Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.387
Filtrar
1.
Cell Genom ; 4(10): 100631, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39389014

RESUMEN

Glycemic traits are critical indicators of maternal and fetal health during pregnancy. We performed genetic analysis for five glycemic traits in 14,744 Chinese pregnant women. Our genome-wide association study identified 25 locus-trait associations, including established links between gestational diabetes mellitus (GDM) and the genes CDKAL1 and MTNR1B. Notably, we discovered a novel association between fasting glucose during pregnancy and the ESR1 gene (estrogen receptor), which was validated by an independent study in pregnant women. The ESR1-GDM link was recently reported by the FinnGen project. Our work enhances the findings in East Asian populations and highlights the need for independent studies. Further analyses, including genetic correlation, Mendelian randomization, and transcriptome-wide association studies, provided genetic insights into the relationship between pregnancy glycemic traits and hypertension. Overall, our findings advance the understanding of genetic architecture of pregnancy glycemic traits, especially in East Asian populations.


Asunto(s)
Glucemia , Diabetes Gestacional , Estudio de Asociación del Genoma Completo , Humanos , Femenino , Embarazo , Diabetes Gestacional/genética , Diabetes Gestacional/sangre , Glucemia/metabolismo , Adulto , Polimorfismo de Nucleótido Simple , Receptor alfa de Estrógeno/genética , China/epidemiología , Quinasa 5 Dependiente de la Ciclina/genética , Pueblos del Este de Asia , ARNt Metiltransferasas , Receptor de Melatonina MT2
2.
Proc Natl Acad Sci U S A ; 121(35): e2401743121, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39159370

RESUMEN

While the centrality of posttranscriptional modifications to RNA biology has long been acknowledged, the function of the vast majority of modified sites remains to be discovered. Illustrative of this, there is not yet a discrete biological role assigned for one of the most highly conserved modifications, 5-methyluridine at position 54 in tRNAs (m5U54). Here, we uncover contributions of m5U54 to both tRNA maturation and protein synthesis. Our mass spectrometry analyses demonstrate that cells lacking the enzyme that installs m5U in the T-loop (TrmA in Escherichia coli, Trm2 in Saccharomyces cerevisiae) exhibit altered tRNA modification patterns. Furthermore, m5U54-deficient tRNAs are desensitized to small molecules that prevent translocation in vitro. This finding is consistent with our observations that relative to wild-type cells, trm2Δ cell growth and transcriptome-wide gene expression are less perturbed by translocation inhibitors. Together our data suggest a model in which m5U54 acts as an important modulator of tRNA maturation and translocation of the ribosome during protein synthesis.


Asunto(s)
Escherichia coli , ARN de Transferencia , Ribosomas , Saccharomyces cerevisiae , Uridina , ARN de Transferencia/metabolismo , ARN de Transferencia/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Ribosomas/metabolismo , Uridina/metabolismo , Escherichia coli/metabolismo , Escherichia coli/genética , Procesamiento Postranscripcional del ARN , Biosíntesis de Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , ARNt Metiltransferasas/metabolismo , ARNt Metiltransferasas/genética
3.
Life Sci Alliance ; 7(9)2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38986569

RESUMEN

Maps of the RNA modification 5-methylcytosine (m5C) often diverge markedly not only because of differences in detection methods, data depand analysis pipelines but also biological factors. We re-analysed bisulfite RNA sequencing datasets from five human cell lines and seven tissues using a coherent m5C site calling pipeline. With the resulting union list of 6,393 m5C sites, we studied site distribution, enzymology, interaction with RNA-binding proteins and molecular function. We confirmed tRNA:m5C methyltransferases NSUN2 and NSUN6 as the main mRNA m5C "writers," but further showed that the rRNA:m5C methyltransferase NSUN5 can also modify mRNA. Each enzyme recognises mRNA features that strongly resemble their canonical substrates. By analysing proximity between mRNA m5C sites and footprints of RNA-binding proteins, we identified new candidates for functional interactions, including the RNA helicases DDX3X, involved in mRNA translation, and UPF1, an mRNA decay factor. We found that lack of NSUN2 in HeLa cells affected both steady-state levels of, and UPF1-binding to, target mRNAs. Our studies emphasise the emerging diversity of m5C writers and readers and their effect on mRNA function.


