hongos/genética , ARN de Transferencia/genética , Saccharomyces cerevisiae/genética , Northern Blotting , Western Blotting , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Estrés del Retículo Endoplásmico/genética , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Calor , Modelos Genéticos , Mutación , ARN de Hongos/metabolismo , ARN de Transferencia/metabolismo , ARN de Transferencia de Glutamina/genética , ARN de Transferencia de Glutamina/metabolismo , ARN de Transferencia de Ácido Glutámico/genética , ARN de Transferencia de Ácido Glutámico/metabolismo , ARN de Transferencia de Lisina/genética , ARN de Transferencia de Lisina/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Compuestos de Sulfhidrilo/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética/genética , Tunicamicina/farmacología
11.
BMC Med Genet ; 15: 84, 2014 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-25056089

RESUMEN

BACKGROUND: Hypertension is a very common cardiovascular disease influenced by multiple genetic and environmental factors. More recently, there are some studies showed that mutations in mitochondrial DNA have been involved in its pathogenesis. In this study we did further investigations on this relationship. METHODS: Epidemiological research found a Han Chinese family with probable maternally transmitted hypertension. Sequence analysis of the whole mitochondrial DNA was detected from all the family members. And evaluations of the clinical, genetic and molecular characterization were also performed. RESULTS: Matrilineal relatives within the family exhibited varying degrees of hypertension with an onset age of 48-55 years. Sequence analysis of this pedigree showed a novel homoplasmic 4329C > G mutation located at the 3' end of the tRNAIle and tRNAGln genes that was absent from 366 Chinese controls. The cytosine (C) at 4329 position was very important in the structural formation and stabilization of functional tRNAs, which was highly conserved in mitochondria of various organisms and also contributed to the high fidelity of the acceptor arm. Cells carrying this mutation were also shown to harbor mitochondrial dysfunctions. CONCLUSIONS: The C4329G point mutation in tRNAIle and tRNAGln was involved in the pathogenesis of hypertension, perhaps in association with other modifying factors.


Asunto(s)
Citosina/metabolismo , ADN Mitocondrial/genética , Guanina/metabolismo , Hipertensión/genética , ARN de Transferencia de Glutamina/genética , ARN de Transferencia de Isoleucina/genética , Pueblo Asiatico/genética , Estudios de Casos y Controles , Femenino , Predisposición Genética a la Enfermedad , Variación Genética , Humanos , Hipertensión/epidemiología , Masculino , Persona de Mediana Edad , Mitocondrias/genética , Linaje , Mutación Puntual , ARN de Transferencia de Glutamina/metabolismo , ARN de Transferencia de Isoleucina/metabolismo
12.
Nucleic Acids Res ; 42(15): 10061-72, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25056309

RESUMEN

Stop codon readthrough may be promoted by the nucleotide environment or drugs. In such cases, ribosomes incorporate a natural suppressor tRNA at the stop codon, leading to the continuation of translation in the same reading frame until the next stop codon and resulting in the expression of a protein with a new potential function. However, the identity of the natural suppressor tRNAs involved in stop codon readthrough remains unclear, precluding identification of the amino acids incorporated at the stop position. We established an in vivo reporter system for identifying the amino acids incorporated at the stop codon, by mass spectrometry in the yeast Saccharomyces cerevisiae. We found that glutamine, tyrosine and lysine were inserted at UAA and UAG codons, whereas tryptophan, cysteine and arginine were inserted at UGA codon. The 5' nucleotide context of the stop codon had no impact on the identity or proportion of amino acids incorporated by readthrough. We also found that two different glutamine tRNA(Gln) were used to insert glutamine at UAA and UAG codons. This work constitutes the first systematic analysis of the amino acids incorporated at stop codons, providing important new insights into the decoding rules used by the ribosome to read the genetic code.


