Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.055
Filtrar
1.
J Med Chem ; 67(10): 8186-8200, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38733345

RESUMEN

The ATPase family AAA+ domain containing 2 (ATAD2) protein and its paralog ATAD2B have a C-terminal bromodomain (BRD) that functions as a reader of acetylated lysine residues on histone proteins. Using a structure-function approach, we investigated the ability of the ATAD2/B BRDs to select acetylated lysine among multiple histone post-translational modifications. The ATAD2B BRD can bind acetylated histone ligands that also contain adjacent methylation or phosphorylation marks, while the presence of these modifications significantly weakened the acetyllysine binding activity of the ATAD2 BRD. Our structural studies provide mechanistic insights into how ATAD2/B BRD-binding pocket residues coordinate the acetyllysine group in the context of adjacent post-translational modifications. Furthermore, we investigated how sequence changes in amino acids of the histone ligands impact the recognition of an adjacent acetyllysine residue. Our study highlights how the interplay between multiple combinations of histone modifications influences the reader activity of the ATAD2/B BRDs, resulting in distinct binding modes.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas , Proteínas de Unión al ADN , Histonas , Lisina , Histonas/metabolismo , Histonas/química , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/química , Humanos , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/química , Lisina/metabolismo , Lisina/química , Acetilación , Procesamiento Proteico-Postraduccional , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/química , Unión Proteica , Dominios Proteicos , Modelos Moleculares , Sitios de Unión
2.
Cell Death Dis ; 15(5): 346, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769124

RESUMEN

Exploring novel diagnostic and therapeutic biomarkers is extremely important for osteosarcoma. YME1 Like 1 ATPase (YME1L), locating in the mitochondrial inner membrane, is key in regulating mitochondrial plasticity and metabolic activity. Its expression and potential functions in osteosarcoma are studied in the present study. We show that YME1L mRNA and protein expression is significantly elevated in osteosarcoma tissues derived from different human patients. Moreover, its expression is upregulated in various primary and immortalized osteosarcoma cells. The Cancer Genome Atlas database results revealed that YME1L overexpression was correlated with poor overall survival and poor disease-specific survival in sarcoma patients. In primary and immortalized osteosarcoma cells, silencing of YME1L through lentiviral shRNA robustly inhibited cell viability, proliferation, and migration. Moreover, cell cycle arrest and apoptosis were detected in YME1L-silenced osteosarcoma cells. YME1L silencing impaired mitochondrial functions in osteosarcoma cells, causing mitochondrial depolarization, oxidative injury, lipid peroxidation and DNA damage as well as mitochondrial respiratory chain complex I activity inhibition and ATP depletion. Contrarily, forced YME1L overexpression exerted pro-cancerous activity and strengthened primary osteosarcoma cell proliferation and migration. YME1L is important for Akt-S6K activation in osteosarcoma cells. Phosphorylation of Akt and S6K was inhibited after YME1L silencing in primary osteosarcoma cells, but was strengthened with YME1L overexpression. Restoring Akt-mTOR activation by S473D constitutively active Akt1 mitigated YME1L shRNA-induced anti-osteosarcoma cell activity. Lastly, intratumoral injection of YME1L shRNA adeno-associated virus inhibited subcutaneous osteosarcoma xenograft growth in nude mice. YME1L depletion, mitochondrial dysfunction, oxidative injury, Akt-S6K inactivation, and apoptosis were detected in YME1L shRNA-treated osteosarcoma xenografts. Together, overexpressed YME1L promotes osteosarcoma cell growth, possibly by maintaining mitochondrial function and Akt-mTOR activation.


Asunto(s)
Neoplasias Óseas , Proliferación Celular , Ratones Desnudos , Osteosarcoma , Osteosarcoma/patología , Osteosarcoma/genética , Osteosarcoma/metabolismo , Humanos , Animales , Línea Celular Tumoral , Ratones , Neoplasias Óseas/metabolismo , Neoplasias Óseas/patología , Neoplasias Óseas/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Apoptosis/genética , Movimiento Celular/genética , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/genética , Ratones Endogámicos BALB C , Masculino , Serina-Treonina Quinasas TOR/metabolismo , Regulación Neoplásica de la Expresión Génica , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Femenino
3.
Cell Death Dis ; 15(4): 259, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38609375