Asunto(s)
5-Metilcitosina , Metiltransferasas , Biosíntesis de Proteínas , ARN Mensajero , Humanos , 5-Metilcitosina/metabolismo , ARN Mensajero/metabolismo , ARN Mensajero/genética , Metiltransferasas/metabolismo , Metiltransferasas/genética , Células HeLa , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Especificidad por Sustrato , Metilación , Estabilidad del ARN/genética , ARNt Metiltransferasas
4.
Nucleic Acids Res ; 52(15): 9230-9246, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-38950903

RESUMEN

In higher eukaryotes, tRNA methyltransferase 10A (TRMT10A) is responsible for N1-methylguanosine modification at position nine of various cytoplasmic tRNAs. Pathogenic mutations in TRMT10A cause intellectual disability, microcephaly, diabetes, and short stature in humans, and generate cytotoxic tRNA fragments in cultured cells; however, it is not clear how TRMT10A supports codon translation or brain functions. Here, we generated Trmt10a null mice and showed that tRNAGln(CUG) and initiator methionine tRNA levels were universally decreased in various tissues; the same was true in a human cell line lacking TRMT10A. Ribosome profiling of mouse brain revealed that dysfunction of TRMT10A causes ribosome slowdown at the Gln(CAG) codon and increases translation of Atf4 due to higher frequency of leaky scanning of its upstream open reading frames. Broadly speaking, translation of a subset of mRNAs, especially those for neuronal structures, is perturbed in the mutant brain. Despite not showing discernable defects in the pancreas, liver, or kidney, Trmt10a null mice showed lower body weight and smaller hippocampal postsynaptic densities, which is associated with defective synaptic plasticity and memory. Taken together, our study provides mechanistic insight into the roles of TRMT10A in the brain, and exemplifies the importance of universal tRNA modification during translation of specific codons.


Asunto(s)
Encéfalo , Glutamina , Biosíntesis de Proteínas , ARNt Metiltransferasas , Animales , Humanos , Masculino , Ratones , Encéfalo/metabolismo , Codón/genética , Glutamina/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Ribosomas/metabolismo , Ribosomas/genética , ARN de Transferencia de Metionina/metabolismo , ARN de Transferencia de Metionina/genética , ARNt Metiltransferasas/genética , ARNt Metiltransferasas/metabolismo
5.
Nat Commun ; 15(1): 4683, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824131

RESUMEN

The human mitochondrial genome is transcribed into two RNAs, containing mRNAs, rRNAs and tRNAs, all dedicated to produce essential proteins of the respiratory chain. The precise excision of tRNAs by the mitochondrial endoribonucleases (mt-RNase), P and Z, releases all RNA species from the two RNA transcripts. The tRNAs then undergo 3'-CCA addition. In metazoan mitochondria, RNase P is a multi-enzyme assembly that comprises the endoribonuclease PRORP and a tRNA methyltransferase subcomplex. The requirement for this tRNA methyltransferase subcomplex for mt-RNase P cleavage activity, as well as the mechanisms of pre-tRNA 3'-cleavage and 3'-CCA addition, are still poorly understood. Here, we report cryo-EM structures that visualise four steps of mitochondrial tRNA maturation: 5' and 3' tRNA-end processing, methylation and 3'-CCA addition, and explain the defined sequential order of the tRNA processing steps. The methyltransferase subcomplex recognises the pre-tRNA in a distinct mode that can support tRNA-end processing and 3'-CCA addition, likely resulting from an evolutionary adaptation of mitochondrial tRNA maturation complexes to the structurally-fragile mitochondrial tRNAs. This subcomplex can also ensure a tRNA-folding quality-control checkpoint before the sequential docking of the maturation enzymes. Altogether, our study provides detailed molecular insight into RNA-transcript processing and tRNA maturation in human mitochondria.


Asunto(s)
Mitocondrias , ARN de Transferencia , Ribonucleasa P , ARNt Metiltransferasas , Humanos , ARN de Transferencia/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/química , Mitocondrias/metabolismo , Ribonucleasa P/metabolismo , Ribonucleasa P/genética , Ribonucleasa P/química , ARNt Metiltransferasas/metabolismo , ARNt Metiltransferasas/genética , ARNt Metiltransferasas/química , Procesamiento Postranscripcional del ARN , Microscopía por Crioelectrón , ARN Mitocondrial/metabolismo , ARN Mitocondrial/genética , ARN Mitocondrial/química , Metilación , Conformación de Ácido Nucleico , Modelos Moleculares , Precursores del ARN/metabolismo , Precursores del ARN/genética
6.
Proc Natl Acad Sci U S A ; 121(26): e2401154121, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38889150