Asunto(s)
Codón de Terminación , Terminación de la Cadena Péptídica Traduccional , ARN de Transferencia de Glutamina/metabolismo , Saccharomyces cerevisiae/genética , Aminoácidos/metabolismo , Anticodón , Glutatión Transferasa/genética , Glutatión Transferasa/aislamiento & purificación , ARN de Transferencia de Alanina/metabolismo , Saccharomyces cerevisiae/metabolismo
13.
Curr Genet ; 60(3): 213-22, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24719080

RESUMEN

The cytoplasmic virus-like element pWR1A from Debaryomyces robertsiae encodes a toxin (DrT) with similarities to the Pichia acaciae killer toxin PaT, which acts by importing a toxin subunit (PaOrf2) with tRNA anticodon nuclease activity into target cells. As for PaT, loss of the tRNA methyltransferase Trm9 or overexpression of tRNA(Gln) increases DrT resistance and the amount of tRNA(Gln) is reduced upon toxin exposure or upon induced intracellular expression of the toxic DrT subunit gene DrORF3, indicating DrT and PaT to share the same in vivo target. Consistent with a specific tRNase activity of DrOrf3, the protein cleaves tRNA(Gln) but not tRNA(Glu) in vitro. Heterologous cytoplasmic expression identified DrOrf5 as the DrT specific immunity factor; it confers resistance to exogenous DrT as well as to intracellular expression of DrOrf3 and prevents tRNA depletion by the latter. The PaT immunity factor PaOrf4, a homologue of DrOrf5 disables intracellular action of both toxins. However, the DrT protection level mediated by PaOrf4 is reduced compared to DrOrf5, implying a recognition mechanism for the cognate toxic subunit, leading to incomplete toxicity suppression of similar, but non-cognate toxic subunits.


Asunto(s)
Factores Inmunológicos/genética , Factores Asesinos de Levadura/genética , Factores Asesinos de Levadura/metabolismo , ARN de Transferencia de Glutamina/genética , ARN de Transferencia de Glutamina/metabolismo , Endorribonucleasas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Expresión Génica , Orden Génico , Inmunidad/genética , Factores Inmunológicos/metabolismo , División del ARN
14.
BMC Evol Biol ; 14: 26, 2014 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-24521160

RESUMEN

BACKGROUND: Evolutionary histories of glutamyl-tRNA synthetase (GluRS) and glutaminyl-tRNA synthetase (GlnRS) in bacteria are convoluted. After the divergence of eubacteria and eukarya, bacterial GluRS glutamylated both tRNAGln and tRNAGlu until GlnRS appeared by horizontal gene transfer (HGT) from eukaryotes or a duplicate copy of GluRS (GluRS2) that only glutamylates tRNAGln appeared. The current understanding is based on limited sequence data and not always compatible with available experimental results. In particular, the origin of GluRS2 is poorly understood. RESULTS: A large database of bacterial GluRS, GlnRS, tRNAGln and the trimeric aminoacyl-tRNA-dependent amidotransferase (gatCAB), constructed from whole genomes by functionally annotating and classifying these enzymes according to their mutual presence and absence in the genome, was analyzed. Phylogenetic analyses showed that the catalytic and the anticodon-binding domains of functional GluRS2 (as in Helicobacter pylori) were independently acquired from evolutionarily distant hosts by HGT. Non-functional GluRS2 (as in Thermotoga maritima), on the other hand, was found to contain an anticodon-binding domain appended to a gene-duplicated catalytic domain. Several genomes were found to possess both GluRS2 and GlnRS, even though they share the common function of aminoacylating tRNAGln. GlnRS was widely distributed among bacterial phyla and although phylogenetic analyses confirmed the origin of most bacterial GlnRS to be through a single HGT from eukarya, many GlnRS sequences also appeared with evolutionarily distant phyla in phylogenetic tree. A GlnRS pseudogene could be identified in Sorangium cellulosum. CONCLUSIONS: Our analysis broadens the current understanding of bacterial GlxRS evolution and highlights the idiosyncratic evolution of GluRS2. Specifically we show that: i) GluRS2 is a chimera of mismatching catalytic and anticodon-binding domains, ii) the appearance of GlnRS and GluRS2 in a single bacterial genome indicating that the evolutionary histories of the two enzymes are distinct, iii) GlnRS is more widespread in bacteria than is believed, iv) bacterial GlnRS appeared both by HGT from eukarya and intra-bacterial HGT, v) presence of GlnRS pseudogene shows that many bacteria could not retain the newly acquired eukaryal GlnRS. The functional annotation of GluRS, without recourse to experiments, performed in this work, demonstrates the inherent and unique advantages of using whole genome over isolated sequence databases.