RESUMEN

Radiotherapy effectiveness in breast cancer is limited by radioresistance. Nevertheless, the mechanisms behind radioresistance are not yet fully understood. RUVBL1 and RUVBL2, referred to as RUVBL1/2, are crucial AAA+ ATPases that act as co-chaperones and are connected to cancer. Our research revealed that RUVBL1, also known as pontin/TIP49, is excessively expressed in MMTV-PyMT mouse models undergoing radiotherapy, which is considered a murine spontaneous breast-tumor model. Our findings suggest that RUVBL1 enhances DNA damage repair and radioresistance in breast cancer cells both in vitro and in vivo. Mechanistically, we discovered that DTL, also known as CDT2 or DCAF2, which is a substrate adapter protein of CRL4, promotes the ubiquitination of RUVBL1 and facilitates its binding to RUVBL2 and transcription cofactor ß-catenin. This interaction, in turn, attenuates its binding to acetyltransferase Tat-interacting protein 60 (TIP60), a comodulator of nuclear receptors. Subsequently, ubiquitinated RUVBL1 promotes the transcriptional regulation of RUVBL1/2-ß-catenin on genes associated with the non-homologous end-joining (NHEJ) repair pathway. This process also attenuates TIP60-mediated H4K16 acetylation and the homologous recombination (HR) repair process. Expanding upon the prior study's discoveries, we exhibited that the ubiquitination of RUVBL1 by DTL advances the interosculation of RUVBL1/2-ß-catenin. And, it then regulates the transcription of NHEJ repair pathway protein. Resulting in an elevated resistance of breast cancer cells to radiation therapy. From the aforementioned, it is evident that targeting DTL-RUVBL1/2-ß-catenin provides a potential radiosensitization approach when treating breast cancer.


Asunto(s)
Neoplasias Mamarias Animales , beta Catenina , Animales , Ratones , ATPasas Asociadas con Actividades Celulares Diversas/genética , beta Catenina/genética , ADN Helicasas/genética , Regulación de la Expresión Génica , Ubiquitina , Ubiquitinación , Proteínas Nucleares
4.
Commun Biol ; 7(1): 426, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589567

RESUMEN

Wilms tumor (WT) is the most common renal malignancy of childhood. Despite improvements in the overall survival, relapse occurs in ~15% of patients with favorable histology WT (FHWT). Half of these patients will succumb to their disease. Identifying novel targeted therapies remains challenging in part due to the lack of faithful preclinical in vitro models. Here we establish twelve patient-derived WT cell lines and demonstrate that these models faithfully recapitulate WT biology using genomic and transcriptomic techniques. We then perform loss-of-function screens to identify the nuclear export gene, XPO1, as a vulnerability. We find that the FDA approved XPO1 inhibitor, KPT-330, suppresses TRIP13 expression, which is required for survival. We further identify synergy between KPT-330 and doxorubicin, a chemotherapy used in high-risk FHWT. Taken together, we identify XPO1 inhibition with KPT-330 as a potential therapeutic option to treat FHWTs and in combination with doxorubicin, leads to durable remissions in vivo.


Asunto(s)
Hidrazinas , Neoplasias Renales , Triazoles , Tumor de Wilms , Humanos , Proteína Exportina 1 , Transporte Activo de Núcleo Celular , Carioferinas/genética , Carioferinas/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Línea Celular Tumoral , Apoptosis , Recurrencia Local de Neoplasia , Doxorrubicina/farmacología , Tumor de Wilms/tratamiento farmacológico , Tumor de Wilms/genética , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/genética , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Proteínas de Ciclo Celular/metabolismo
5.
PLoS Biol ; 22(4): e3002327, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38687820

RESUMEN

Mutations in the human AAA-ATPase VPS4 isoform, VPS4A, cause severe neurodevelopmental defects and congenital dyserythropoietic anemia (CDA). VPS4 is a crucial component of the endosomal sorting complex required for transport (ESCRT) system, which drives membrane remodeling in numerous cellular processes, including receptor degradation, cell division, and neural pruning. Notably, while most organisms encode for a single VPS4 gene, human cells have 2 VPS4 paralogs, namely VPS4A and VPS4B, but the functional differences between these paralogs is mostly unknown. Here, we set out to investigate the role of the human VPS4 paralogs in cytokinetic abscission using a series of knockout cell lines. We found that VPS4A and VPS4B hold both overlapping and distinct roles in abscission. VPS4A depletion resulted in a more severe abscission delay than VPS4B and was found to be involved in earlier stages of abscission. Moreover, VPS4A and a monomeric-locked VPS4A mutant bound the abscission checkpoint proteins CHMP4C and ANCHR, while VPS4B did not, indicating a regulatory role for the VPS4A isoform in abscission. Depletion of VTA1, a co-factor of VPS4, disrupted VPS4A-ANCHR interactions and accelerated abscission, suggesting that VTA1 is also involved in the abscission regulation. Our findings reveal a dual role for VPS4A in abscission, one that is canonical and can be compensated by VPS4B, and another that is regulatory and may be delivered by its monomeric form. These observations provide a potential mechanistic explanation for the neurodevelopmental defects and other related disorders reported in VPS4A-mutated patients with a fully functional VPS4B paralog.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas , Citocinesis , Complejos de Clasificación Endosomal Requeridos para el Transporte , ATPasas de Translocación de Protón Vacuolares , Humanos , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/genética , ATPasas de Translocación de Protón Vacuolares/metabolismo , ATPasas de Translocación de Protón Vacuolares/genética , Células HeLa , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/genética
6.
Proc Natl Acad Sci U S A ; 121(18): e2319727121, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38669181