RESUMEN

Almost all elongator tRNAs (Transfer RNAs) harbor 5-methyluridine 54 and pseudouridine 55 in the T arm, generated by the enzymes TrmA and TruB, respectively, in Escherichia coli. TrmA and TruB both act as tRNA chaperones, and strains lacking trmA or truB are outcompeted by wild type. Here, we investigate how TrmA and TruB contribute to cellular fitness. Deletion of trmA and truB in E. coli causes a global decrease in aminoacylation and alters other tRNA modifications such as acp3U47. While overall protein synthesis is not affected in ΔtrmA and ΔtruB strains, the translation of a subset of codons is significantly impaired. As a consequence, we observe translationally reduced expression of many specific proteins, that are either encoded with a high frequency of these codons or that are large proteins. The resulting proteome changes are not related to a specific growth phenotype, but overall cellular fitness is impaired upon deleting trmA and truB in accordance with a general protein synthesis impact. In conclusion, we demonstrate that universal modifications of the tRNA T arm are critical for global tRNA function by enhancing tRNA maturation, tRNA aminoacylation, and translation, thereby improving cellular fitness irrespective of the growth conditions which explains the conservation of trmA and truB.


Asunto(s)
Escherichia coli , ARN de Transferencia , ARN de Transferencia/metabolismo , ARN de Transferencia/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Biosíntesis de Proteínas , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , ARNt Metiltransferasas/metabolismo , ARNt Metiltransferasas/genética , Procesamiento Postranscripcional del ARN
8.
Nat Struct Mol Biol ; 31(10): 1614-1624, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38918637

RESUMEN

Methylation of cytosine 32 in the anticodon loop of tRNAs to 3-methylcytosine (m3C) is crucial for cellular translation fidelity. Misregulation of the RNA methyltransferases setting this modification can cause aggressive cancers and metabolic disturbances. Here, we report the cryo-electron microscopy structure of the human m3C tRNA methyltransferase METTL6 in complex with seryl-tRNA synthetase (SerRS) and their common substrate tRNASer. Through the complex structure, we identify the tRNA-binding domain of METTL6. We show that SerRS acts as the tRNASer substrate selection factor for METTL6. We demonstrate that SerRS augments the methylation activity of METTL6 and that direct contacts between METTL6 and SerRS are necessary for efficient tRNASer methylation. Finally, on the basis of the structure of METTL6 in complex with SerRS and tRNASer, we postulate a universal tRNA-binding mode for m3C RNA methyltransferases, including METTL2 and METTL8, suggesting that these mammalian paralogs use similar ways to engage their respective tRNA substrates and cofactors.


Asunto(s)
Microscopía por Crioelectrón , Modelos Moleculares , ARN de Transferencia , Serina-ARNt Ligasa , Humanos , ARN de Transferencia/metabolismo , ARN de Transferencia/química , Serina-ARNt Ligasa/metabolismo , Serina-ARNt Ligasa/química , Metilación , ARNt Metiltransferasas/química , ARNt Metiltransferasas/metabolismo , Metiltransferasas/química , Metiltransferasas/metabolismo , Unión Proteica , Sitios de Unión
9.
Elife ; 122024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38814682

RESUMEN

Nonstructural protein 5 (Nsp5) is the main protease of SARS-CoV-2 that cleaves viral polyproteins into individual polypeptides necessary for viral replication. Here, we show that Nsp5 binds and cleaves human tRNA methyltransferase 1 (TRMT1), a host enzyme required for a prevalent post-transcriptional modification in tRNAs. Human cells infected with SARS-CoV-2 exhibit a decrease in TRMT1 protein levels and TRMT1-catalyzed tRNA modifications, consistent with TRMT1 cleavage and inactivation by Nsp5. Nsp5 cleaves TRMT1 at a specific position that matches the consensus sequence of SARS-CoV-2 polyprotein cleavage sites, and a single mutation within the sequence inhibits Nsp5-dependent proteolysis of TRMT1. The TRMT1 cleavage fragments exhibit altered RNA binding activity and are unable to rescue tRNA modification in TRMT1-deficient human cells. Compared to wild-type human cells, TRMT1-deficient human cells infected with SARS-CoV-2 exhibit reduced levels of intracellular viral RNA. These findings provide evidence that Nsp5-dependent cleavage of TRMT1 and perturbation of tRNA modification patterns contribute to the cellular pathogenesis of SARS-CoV-2 infection.