Asunto(s)
Aminoacil-ARNt Sintetasas/genética , Bacterias/enzimología , Proteínas Bacterianas/genética , Quimera/genética , Eucariontes/enzimología , Evolución Molecular , Genoma Bacteriano , Glutamato-ARNt Ligasa/genética , Aminoacil-ARNt Sintetasas/química , Aminoacil-ARNt Sintetasas/metabolismo , Animales , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Eucariontes/genética , Eucariontes/metabolismo , Duplicación de Gen , Transferencia de Gen Horizontal , Glutamato-ARNt Ligasa/química , Glutamato-ARNt Ligasa/metabolismo , Filogenia , ARN de Transferencia de Glutamina/metabolismo
15.
Nucleic Acids Res ; 42(1): 328-39, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24062157

RESUMEN

Double-stranded DNA breaks (DSB) cause bacteria to augment expression of DNA repair and various stress response proteins. A puzzling exception educes the anticodon nuclease (ACNase) RloC, which resembles the DSB responder Rad50 and the antiviral, translation-disabling ACNase PrrC. While PrrC's ACNase is regulated by a DNA restriction-modification (R-M) protein and a phage anti-DNA restriction peptide, RloC has an internal ACNase switch comprising a putative DSB sensor and coupled ATPase. Further exploration of RloC's controls revealed, first, that its ACNase is stabilized by the activating DNA and hydrolysed nucleotide. Second, DSB inducers activated RloC's ACNase in heterologous contexts as well as in a natural host, even when R-M deficient. Third, the DSB-induced activation of the indigenous RloC led to partial and temporary disruption of tRNA(Glu) and tRNA(Gln). Lastly, accumulation of CRISPR-derived RNA that occurred in parallel raises the possibility that the adaptive immunity and RloC provide the genotoxicated host with complementary protection from impending infections.


Asunto(s)
Acinetobacter/enzimología , Roturas del ADN de Doble Cadena , Ribonucleasas/metabolismo , Acinetobacter/inmunología , Inmunidad Adaptativa , Adenosina Difosfato/metabolismo , Activación Enzimática , Estabilidad de Enzimas , Geobacillus/enzimología , División del ARN , ARN de Transferencia de Glutamina/metabolismo , ARN de Transferencia de Ácido Glutámico/metabolismo
16.
Nucleic Acids Res ; 42(4): 2602-23, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24293650

RESUMEN

In Escherichia coli, the MnmEG complex modifies transfer RNAs (tRNAs) decoding NNA/NNG codons. MnmEG catalyzes two different modification reactions, which add an aminomethyl (nm) or carboxymethylaminomethyl (cmnm) group to position 5 of the anticodon wobble uridine using ammonium or glycine, respectively. In tRNA(cmnm5s2UUG)(Gln) and tRNA(cmnm5UmAA)(Leu), however, cmnm(5) appears as the final modification, whereas in the remaining tRNAs, the MnmEG products are converted into 5-methylaminomethyl (mnm(5)) through the two-domain, bi-functional enzyme MnmC. MnmC(o) transforms cmnm(5) into nm(5), whereas MnmC(m) converts nm(5) into mnm(5), thus producing an atypical network of modification pathways. We investigate the activities and tRNA specificity of MnmEG and the MnmC domains, the ability of tRNAs to follow the ammonium or glycine pathway and the effect of mnmC mutations on growth. We demonstrate that the two MnmC domains function independently of each other and that tRNA(cmnm5s2UUG)(Gln) and tRNA(cmnm5UmAA)(Leu), are substrates for MnmC(m), but not MnmC(o). Synthesis of mnm(5)s(2)U by MnmEG-MnmC in vivo avoids build-up of intermediates in tRNA(mnm5s2UUU)(Lys). We also show that MnmEG can modify all the tRNAs via the ammonium pathway. Strikingly, the net output of the MnmEG pathways in vivo depends on growth conditions and tRNA species. Loss of any MnmC activity has a biological cost under specific conditions.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , GTP Fosfohidrolasas/metabolismo , Complejos Multienzimáticos/metabolismo , Transferasas del Grupo 1-Carbono/metabolismo , ARN de Transferencia/metabolismo , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Proteínas de Escherichia coli/química , Complejos Multienzimáticos/química , Estructura Terciaria de Proteína , ARN de Transferencia de Glutamina/metabolismo , ARN de Transferencia de Leucina/metabolismo , Especificidad por Sustrato
17.
J Biol Chem ; 288(45): 32539-32552, 2013 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-24072705