RESUMEN

The DNA sliding clamp PCNA is a multipurpose platform for DNA polymerases and many other proteins involved in DNA metabolism. The topologically closed PCNA ring needs to be cracked open and loaded onto DNA by a clamp loader, e.g., the well-studied pentameric ATPase complex RFC (RFC1-5). The CTF18-RFC complex is an alternative clamp loader found recently to bind the leading strand DNA polymerase ε and load PCNA onto leading strand DNA, but its structure and the loading mechanism have been unknown. By cryo-EM analysis of in vitro assembled human CTF18-RFC-DNA-PCNA complex, we have captured seven loading intermediates, revealing a detailed PCNA loading mechanism onto a 3'-ss/dsDNA junction by CTF18-RFC. Interestingly, the alternative loader has evolved a highly mobile CTF18 AAA+ module likely to lower the loading activity, perhaps to avoid competition with the RFC and to limit its role to leading strand clamp loading. To compensate for the lost stability due to the mobile AAA+ module, CTF18 has evolved a unique ß-hairpin motif that reaches across RFC2 to interact with RFC5, thereby stabilizing the pentameric complex. Further, we found that CTF18 also contains a separation pin to locally melt DNA from the 3'-end of the primer; this ensures its ability to load PCNA to any 3'-ss/dsDNA junction, facilitated by the binding energy of the E-plug to the major groove. Our study reveals unique structural features of the human CTF18-RFC and contributes to a broader understanding of PCNA loading by the alternative clamp loaders.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas , Microscopía por Crioelectrón , Proteínas Nucleares , Antígeno Nuclear de Célula en Proliferación , Proteína de Replicación C , Humanos , Microscopía por Crioelectrón/métodos , ADN/metabolismo , ADN/química , Replicación del ADN , Modelos Moleculares , Antígeno Nuclear de Célula en Proliferación/metabolismo , Antígeno Nuclear de Célula en Proliferación/química , Unión Proteica , Proteína de Replicación C/metabolismo , Proteína de Replicación C/química
7.
mBio ; 15(4): e0003124, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38501868

RESUMEN

The Clp protease system is important for maintaining proteostasis in bacteria. It consists of ClpP serine proteases and an AAA+ Clp-ATPase such as ClpC1. The hexameric ATPase ClpC1 utilizes the energy of ATP binding and hydrolysis to engage, unfold, and translocate substrates into the proteolytic chamber of homo- or hetero-tetradecameric ClpP for degradation. The assembly between the hetero-tetradecameric ClpP1P2 chamber and the Clp-ATPases containing tandem ATPase domains from the same species has not been studied in depth. Here, we present cryo-EM structures of the substrate-bound ClpC1:shClpP1P2 from Streptomyces hawaiiensis, and shClpP1P2 in complex with ADEP1, a natural compound produced by S. hawaiiensis and known to cause over-activation and dysregulation of the ClpP proteolytic core chamber. Our structures provide detailed information on the shClpP1-shClpP2, shClpP2-ClpC1, and ADEP1-shClpP1/P2 interactions, reveal conformational transition of ClpC1 during the substrate translocation, and capture a rotational ATP hydrolysis mechanism likely dominated by the D1 ATPase activity of chaperones.IMPORTANCEThe Clp-dependent proteolysis plays an important role in bacterial homeostasis and pathogenesis. The ClpP protease system is an effective drug target for antibacterial therapy. Streptomyces hawaiiensis can produce a class of potent acyldepsipeptide antibiotics such as ADEP1, which could affect the ClpP protease activity. Although S. hawaiiensis hosts one of the most intricate ClpP systems in nature, very little was known about its Clp protease mechanism and the impact of ADEP molecules on ClpP. The significance of our research is in dissecting the functional mechanism of the assembled Clp degradation machinery, as well as the interaction between ADEP1 and the ClpP proteolytic chamber, by solving high-resolution structures of the substrate-bound Clp system in S. hawaiiensis. The findings shed light on our understanding of the Clp-dependent proteolysis in bacteria, which will enhance the development of antimicrobial drugs targeting the Clp protease system, and help fighting against bacterial multidrug resistance.