The virus responsible for COVID-19 infections is known as SARS-CoV-2. Like all viruses, SARS-CoV-2 carries instructions to make proteins and other molecules that play essential roles in enabling the virus to multiply and spread. Viruses are unable to make these molecules themselves, so they infect cells and trick them into making the molecules and assembling new virus particles on their behalf instead. When SARS-CoV2 infects cells, the host cells are reprogrammed to make chains containing several virus proteins that need to be severed from each other by a virus enzyme, known as Nsp5, to enable the proteins to work properly. Previous studies suggested that Nsp5 may also interact with a human protein known as TRMT1, which helps with the production of new proteins in cells. However, it was not clear how Nsp5 may bind to TRMT1 or how this interaction may affect the host cell. Zhang et al. used biochemical and molecular techniques in human cells to study how Nsp5 interacts with TRMT1. The experiments found that the virus enzyme cuts TRMT1 into fragments that are inactive and are subsequently destroyed by the cells. Moreover, Nsp5 cuts TRMT1 at exactly the same position corresponding to the cleavage sites of the viral proteins. Mutation of the sequence in TRMT1 renders Nsp5 ineffective at cutting the protein. SARS-CoV-2 infection caused TRMT1 levels to decrease inside the cells, in turn, leading to a drop in TRMT1 activity. The virus multiplied less in cells that were unable to produce TRMT1 compared to normal human cells, suggesting that the virus benefits from TRMT1 early during infection, before inactivating it at a later point. These findings suggest that one way SARS-CoV-2 causes disease is by decreasing the levels of a human protein that regulates protein production. In the future, the work of Zhang et al. may provide new markers for detecting infections of SARS-CoV-2 and other similar viruses and guide efforts to make more effective therapies against them.


Asunto(s)
Proteolisis , ARN de Transferencia , SARS-CoV-2 , ARNt Metiltransferasas , Humanos , Proteasas 3C de Coronavirus/metabolismo , Proteasas 3C de Coronavirus/genética , COVID-19/virología , COVID-19/metabolismo , Células HEK293 , ARN de Transferencia/metabolismo , ARN de Transferencia/genética , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , ARNt Metiltransferasas/metabolismo , ARNt Metiltransferasas/genética , Proteínas no Estructurales Virales/metabolismo , Proteínas no Estructurales Virales/genética , Replicación Viral
10.
Nucleic Acids Res ; 52(10): 5841-5851, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38716877

RESUMEN

Therapeutic fluoropyrimidines 5-fluorouracil (5-FU) and 5-fluorocytosine (5-FC) are in long use for treatment of human cancers and severe invasive fungal infections, respectively. 5-Fluorouridine triphosphate represents a bioactive metabolite of both drugs and is incorporated into target cells' RNA. Here we use the model fungus Saccharomyces cerevisiae to define fluorinated tRNA as a key mediator of 5-FU and 5-FC cytotoxicity when specific tRNA methylations are absent. tRNA methylation deficiency caused by loss of Trm4 and Trm8 was previously shown to trigger an RNA quality control mechanism resulting in partial destabilization of hypomodified tRNAValAAC. We demonstrate that, following incorporation into tRNA, fluoropyrimidines strongly enhance degradation of yeast tRNAValAAC lacking Trm4 and Trm8 dependent methylations. At elevated temperature, such effect occurs already in absence of Trm8 alone. Genetic approaches and quantification of tRNA modification levels reveal that enhanced fluoropyrimidine cytotoxicity results from additional, drug induced uridine modification loss and activation of tRNAValAAC decay involving the exonuclease Xrn1. These results suggest that inhibition of tRNA methylation may be exploited to boost therapeutic efficiency of 5-FU and 5-FC.