RESUMEN

The malaria parasite Plasmodium falciparum and related organisms possess a relict plastid known as the apicoplast. Apicoplast protein synthesis is a validated drug target in malaria because antibiotics that inhibit translation in prokaryotes also inhibit apicoplast protein synthesis and are sometimes used for malaria prophylaxis or treatment. We identified components of an indirect aminoacylation pathway for Gln-tRNA(Gln) biosynthesis in Plasmodium that we hypothesized would be essential for apicoplast protein synthesis. Here, we report our characterization of the first enzyme in this pathway, the apicoplast glutamyl-tRNA synthetase (GluRS). We expressed the recombinant P. falciparum enzyme in Escherichia coli, showed that it is nondiscriminating because it glutamylates both apicoplast tRNA(Glu) and tRNA(Gln), determined its kinetic parameters, and demonstrated its inhibition by a known bacterial GluRS inhibitor. We also localized the Plasmodium berghei ortholog to the apicoplast in blood stage parasites but could not delete the PbGluRS gene. These data show that Gln-tRNA(Gln) biosynthesis in the Plasmodium apicoplast proceeds via an essential indirect aminoacylation pathway that is reminiscent of bacteria and plastids.


Asunto(s)
Apicoplastos/enzimología , Glutamato-ARNt Ligasa/metabolismo , Plasmodium berghei/enzimología , Plasmodium falciparum/enzimología , Biosíntesis de Proteínas/fisiología , Proteínas Protozoarias/metabolismo , Aminoacilación de ARN de Transferencia/fisiología , Apicoplastos/genética , Glutamato-ARNt Ligasa/genética , Humanos , Plasmodium berghei/genética , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , ARN de Transferencia de Glutamina/genética , ARN de Transferencia de Glutamina/metabolismo , ARN de Transferencia de Ácido Glutámico/genética , ARN de Transferencia de Ácido Glutámico/metabolismo
18.
J Mol Biol ; 425(20): 3888-906, 2013 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-23727144

RESUMEN

The 2-thiouridine (s(2)U) at the wobble position of certain bacterial and eukaryotic tRNAs enhances aminoacylation kinetics, assists proper codon-anticodon base pairing at the ribosome A-site, and prevents frameshifting during translation. By mass spectrometry of affinity-purified native Escherichia coli tRNA1(Gln)UUG, we show that the complete modification at the wobble position 34 is 5-carboxyaminomethyl-2-thiouridine (cmnm(5)s(2)U). The crystal structure of E. coli glutaminyl-tRNA synthetase (GlnRS) bound to native tRNA1(Gln) and ATP demonstrates that cmnm(5)s(2)U34 improves the order of a previously unobserved 11-amino-acid surface loop in the distal ß-barrel domain of the enzyme and imparts other local rearrangements of nearby amino acids that create a binding pocket for the 2-thio moiety. Together with previously solved structures, these observations explain the degenerate recognition of C34 and modified U34 by GlnRS. Comparative pre-steady-state aminoacylation kinetics of native tRNA1(Gln), synthetic tRNA1(Gln) containing s(2)U34 as sole modification, and unmodified wild-type and mutant tRNA1(Gln) and tRNA2(Gln) transcripts demonstrates that the exocyclic sulfur moiety improves tRNA binding affinity to GlnRS 10-fold compared with the unmodified transcript and that an additional fourfold improvement arises from the presence of the cmnm(5) moiety. Measurements of Gln-tRNA(Gln) interactions at the ribosome A-site show that the s(2)U modification enhances binding affinity to the glutamine codons CAA and CAG and increases the rate of GTP hydrolysis by E. coli EF-Tu by fivefold.


Asunto(s)
Anticodón/genética , Biosíntesis de Proteínas/fisiología , ARN de Transferencia/química , ARN de Transferencia/genética , Tiouridina/análogos & derivados , Adenosina Trifosfato/metabolismo , Aminoacil-ARNt Sintetasas/metabolismo , Anticodón/química , Secuencia de Bases , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Simulación del Acoplamiento Molecular , Conformación de Ácido Nucleico , Nucleósidos/química , Nucleósidos/metabolismo , Unión Proteica , Conformación Proteica , ARN de Transferencia/metabolismo , ARN de Transferencia de Glutamina/química , ARN de Transferencia de Glutamina/genética , ARN de Transferencia de Glutamina/metabolismo , Ribosomas/metabolismo , Tiouridina/metabolismo
19.
Nucleic Acids Res ; 40(18): 9171-81, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22821561