Asunto(s)
Adenosina Trifosfatasas , Endopeptidasa Clp , Streptomyces , Endopeptidasa Clp/genética , Endopeptidasa Clp/metabolismo , Proteolisis , Adenosina Trifosfatasas/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Péptido Hidrolasas/metabolismo , Adenosina Trifosfato/metabolismo
8.
Int J Mol Sci ; 25(6)2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38542345

RESUMEN

Single-particle cryo-electron microscopy (cryo-EM) has been shown to be effective in defining the structure of macromolecules, including protein complexes. Complexes adopt different conformations and compositions to perform their biological functions. In cryo-EM, the protein complexes are observed in solution, enabling the recording of images of the protein in multiple conformations. Various methods exist for capturing the conformational variability through analysis of cryo-EM data. Here, we analyzed the conformational variability in the hexameric AAA + ATPase p97, a complex with a six-fold rotational symmetric core surrounded by six flexible N-domains. We compared the performance of discrete classification methods with our recently developed method, MDSPACE, which uses 3D-to-2D flexible fitting of an atomic structure to images based on molecular dynamics (MD) simulations. Our analysis detected a novel conformation adopted by approximately 2% of the particles in the dataset and determined that the N-domains of p97 sway by up to 60° around a central position. This study demonstrates the application of MDSPACE in analyzing the continuous conformational changes in partially symmetrical protein complexes, systems notoriously difficult to analyze due to the alignment errors caused by their partial symmetry.


Asunto(s)
Adenosina Trifosfatasas , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Estructura Terciaria de Proteína , Modelos Moleculares , Microscopía por Crioelectrón/métodos , Adenosina Trifosfatasas/metabolismo
9.
Front Cell Infect Microbiol ; 14: 1274506, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38510966

RESUMEN

Trypanosomatid parasites are kinetoplastid protists that compartmentalize glycolytic enzymes in unique peroxisome-related organelles called glycosomes. The heterohexameric AAA-ATPase complex of PEX1-PEX6 is anchored to the peroxisomal membrane and functions in the export of matrix protein import receptor PEX5 from the peroxisomal membrane. Defects in PEX1, PEX6 or their membrane anchor causes dysfunction of peroxisomal matrix protein import cycle. In this study, we functionally characterized a putative Trypanosoma PEX1 orthologue by bioinformatic and experimental approaches and show that it is a true PEX1 orthologue. Using yeast two-hybrid analysis, we demonstrate that TbPEX1 can bind to TbPEX6. Endogenously tagged TbPEX1 localizes to glycosomes in the T. brucei parasites. Depletion of PEX1 gene expression by RNA interference causes lethality to the bloodstream form trypanosomes, due to a partial mislocalization of glycosomal enzymes to the cytosol and ATP depletion. TbPEX1 RNAi leads to a selective proteasomal degradation of both matrix protein import receptors TbPEX5 and TbPEX7. Unlike in yeast, PEX1 depletion did not result in an accumulation of ubiquitinated TbPEX5 in trypanosomes. As PEX1 turned out to be essential for trypanosomatid parasites, it could provide a suitable drug target for parasitic diseases. The results also suggest that these parasites possess a highly efficient quality control mechanism that exports the import receptors from glycosomes to the cytosol in the absence of a functional TbPEX1-TbPEX6 complex.


Asunto(s)
Parásitos , Proteínas de Saccharomyces cerevisiae , Trypanosoma , Animales , Parásitos/metabolismo , Saccharomyces cerevisiae/metabolismo , Peroxisomas/genética , Peroxisomas/metabolismo , Microcuerpos , ATPasas Asociadas con Actividades Celulares Diversas/genética , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
Mutat Res ; 828: 111854, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38492425

RESUMEN

BACKGROUND/OBJECTIVE: H. pylori is a recognized bacterial carcinogen in the world to cause gastric cancer (GC). However, the molecular mechanism of H. pylori infection-induced GC is not completely clear. Thus, there is an urgent need to reveal the precise mechanisms regulating cancer development due to H. pylori infection. METHODS: GEO microarray databases and TCGA databases were extracted for the analysis of different expression genes (DEGs). Then, Kaplan-Meier Plotter was used for prognostic analysis. Functional enrichment analysis of TRIP13 was performed by metascape database and TIMER database. Specific role of TRIP13 in GC with H. pylori infection was confirmed by CCK8, cell cycle analysis and WB. RESULTS: A total 10 DEGs were substantially elevated in GC and H. pylori+ tissues and might be associated with H. pylori infection in GC and only the highly expressed TRIP13 was statistically associated with poor prognosis in GC patients. Meanwhile, TRIP13 were upregulated in both CagA-transfected epithelial cells and GC cells. And TRIP13 deficiency inhibited cell proliferation and arrested the cell cycle at the G1 phase. CONCLUSION: Our study suggested that high expression of TRIP13 can promote the proliferation, cell cycle in GC cells, which could be used as a biomarker for H. pylori infection GC.