Asunto(s)
Flucitosina , Fluorouracilo , ARN de Transferencia , Saccharomyces cerevisiae , Exorribonucleasas/metabolismo , Exorribonucleasas/genética , Flucitosina/farmacología , Fluorouracilo/farmacología , Metilación , Estabilidad del ARN/efectos de los fármacos , ARN de Transferencia/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , ARNt Metiltransferasas/metabolismo , ARNt Metiltransferasas/genética , Uridina/metabolismo
11.
Plant Mol Biol ; 114(3): 65, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816532

RESUMEN

Telomeres are conserved chromosomal structures necessary for continued cell division and proliferation. In addition to the classical telomerase pathway, multiple other genes including those involved in ribosome metabolism and chromatin modification contribute to telomere length maintenance. We previously reported that Arabidopsis thaliana ribosome biogenesis genes OLI2/NOP2A, OLI5/RPL5A and OLI7/RPL5B have critical roles in telomere length regulation. These three OLIGOCELLULA genes were also shown to function in cell proliferation and expansion control and to genetically interact with the transcriptional co-activator ANGUSTIFOLIA3 (AN3). Here we show that AN3-deficient plants progressively lose telomeric DNA in early homozygous mutant generations, but ultimately establish a new shorter telomere length setpoint by the fifth mutant generation with a telomere length similar to oli2/nop2a -deficient plants. Analysis of double an3 oli2 mutants indicates that the two genes are epistatic for telomere length control. Telomere shortening in an3 and oli mutants is not caused by telomerase inhibition; wild type levels of telomerase activity are detected in all analyzed mutants in vitro. Late generations of an3 and oli mutants are prone to stem cell damage in the root apical meristem, implying that genes regulating telomere length may have conserved functional roles in stem cell maintenance mechanisms. Multiple instances of anaphase fusions in late generations of oli5 and oli7 mutants were observed, highlighting an unexpected effect of ribosome biogenesis factors on chromosome integrity. Overall, our data implicate AN3 transcription coactivator and OLIGOCELLULA proteins in the establishment of telomere length set point in plants and further suggest that multiple regulators with pleiotropic functions can connect telomere biology with cell proliferation and cell expansion pathways.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , División Celular , Telomerasa , Telómero , Transactivadores , ARNt Metiltransferasas , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , División Celular/genética , Proliferación Celular/genética , Regulación de la Expresión Génica de las Plantas , Meristema/genética , Meristema/metabolismo , Mutación , Telomerasa/genética , Telomerasa/metabolismo , Telómero/genética , Telómero/metabolismo , Homeostasis del Telómero/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Transactivadores/genética , Transactivadores/metabolismo , ARNt Metiltransferasas/genética , ARNt Metiltransferasas/metabolismo
12.
Nutrients ; 16(8)2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38674857

RESUMEN

Disordered eating contributes to weight gain, obesity, and type 2 diabetes (T2D), but the precise mechanisms underlying the development of different eating patterns and connecting them to specific metabolic phenotypes remain unclear. We aimed to identify genetic variants linked to eating behaviour and investigate its causal relationships with metabolic traits using Mendelian randomization (MR). We tested associations between 30 genetic variants and eating patterns in individuals with T2D from the Volga-Ural region and investigated causal relationships between variants associated with eating patterns and various metabolic and anthropometric traits using data from the Volga-Ural population and large international consortia. We detected associations between HTR1D and CDKAL1 and external eating; between HTR2A and emotional eating; between HTR2A, NPY2R, HTR1F, HTR3A, HTR2C, CXCR2, and T2D. Further analyses in a separate group revealed significant associations between metabolic syndrome (MetS) and the loci in CRP, ADCY3, GHRL, CDKAL1, BDNF, CHRM4, CHRM1, HTR3A, and AKT1 genes. MR results demonstrated an inverse causal relationship between external eating and glycated haemoglobin levels in the Volga-Ural sample. External eating influenced anthropometric traits such as body mass index, height, hip circumference, waist circumference, and weight in GWAS cohorts. Our findings suggest that eating patterns impact both anthropometric and metabolic traits.


Asunto(s)
Diabetes Mellitus Tipo 2 , Conducta Alimentaria , Ghrelina , Análisis de la Aleatorización Mendeliana , Fenotipo , Humanos , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/etiología , Femenino , Masculino , Síndrome Metabólico/genética , Síndrome Metabólico/etiología , ARNt Metiltransferasas/genética , Hemoglobina Glucada/metabolismo , Hemoglobina Glucada/análisis , Persona de Mediana Edad , Índice de Masa Corporal , Adenilil Ciclasas/genética , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Adulto , Circunferencia de la Cintura , Variación Genética
13.
Annu Rev Biochem ; 93(1): 109-137, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38598854