RESUMEN

Aminoacylation of transfer RNA(Gln) (tRNA(Gln)) is performed by distinct mechanisms in different kingdoms and represents the most diverged route of aminoacyl-tRNA synthesis found in nature. In Saccharomyces cerevisiae, cytosolic Gln-tRNA(Gln) is generated by direct glutaminylation of tRNA(Gln) by glutaminyl-tRNA synthetase (GlnRS), whereas mitochondrial Gln-tRNA(Gln) is formed by an indirect pathway involving charging by a non-discriminating glutamyl-tRNA synthetase and the subsequent transamidation by a specific Glu-tRNA(Gln) amidotransferase. Previous studies showed that fusion of a yeast non-specific tRNA-binding cofactor, Arc1p, to Escherichia coli GlnRS enables the bacterial enzyme to substitute for its yeast homologue in vivo. We report herein that the same fusion enzyme, upon being imported into mitochondria, substituted the indirect pathway for Gln-tRNA(Gln) synthesis as well, despite significant differences in the identity determinants of E. coli and yeast cytosolic and mitochondrial tRNA(Gln) isoacceptors. Fusion of Arc1p to the bacterial enzyme significantly enhanced its aminoacylation activity towards yeast tRNA(Gln) isoacceptors in vitro. Our study provides a mechanism by which trans-kingdom rescue of distinct pathways of Gln-tRNA(Gln) synthesis can be conferred by a single enzyme.


Asunto(s)
Aminoacil-ARNt Sintetasas/metabolismo , Citoplasma/enzimología , Mitocondrias/enzimología , ARN de Transferencia de Glutamina/metabolismo , Aminoacilación de ARN de Transferencia , Aminoacil-ARNt Sintetasas/genética , Secuencia de Bases , Estabilidad de Enzimas , Escherichia coli/enzimología , Escherichia coli/genética , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , ARN de Transferencia de Glutamina/química , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
20.
Nucleic Acids Res ; 40(16): 7967-74, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22661575

RESUMEN

Protein biosynthesis requires aminoacyl-transfer RNA (tRNA) synthetases to provide aminoacyl-tRNA substrates for the ribosome. Most bacteria and all archaea lack a glutaminyl-tRNA synthetase (GlnRS); instead, Gln-tRNA(Gln) is produced via an indirect pathway: a glutamyl-tRNA synthetase (GluRS) first attaches glutamate (Glu) to tRNA(Gln), and an amidotransferase converts Glu-tRNA(Gln) to Gln-tRNA(Gln). The human pathogen Helicobacter pylori encodes two GluRS enzymes, with GluRS2 specifically aminoacylating Glu onto tRNA(Gln). It was proposed that GluRS2 is evolving into a bacterial-type GlnRS. Herein, we have combined rational design and directed evolution approaches to test this hypothesis. We show that, in contrast to wild-type (WT) GlnRS2, an engineered enzyme variant (M110) with seven amino acid changes is able to rescue growth of the temperature-sensitive Escherichia coli glnS strain UT172 at its non-permissive temperature. In vitro kinetic analyses reveal that WT GluRS2 selectively acylates Glu over Gln, whereas M110 acylates Gln 4-fold more efficiently than Glu. In addition, M110 hydrolyzes adenosine triphosphate 2.5-fold faster in the presence of Glu than Gln, suggesting that an editing activity has evolved in this variant to discriminate against Glu. These data imply that GluRS2 is a few steps away from evolving into a GlnRS and provides a paradigm for studying aminoacyl-tRNA synthetase evolution using directed engineering approaches.


Asunto(s)
Aminoacil-ARNt Sintetasas/química , Glutamato-ARNt Ligasa/química , Secuencia de Aminoácidos , Aminoacil-ARNt Sintetasas/genética , Aminoacil-ARNt Sintetasas/metabolismo , Dominio Catalítico , Evolución Molecular Dirigida , Escherichia coli/enzimología , Glutamato-ARNt Ligasa/genética , Glutamato-ARNt Ligasa/metabolismo , Ácido Glutámico/metabolismo , Helicobacter pylori/enzimología , Datos de Secuencia Molecular , Ingeniería de Proteínas , ARN de Transferencia de Glutamina/metabolismo , Alineación de Secuencia , Temperatura , Aminoacilación de ARN de Transferencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...