Asunto(s)
Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Infecciones por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Neoplasias Gástricas/microbiología , Neoplasias Gástricas/patología , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Humanos , Infecciones por Helicobacter/complicaciones , Infecciones por Helicobacter/genética , Infecciones por Helicobacter/patología , Infecciones por Helicobacter/metabolismo , Infecciones por Helicobacter/microbiología , Helicobacter pylori/patogenicidad , Pronóstico , Línea Celular Tumoral , Progresión de la Enfermedad , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Ciclo Celular , ATPasas Asociadas con Actividades Celulares Diversas , Proteínas de Ciclo Celular
11.
Cell ; 187(9): 2250-2268.e31, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38554706

RESUMEN

Ubiquitin-dependent unfolding of the CMG helicase by VCP/p97 is required to terminate DNA replication. Other replisome components are not processed in the same fashion, suggesting that additional mechanisms underlie replication protein turnover. Here, we identify replisome factor interactions with a protein complex composed of AAA+ ATPases SPATA5-SPATA5L1 together with heterodimeric partners C1orf109-CINP (55LCC). An integrative structural biology approach revealed a molecular architecture of SPATA5-SPATA5L1 N-terminal domains interacting with C1orf109-CINP to form a funnel-like structure above a cylindrically shaped ATPase motor. Deficiency in the 55LCC complex elicited ubiquitin-independent proteotoxicity, replication stress, and severe chromosome instability. 55LCC showed ATPase activity that was specifically enhanced by replication fork DNA and was coupled to cysteine protease-dependent cleavage of replisome substrates in response to replication fork damage. These findings define 55LCC-mediated proteostasis as critical for replication fork progression and genome stability and provide a rationale for pathogenic variants seen in associated human neurodevelopmental disorders.


Asunto(s)
Adenosina Trifosfatasas , Replicación del ADN , Inestabilidad Genómica , Proteostasis , Humanos , Adenosina Trifosfatasas/metabolismo , Proteína que Contiene Valosina/metabolismo , Proteína que Contiene Valosina/genética , Células HEK293 , Proteínas de Ciclo Celular/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/genética
12.
Cell Cycle ; 23(3): 233-247, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38551450

RESUMEN

Colorectal cancer (CRC) poses a significant challenge in terms of treatment due to the prevalence of radiotherapy resistance. However, the underlying mechanisms responsible for radio-resistance in CRC have not been thoroughly explored. This study aimed to shed light on the role of human coilin interacting nuclear ATPase protein (hCINAP) in radiation-resistant HT-29 and SW480 CRC cells (HT-29-IR and SW480-IR) and investigate its potential implications. Firstly, radiation-resistant CRC cell lines were established by subjecting HT-29 and SW480 cells to sequential radiation exposure. Subsequent analysis revealed a notable increase in hCINAP expression in radiation-resistant CRC cells. To elucidate the functional role of hCINAP in radio-resistance, knockdown experiments were conducted. Remarkably, knockdown of hCINAP resulted in an elevation of reactive oxygen species (ROS) generation upon radiation treatment and subsequent activation of apoptosis mediated by mitochondria. These observations indicate that hCINAP depletion enhances the radiosensitivity of CRC cells. Conversely, when hCINAP was overexpressed, it was found to enhance the radio-resistance of CRC cells. This suggests that elevated hCINAP expression contributes to the development of radio-resistance. Further investigation revealed an interaction between hCINAP and ATPase family AAA domain containing 3A (ATAD3A). Importantly, ATAD3A was identified as an essential factor in hCINAP-mediated radio-resistance. These findings establish the involvement of hCINAP and its interaction with ATAD3A in the regulation of radio-resistance in CRC cells. Overall, the results of this study demonstrate that upregulating hCINAP expression may improve the survival of radiation-exposed CRC cells. Understanding the intricate molecular mechanisms underlying hCINAP function holds promise for potential strategies in targeted radiation therapy for CRC. These findings emphasize the importance of further research to gain a comprehensive understanding of hCINAP's precise molecular mechanisms and explore its potential as a therapeutic target in overcoming radio-resistance in CRC. By unraveling the complexities of hCINAP and its interactions, novel therapeutic approaches may be developed to enhance the efficacy of radiation therapy and improve outcomes for CRC patients.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas , Apoptosis , Neoplasias Colorrectales , Técnicas de Silenciamiento del Gen , Tolerancia a Radiación , Especies Reactivas de Oxígeno , Humanos , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/radioterapia , Tolerancia a Radiación/genética , Apoptosis/efectos de la radiación , Apoptosis/genética , Especies Reactivas de Oxígeno/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/genética , Línea Celular Tumoral , Radiación Ionizante , Mitocondrias/metabolismo , Mitocondrias/efectos de la radiación , Células HT29
13.
Elife ; 122024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38488661