RESUMEN

Methylation of RNA nucleotides represents an important layer of gene expression regulation, and perturbation of the RNA methylome is associated with pathophysiology. In cells, RNA methylations are installed by RNA methyltransferases (RNMTs) that are specialized to catalyze particular types of methylation (ribose or different base positions). Furthermore, RNMTs must specifically recognize their appropriate target RNAs within the RNA-dense cellular environment. Some RNMTs are catalytically active alone and achieve target specificity via recognition of sequence motifs and/or RNA structures. Others function together with protein cofactors that can influence stability, S-adenosyl-L-methionine binding, and RNA affinity as well as aiding specific recruitment and catalytic activity. Association of RNMTs with guide RNAs represents an alternative mechanism to direct site-specific methylation by an RNMT that lacks intrinsic specificity. Recently, ribozyme-catalyzed methylation of RNA has been achieved in vitro, and here, we compare these different strategies for RNA methylation from structural and mechanistic perspectives.


Asunto(s)
Conformación de Ácido Nucleico , ARN Catalítico , ARN , ARN Catalítico/metabolismo , ARN Catalítico/química , ARN Catalítico/genética , Metilación , ARN/metabolismo , ARN/genética , ARN/química , Humanos , S-Adenosilmetionina/metabolismo , S-Adenosilmetionina/química , Nucleótidos/metabolismo , Nucleótidos/química , Nucleótidos/genética , ARNt Metiltransferasas/metabolismo , ARNt Metiltransferasas/genética , ARNt Metiltransferasas/química , Especificidad por Sustrato , Animales , Modelos Moleculares
14.
Funct Integr Genomics ; 24(2): 58, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38489049

RESUMEN

Recent studies have shown that NOP2, a nucleolar protein, is up-regulated in various cancers, suggesting a potential link to tumor aggressiveness and unfavorable outcomes. This study examines NOP2's role in lung adenocarcinoma (LUAD), a context where its implications remain unclear. Utilizing bioinformatics, we assessed 513 LUAD and 59 normal tissue samples from The Cancer Genome Atlas (TCGA) to explore NOP2's diagnostic and prognostic significance in LUAD. Additionally, in vitro experiments compared NOP2 expression between Beas-2b and A549 cells. Advanced databases and analytical tools, including LINKEDOMICS, STRING, and TISIDB, were employed to further elucidate NOP2's association with LUAD. Our findings indicate a significantly higher expression of NOP2 mRNA and protein in A549 cells compared to Beas-2b cells (P < 0.001). In LUAD, elevated NOP2 levels were linked to decreased Overall Survival (OS) and advanced clinical stages. Univariate Cox analysis revealed that high NOP2 expression correlated with poorer OS in LUAD (P < 0.01), a finding independently supported by multivariate Cox analysis (P < 0.05). The relationship between NOP2 expression and LUAD risk was presented via a Nomogram. Additionally, Gene Set Enrichment Analysis (GSEA) identified seven NOP2-related signaling pathways. A focal point of our research was the interplay between NOP2 and tumor-immune interactions. Notably, a negative correlation was observed between NOP2 expression and the immune infiltration levels of macrophages, neutrophils, mast cells, Natural Killer (NK) cells, and CD8 + T cells in LUAD. Moreover, the expression of NOP2 was related to the sensitivity of various chemotherapeutic drugs. In vitro, we found that downregulating NOP2 can decrease the proliferation, migration and invasion of A549 cells. Furthermore, NOP2 can regulate Caspase3-mediated apoptosis. Collectively, particularly regarding prognosis, immune infiltration and vitro experiments, these findings suggest NOP2's potential of serving as a poor-prognostic biomarker for LUAD and aggravating the malignancy of lung adenocarcinoma cells.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Proteínas Nucleares , Adenocarcinoma del Pulmón/genética , Apoptosis , Biología Computacional , Neoplasias Pulmonares/genética , ARNt Metiltransferasas
15.
RNA ; 30(5): 548-559, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38531647

RESUMEN

N 1-methyl adenosine (m1A) is a widespread RNA modification present in tRNA, rRNA, and mRNA. m1A modification sites in tRNAs are evolutionarily conserved and its formation on tRNA is catalyzed by methyltransferase TRMT61A and TRMT6 complex. m1A promotes translation initiation and elongation. Due to its positive charge under physiological conditions, m1A can notably modulate RNA structure. It also blocks Watson-Crick-Franklin base-pairing and causes mutation and truncation during reverse transcription. Several misincorporation-based high-throughput sequencing methods have been developed to sequence m1A. In this study, we introduce a reduction-based m1A sequencing (red-m1A-seq). We report that NaBH4 reduction of m1A can improve the mutation and readthrough rates using commercially available RT enzymes to give a better positive signature, while alkaline-catalyzed Dimroth rearrangement can efficiently convert m1A to m6A to provide good controls, allowing the detection of m1A with higher sensitivity and accuracy. We applied red-m1A-seq to sequence human small RNA, and we not only detected all the previously reported tRNA m1A sites, but also new m1A sites in mt-tRNAAsn-GTT and 5.8S rRNA.


Asunto(s)
ARN de Transferencia , ARN , Humanos , Metilación , ARN de Transferencia/química , ARN/genética , ARNt Metiltransferasas/genética , ARNt Metiltransferasas/metabolismo , Metiltransferasas/metabolismo , ARN Mensajero/genética
16.
J Gene Med ; 26(2): e3666, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38391150

RESUMEN

BACKGROUND: Proliferation, metabolism, tumor occurrence and development in gliomas are greatly influenced by RNA modifications. However, no research has integrated the four RNA methylation regulators of m6A, m1A, m5C and m7G in gliomas to analyze their relationship with glioma prognosis and intratumoral heterogeneity. METHODS: Based on three in-house single-cell RNA-sequencing (scRNA-seq) data, the glioma heterogeneity and characteristics of m6A/m1A/m5C/m7G-related regulators were elucidated. Based on publicly available bulk RNA-sequencing (RNA-seq) data, a risk-score system for predicting the overall survival (OS) for gliomas was established by three machine learning methods and multivariate Cox regression analysis, and validated in an independent cohort. RESULTS: Seven cell types were identified in gliomas by three scRNA-seq data, and 22 m6A/m1A/m5C/m7G-related regulators among the marker genes of different cell subtypes were discovered. Three m6A/m1A/m5C/m7G-related regulators were selected to construct prognostic risk-score model, including EIFA, NSUN6 and TET1. The high-risk patients showed higher immune checkpoint expression, higher tumor microenvironment scores, as well as higher tumor mutation burden and poorer prognosis compared with low-risk patients. Additionally, the area under the curve values of the risk score and nomogram were 0.833 and 0.922 for 3 year survival and 0.759 and 0.885 for 5 year survival for gliomas. EIF3A was significantly highly expressed in glioma tissues in our in-house RNA-sequencing data (p < 0.05). CONCLUSION: These findings may contribute to further understanding of the role of m6A/m1A/m5C/m7G-related regulators in gliomas, and provide novel and reliable biomarkers for gliomas prognosis and treatment.


Asunto(s)
Adenina/análogos & derivados , Glioma , Análisis de Expresión Génica de una Sola Célula , Humanos , RNA-Seq , Glioma/genética , ARN , Microambiente Tumoral/genética , Oxigenasas de Función Mixta , Proteínas Proto-Oncogénicas , ARNt Metiltransferasas
17.
J Exp Clin Cancer Res ; 43(1): 44, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38326863

RESUMEN

BACKGROUND: m6A modification is currently recognized as a major driver of RNA function that maintains cancer cell homeostasis. Long non-coding (Lnc) RNAs control cell proliferation and play an important role in the occurrence and progression of colorectal cancer (CRC). ZCCHC4 is a newly discovered m6A methyltransferase whose role and mechanism in tumors have not yet been elucidated. METHODS: The EpiQuik m6A RNA methylation kit was used to detect the level of total RNA m6A in six types of digestive tract tumors. The Kaplan-Meier method and receiver operating characteristic curve were used to evaluate the prognostic and diagnostic value of the newly discovered m6A methyltransferase, ZCCHC4, in CRC. The effects on CRC growth in vitro and in vivo were studied using gain- and loss-of-function experiments. The epigenetic mechanisms underlying ZCCHC4 upregulation in CRC were studied using RIP, MeRIP-seq, RNA pull-down, and animal experiments. RESULTS: We reported that the ZCCHC4-LncRNAGHRLOS-KDM5D axis regulates the growth of CRC in vitro and in vivo. We found that ZCCHC4 was upregulated in primary CRC samples and could predict adverse clinical outcomes in patients with CRC. Mechanistically, ZCCHC4 downregulated LncRNAGHRLOS to promote CRC tumorigenesis. As a downstream molecule of LncRNAGHRLOS, KDM5D directly controls CRC cell proliferation, migration, and invasion. CONCLUSION: This study suggests that the ZCCHC4 axis contributes to the tumorigenesis and progression of CRC and that ZCCHC4 may be a potential biomarker for this malignancy.