RESUMEN

R-loops are non-canonical DNA structures that form during transcription and play diverse roles in various physiological processes. Disruption of R-loop homeostasis can lead to genomic instability and replication impairment, contributing to several human diseases, including cancer. Although the molecular mechanisms that protect cells against such events are not fully understood, recent research has identified fork protection factors and DNA damage response proteins as regulators of R-loop dynamics. In this study, we identify the Werner helicase-interacting protein 1 (WRNIP1) as a novel factor that counteracts transcription-associated DNA damage upon replication perturbation. Loss of WRNIP1 leads to R-loop accumulation, resulting in collisions between the replisome and transcription machinery. We observe co-localization of WRNIP1 with transcription/replication complexes and R-loops after replication perturbation, suggesting its involvement in resolving transcription-replication conflicts. Moreover, WRNIP1-deficient cells show impaired replication restart from transcription-induced fork stalling. Notably, transcription inhibition and RNase H1 overexpression rescue all the defects caused by loss of WRNIP1. Importantly, our findings highlight the critical role of WRNIP1 ubiquitin-binding zinc finger (UBZ) domain in preventing pathological persistence of R-loops and limiting DNA damage, thereby safeguarding genome integrity.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas , Replicación del ADN , Proteínas de Unión al ADN , Humanos , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , ADN , Daño del ADN , Proteínas de Unión al ADN/metabolismo , Inestabilidad Genómica , Hidrolasas/genética , Dedos de Zinc
14.
Cell Metab ; 36(4): 778-792.e10, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38378000

RESUMEN

Here, we identify a subset of vascular pericytes, defined by expression of platelet-derived growth factor receptor beta (PDGFR-ß) and G-protein-coupled receptor 91 (GPR91), that promote tumorigenesis and tyrosine kinase inhibitors (TKIs) resistance by functioning as the primary methionine source for cancer stem cells (CSCs) in clear cell renal cell carcinoma (ccRCC). Tumor-cell-derived succinate binds to GPR91 on pericyte to activate autophagy for methionine production. CSCs use methionine to create stabilizing N6-methyladenosine in ATPase-family-AAA-domain-containing 2 (ATAD2) mRNA, and the resulting ATAD2 protein complexes with SRY-box transcription factor 9 to assemble super enhancers and thereby dictate its target genes that feature prominently in CSCs. Targeting PDGFR-ß+GPR91+ pericytes with specific GRP91 antagonists reduce intratumoral methionine level, eliminate CSCs, and enhance TKIs sensitivity. These results unraveled the mechanisms by which PDGFR-ß+GPR91+ pericytes provide supportive niche for CSCs and could be used to develop targets for treating ccRCC.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Pericitos/metabolismo , Carcinoma de Células Renales/patología , Metionina/metabolismo , Racemetionina/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Neoplasias Renales/patología , Células Madre Neoplásicas/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Proteínas de Unión al ADN/metabolismo
15.
Cell Rep ; 43(2): 113713, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38306274

RESUMEN

R2TP is a chaperone complex consisting of the AAA+ ATPases RUVBL1 and RUVBL2, as well as RPAP3 and PIH1D1 proteins. R2TP is responsible for the assembly of macromolecular complexes mainly acting through different adaptors. Using proximity-labeling mass spectrometry, we identified deleted in primary ciliary dyskinesia (DPCD) as an adaptor of R2TP. Here, we demonstrate that R2TP-DPCD influences ciliogenesis initiation through a unique mechanism by interaction with Akt kinase to regulate its phosphorylation levels rather than its stability. We further show that DPCD is a heart-shaped monomeric protein with two domains. A highly conserved region in the cysteine- and histidine-rich domains-containing proteins and SGT1 (CS) domain of DPCD interacts with the RUVBL2 DII domain with high affinity to form a stable R2TP-DPCD complex both in cellulo and in vitro. Considering that DPCD is one among several CS-domain-containing proteins found to associate with RUVBL1/2, we propose that RUVBL1/2 are CS-domain-binding proteins that regulate complex assembly and downstream signaling.


Asunto(s)
Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Fosforilación , ATPasas Asociadas con Actividades Celulares Diversas , Cognición
16.
Eur Rev Med Pharmacol Sci ; 28(2): 622-644, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38305606

RESUMEN

OBJECTIVE: Both non-alcoholic fatty liver disease (NAFLD) and hepatocellular carcinoma (HCC) are prevalent diseases worldwide. This study aimed to explore the underlying mechanisms of NAFLD and HCC and identify new therapeutic targets for human cancers. MATERIALS AND METHODS: NAFLD and HCC gene expression profiles were obtained from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) and weighted gene co-expression network analysis (WGCNA) were utilized to identify co-expressed genes associated with NAFLD and HCC. Public databases were consulted to find common targets of NAFLD and HCC. Enrichment analysis and CIBERSORT techniques were employed to analyze the pathways enriched with DEGs and the attributes of infiltrating immune cells. Furthermore, the expression data of UROC1 and clinical information of patients were acquired from The Cancer Genome Atlas (TCGA) database. Finally, the expression of the UROC1 was validated by immunohistochemistry (IHC). RESULTS: Through a comprehensive bioinformatics analysis, eight hub genes (CCL2, CCR2, IL6, CSF3R, ATL2, SESN3, UROC1, FIGNL1) were identified. Enrichment analysis indicated that inflammatory and immune response may be common features between NAFLD and HCC. CIBER-SORT analysis revealed an imbalance of plasma cells and macrophages in NAFLD and HCC. Pan-cancer analysis demonstrated that UROC1 expression was related to clinical outcomes and tumor immunity in various cancers. Moreover, a strong correlation was exhibited between UROC1 expression and crucial elements, including tumor mutation burden (TMB), microsatellite instability (MSI), multiple immune checkpoints (ICP), and tumor microenvironment (TME). Importantly, an adverse clinical prognosis of HCC was linked to decreased UROC1 expression, which was consistent with IHC results. CONCLUSIONS: We identified eight hub genes (CCL2, CCR2, IL6, CSF3R, ATL2, SESN3, UROC1, FIGNL1), which may become early diagnostic and therapeutic targets for NAFLD and HCC. The pan-cancer analysis of UROC1 provides new evidence for its broad application prospects in the field of HCC and other cancers.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Humanos , Carcinoma Hepatocelular/genética , Enfermedad del Hígado Graso no Alcohólico/genética , Pronóstico , Interleucina-6 , Neoplasias Hepáticas/genética , Microambiente Tumoral/genética , ATPasas Asociadas con Actividades Celulares Diversas , Proteínas Asociadas a Microtúbulos , Proteínas Nucleares
17.
Am J Med Genet A ; 194(5): e63505, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38168469

RESUMEN

Data science methodologies can be utilized to ascertain and analyze clinical genetic data that is often unstructured and rarely used outside of patient encounters. Genetic variants from all genetic testing resulting to a large pediatric healthcare system for a 5-year period were obtained and reinterpreted utilizing the previously validated Franklin© Artificial Intelligence (AI). Using PowerBI©, the data were further matched to patients in the electronic healthcare record to associate with demographic data to generate a variant data table and mapped by ZIP codes. Three thousand and sixty-five variants were identified and 98% were matched to patients with geographic data. Franklin© changed the interpretation for 24% of variants. One hundred and fifty-six clinically actionable variant reinterpretations were made. A total of 739 Mendelian genetic disorders were identified with disorder prevalence estimation. Mapping of variants demonstrated hot-spots for pathogenic genetic variation such as PEX6-associated Zellweger Spectrum Disorder. Seven patients were identified with Bardet-Biedl syndrome and seven patients with Rett syndrome amenable to newly FDA-approved therapeutics. Utilizing readily available software we developed a database and Exploratory Data Analysis (EDA) methodology enabling us to systematically reinterpret variants, estimate variant prevalence, identify conditions amenable to new treatments, and localize geographies enriched for pathogenic variants.


Asunto(s)
Inteligencia Artificial , Ciencia de los Datos , Humanos , Niño , Prevalencia , Pruebas Genéticas/métodos , ATPasas Asociadas con Actividades Celulares Diversas
18.
Zhongguo Fei Ai Za Zhi ; 27(1): 1-12, 2024 Jan 20.
Artículo en Chino | MEDLINE | ID: mdl-38296621

RESUMEN

BACKGROUND: Radiation therapy is one of the most common treatments for non-small cell lung cancer (NSCLC). However, the insensitivity of some tumor cells to radiation is one of the major reasons for the poor efficacy of radiotherapy and the poor prognosis of patients, and exploring the underlying mechanisms behind radioresistance is the key to solving this clinical challenge. This study aimed to identify the molecules associated with radioresistance in lung adenocarcinoma (LUAD), identified thyroid hormone receptor interactor 13 (TRIP13) as the main target initially, and explored whether TRIP13 is related to radioresistance in LUAD and the specific mechanism, with the aim of providing theoretical basis and potential targets for the combination therapy of LUAD patients receiving radiotherapy in the clinic. METHODS: Three datasets, GSE18842, GSE19188 and GSE33532, were selected from the Gene Expression Omnibus (GEO) database and screened for differentially expressed genes (|log FC|>1.5, P<0.05) in each of the three datasets using the R 4.1.3 software, and then Venn diagram was used to find out the differentially expressed genes common to the three datasets. The screened differential genes were then subjected to protein-protein interaction (PPI) analysis and module analysis with the help of STRING online tool and Cytoscape software, and survival prognosis analysis was performed for each gene with the help of Kaplan-Meier Plotter database, and the TRIP13 gene was identified as the main molecule for subsequent studies. Subsequently, the human LUAD cell line H292 was irradiated with multiple X-rays using a sub-lethal dose irradiation method to construct a radioresistant cell line, H292DR. The radioresistance of H292DR cells was verified using cell counting kit-8 (CCK-8) assay and clone formation assay. The expression levels of TRIP13 in H292 and H292DR cells were measured by Western blot. Small interfering RNA (siRNA) was used to silence the expression of TRIP13 in H292DR cells and Western blot assay was performed. The clone formation ability and migration ability of H292DR cells were observed after TRIP13 silencing, followed by the detection of changes in the expression levels of proteins closely related to homologous recombination, such as ataxia telangiectasia mutated (ATM) protein. RESULTS: Screening of multiple GEO datasets, validation of external datasets and survival analysis revealed that TRIP13 was highly expressed in LUAD and was associated with poor prognosis in LUAD patients who had received radiation therapy. And the results of gene set enrichment analysis (GSEA) of TRIP13 suggested that TRIP13 might be closely associated with LUAD radioresistance by promoting homologous recombination repair after radiation therapy. Experimentally, TRIP13 expression was found to be upregulated in H292DR, and silencing of TRIP13 was able to increase the sensitivity of H292DR cells to radiation. CONCLUSIONS: TRIP13 is associated with poor prognosis in LUAD patients treated with radiation, possibly by promoting a homologous recombination repair pathway to mediate resistance of LUAD cells to radiation.