Asunto(s)
Adenina , Neoplasias Colorrectales , ARN Largo no Codificante , Animales , Humanos , Adenina/análogos & derivados , Carcinogénesis/genética , Línea Celular Tumoral , Transformación Celular Neoplásica/genética , Neoplasias Colorrectales/patología , Regulación hacia Abajo , Epigénesis Genética , Histona Demetilasas/genética , Metiltransferasas/metabolismo , Antígenos de Histocompatibilidad Menor , ARN , ARN Largo no Codificante/genética , ARNt Metiltransferasas/genética , ARNt Metiltransferasas/metabolismo
18.
Pathol Res Pract ; 254: 154987, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38237400

RESUMEN

The cell proliferation protein 123 (CDC123) is involved in the synthesis of the eukaryotic initiation factor 2 (eIF2), which regulates eukaryotic translation. Although CDC123 is considered a candidate oncogene in breast cancer, its expression and role in Hepatocellular Carcinoma (HCC) remain unknown. Herein, we obtained the CDC123 RNA-seq and clinical prognostic data from the TCGA database. The mRNA level revealed that CDC123 was highly expressed in HCC patients, and Kaplan-Meier analysis implied better prognoses in HCC patients with low CDC123 expression (P < 0.001). The multivariate Cox analysis revealed that the CDC123 level was an independent prognostic factor (P < 0.001). We further confirmed a high CDC123 expression in HCC cell lines. Additionally, we found that CDC123 knockdown in HCC cell lines significantly inhibited cellular proliferation, invasion, and migration. Moreover, CDC123 was co-expressed with the CDK5 Regulatory Subunit-Associated Protein 1 Like 1 (CDKAL1), whose mRNA level was decreased after silencing CDC123. Therefore, we hypothesized that CDC123 promotes HCC progression by regulating CDKAL1.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Proliferación Celular/genética , Pronóstico , ARN Mensajero , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , Movimiento Celular/genética , ARNt Metiltransferasas/genética , ARNt Metiltransferasas/metabolismo
20.
J Cell Mol Med ; 28(1): e18006, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37850543

RESUMEN

Hepatoblastoma, the most frequently diagnosed primary paediatric liver tumour, bears the lowest somatic mutation burden among paediatric neoplasms. Therefore, it is essential to identify pathogenic germline genetic variants, especially those in oncogenic genes, for this disease. The tRNA methyltransferase 6 noncatalytic subunit (TRMT6) forms a tRNA methyltransferase complex with TRMT61A to catalyse adenosine methylation at position N1 of RNAs. TRMT6 has displayed tumour-promoting functions in several cancer types. However, the contribution of its genetic variants to hepatoblastoma remains unclear. In this study, we investigated the association between four TRMT6 polymorphisms (rs236170 A > G, rs451571 T > C, rs236188 G > A and rs236110 C > A) and the risk of hepatoblastoma in a cohort of 313 cases and 1446 healthy controls. Germline DNA was subjected to polymorphism genotyping via the TaqMan qPCR method. Odds ratio (OR) and 95% confidence interval (CI) were used to determine hepatoblastoma susceptibility variants. The rs236170 A > G, rs236188 G > A and rs236110 C > A polymorphisms were significantly associated with hepatoblastoma risk. Combination analysis of the four polymorphisms revealed that children bearing 1-4 risk genotypes were at significantly enhanced hepatoblastoma risk compared to those without risk genotype (adjusted OR = 1.52, 95% CI = 1.19-1.95, p = 0.0008). We also conducted stratification analyses by age, sex and clinical stage. Ultimately, we found that the rs236110 C > A was significantly associated with the downregulation of MCM8, a neighbouring gene of TRMT6. In conclusion, we identified three susceptibility loci in the TRMT6 gene for hepatoblastoma. Our findings warrant further validation by extensive case-control studies across different ethnicities.


Asunto(s)
Hepatoblastoma , Neoplasias Hepáticas , Niño , Humanos , Hepatoblastoma/genética , Estudios de Casos y Controles , Neoplasias Hepáticas/genética , Polimorfismo Genético , ARNt Metiltransferasas/genética , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...