Asunto(s)
Adenocarcinoma del Pulmón , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/radioterapia , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/radioterapia , Recuento de Células , Terapia Combinada , ATPasas Asociadas con Actividades Celulares Diversas , Proteínas de Ciclo Celular
19.
Brain ; 147(5): 1899-1913, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38242545

RESUMEN

Aberrant cholesterol metabolism causes neurological disease and neurodegeneration, and mitochondria have been linked to perturbed cholesterol homeostasis via the study of pathological mutations in the ATAD3 gene cluster. However, whether the cholesterol changes were compensatory or contributory to the disorder was unclear, and the effects on cell membranes and the wider cell were also unknown. Using patient-derived cells, we show that cholesterol perturbation is a conserved feature of pathological ATAD3 variants that is accompanied by an expanded lysosome population containing membrane whorls characteristic of lysosomal storage diseases. Lysosomes are also more numerous in Drosophila neural progenitor cells expressing mutant Atad3, which exhibit abundant membrane-bound cholesterol aggregates, many of which co-localize with lysosomes. By subjecting the Drosophila Atad3 mutant to nutrient restriction and cholesterol supplementation, we show that the mutant displays heightened cholesterol dependence. Collectively, these findings suggest that elevated cholesterol enhances tolerance to pathological ATAD3 variants; however, this comes at the cost of inducing cholesterol aggregation in membranes, which lysosomal clearance only partly mitigates.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas , Colesterol , Lisosomas , Proteínas de la Membrana , Mutación , Animales , Colesterol/metabolismo , Humanos , ATPasas Asociadas con Actividades Celulares Diversas/genética , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Lisosomas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Drosophila , Membrana Celular/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
20.
Cancer Res ; 84(5): 675-687, 2024 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-38190717

RESUMEN

Therapy resistance and metastatic progression are primary causes of cancer-related mortality. Disseminated tumor cells possess adaptive traits that enable them to reprogram their metabolism, maintain stemness, and resist cell death, facilitating their persistence to drive recurrence. The survival of disseminated tumor cells also depends on their ability to modulate replication stress in response to therapy while colonizing inhospitable microenvironments. In this study, we discovered that the nuclear translocation of AXL, a TAM receptor tyrosine kinase, and its interaction with WRNIP1, a DNA replication stress response factor, promotes the survival of HER2+ breast cancer cells that are resistant to HER2-targeted therapy and metastasize to the brain. In preclinical models, knocking down or pharmacologically inhibiting AXL or WRNIP1 attenuated protection of stalled replication forks. Furthermore, deficiency or inhibition of AXL and WRNIP1 also prolonged metastatic latency and delayed relapse. Together, these findings suggest that targeting the replication stress response, which is a shared adaptive mechanism in therapy-resistant and metastasis-initiating cells, could reduce metachronous metastasis and enhance the response to standard-of-care therapies. SIGNIFICANCE: Nuclear AXL and WRNIP1 interact and mediate replication stress response, promote therapy resistance, and support metastatic progression, indicating that targeting the AXL/WRNIP1 axis is a potentially viable therapeutic strategy for breast cancer.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Tirosina Quinasa del Receptor Axl , Proteínas Proto-Oncogénicas/metabolismo , Recurrencia Local de Neoplasia , Proteínas Tirosina Quinasas Receptoras/metabolismo , Resistencia a Antineoplásicos/genética , Línea Celular Tumoral , Microambiente Tumoral , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Proteínas de Unión al ADN/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA