Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
J Med Chem ; 67(10): 8186-8200, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38733345

RESUMEN

The ATPase family AAA+ domain containing 2 (ATAD2) protein and its paralog ATAD2B have a C-terminal bromodomain (BRD) that functions as a reader of acetylated lysine residues on histone proteins. Using a structure-function approach, we investigated the ability of the ATAD2/B BRDs to select acetylated lysine among multiple histone post-translational modifications. The ATAD2B BRD can bind acetylated histone ligands that also contain adjacent methylation or phosphorylation marks, while the presence of these modifications significantly weakened the acetyllysine binding activity of the ATAD2 BRD. Our structural studies provide mechanistic insights into how ATAD2/B BRD-binding pocket residues coordinate the acetyllysine group in the context of adjacent post-translational modifications. Furthermore, we investigated how sequence changes in amino acids of the histone ligands impact the recognition of an adjacent acetyllysine residue. Our study highlights how the interplay between multiple combinations of histone modifications influences the reader activity of the ATAD2/B BRDs, resulting in distinct binding modes.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas , Proteínas de Unión al ADN , Histonas , Lisina , Histonas/metabolismo , Histonas/química , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/química , Humanos , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/química , Lisina/metabolismo , Lisina/química , Acetilación , Procesamiento Proteico-Postraduccional , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/química , Unión Proteica , Dominios Proteicos , Modelos Moleculares , Sitios de Unión
2.
Free Radic Biol Med ; 211: 114-126, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38092275

RESUMEN

Mitochondrial ATAD3A is an ATPase Associated with diverse cellular Activities (AAA) domain containing enzyme, involved in the structural organization of the inner mitochondrial membrane and of increasing importance in childhood disease. In humans, two ATAD3A paralogs arose by gene duplication during evolution: ATAD3B and ATAD3C. Here we investigate the cellular activities of the ATAD3C paralog that has been considered a pseudogene. We detected unique ATAD3C peptides in HEK 293T cells, with expression similar to that in human tissues, and showed that it is an integral membrane protein that exposes its carboxy-terminus to the intermembrane space. Overexpression of ATAD3C, but not of ATAD3A, in fibroblasts caused a decrease in cell proliferation and oxygen consumption rate, and an increase of cellular ROS. This was due to the incorporation of ATAD3C monomers in ATAD3A complex in the mitochondrial membrane reducing its size. Consistent with a negative regulation of ATAD3A function in mitochondrial membrane organization, ATAD3C expression led to increased accumulation of respiratory chain dimeric CIII in the inner membrane, to the detriment to that assembled in respiratory supercomplexes. Our results demonstrate a negative dominant role of the ATAD3C paralog with implications for mitochondrial OXPHOS function and suggest that its expression regulates ATAD3A in the cell.


Asunto(s)
Adenosina Trifosfatasas , Membranas Mitocondriales , Humanos , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/genética , ATPasas Asociadas con Actividades Celulares Diversas/química , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Duplicación de Gen , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo
3.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 52(6): 738-743, 2023 Dec 07.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38105692

RESUMEN

An 11-day-old female neonate was admitted for cough with mouth foaming and feeding difficulties. The laboratory results indicated hyperlactatemia, elevated markers of myocardial injury and inflammation, and high levels of acylcarnitine octanoylcarnitine and decanoylcarnitine in tandem mass spectrometry. Ultrasonography and MRI suggested cardiac insufficiency and hypertrophic cardiomyopathy. Whole exome sequencing showed that both the proband and her elderly sister had a compound heterozygous variant of c.1492dup (p.T498Nfs*13) and c.1376T>C (p.F459S) in the ATAD3A gene, inherited from their father and mother, respectively. The diagnosis of Harel-Yoon syndrome was confirmed. The proband and her sister were born with clinical manifestations of metabolic acidosis, hyperlactatemia, feeding difficulties, elevated markers of myocardial injury as well as cardiac insufficiency, and both died in early infancy.


Asunto(s)
Hiperlactatemia , Humanos , Recién Nacido , Femenino , Anciano , Mutación , ATPasas Asociadas con Actividades Celulares Diversas/genética , ATPasas Asociadas con Actividades Celulares Diversas/química , Proteínas de la Membrana/genética , Proteínas Mitocondriales/genética
4.
Commun Biol ; 6(1): 993, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37770645

RESUMEN

ATAD2 is a non-canonical ATP-dependent histone chaperone and a major cancer target. Despite widespread efforts to design drugs targeting the ATAD2 bromodomain, little is known about the overall structural organization and regulation of ATAD2. Here, we present the 3.1 Å cryo-EM structure of human ATAD2 in the ATP state, showing a shallow hexameric spiral that binds a peptide substrate at the central pore. The spiral conformation is locked by an N-terminal linker domain (LD) that wedges between the seam subunits, thus limiting ATP-dependent symmetry breaking of the AAA+ ring. In contrast, structures of the ATAD2-histone H3/H4 complex show the LD undocked from the seam, suggesting that H3/H4 binding unlocks the AAA+ spiral by allosterically releasing the LD. These findings, together with the discovery of an inter-subunit signaling mechanism, reveal a unique regulatory mechanism for ATAD2 and lay the foundation for developing new ATAD2 inhibitors.


Asunto(s)
Proteínas de Unión al ADN , Chaperonas de Histonas , Humanos , Adenosina Trifosfato , ATPasas Asociadas con Actividades Celulares Diversas/química , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Proteínas de Unión al ADN/metabolismo , Chaperonas de Histonas/metabolismo , Histonas/metabolismo
5.
Nat Struct Mol Biol ; 29(11): 1068-1079, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36329286

RESUMEN

ClpAP, a two-ring AAA+ protease, degrades N-end-rule proteins bound by the ClpS adaptor. Here we present high-resolution cryo-EM structures of Escherichia coli ClpAPS complexes, showing how ClpA pore loops interact with the ClpS N-terminal extension (NTE), which is normally intrinsically disordered. In two classes, the NTE is bound by a spiral of pore-1 and pore-2 loops in a manner similar to substrate-polypeptide binding by many AAA+ unfoldases. Kinetic studies reveal that pore-2 loops of the ClpA D1 ring catalyze the protein remodeling required for substrate delivery by ClpS. In a third class, D2 pore-1 loops are rotated, tucked away from the channel and do not bind the NTE, demonstrating asymmetry in engagement by the D1 and D2 rings. These studies show additional structures and functions for key AAA+ elements. Pore-loop tucking may be used broadly by AAA+ unfoldases, for example, during enzyme pausing/unloading.


Asunto(s)
Proteínas Portadoras , Endopeptidasa Clp , Proteínas de Escherichia coli , ATPasas Asociadas con Actividades Celulares Diversas/química , Proteínas Portadoras/química , Endopeptidasa Clp/química , Escherichia coli/química , Proteínas de Escherichia coli/química , Cinética , Chaperonas Moleculares/química , Conformación Proteica
6.
Nature ; 609(7927): 630-639, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36002576

RESUMEN

The Holliday junction is a key intermediate formed during DNA recombination across all kingdoms of life1. In bacteria, the Holliday junction is processed by two homo-hexameric AAA+ ATPase RuvB motors, which assemble together with the RuvA-Holliday junction complex to energize the strand-exchange reaction2. Despite its importance for chromosome maintenance, the structure and mechanism by which this complex facilitates branch migration are unknown. Here, using time-resolved cryo-electron microscopy, we obtained structures of the ATP-hydrolysing RuvAB complex in seven distinct conformational states, captured during assembly and processing of a Holliday junction. Five structures together resolve the complete nucleotide cycle and reveal the spatiotemporal relationship between ATP hydrolysis, nucleotide exchange and context-specific conformational changes in RuvB. Coordinated motions in a converter formed by DNA-disengaged RuvB subunits stimulate hydrolysis and nucleotide exchange. Immobilization of the converter enables RuvB to convert the ATP-contained energy into a lever motion, which generates the pulling force driving the branch migration. We show that RuvB motors rotate together with the DNA substrate, which, together with a progressing nucleotide cycle, forms the mechanistic basis for DNA recombination by continuous branch migration. Together, our data decipher the molecular principles of homologous recombination by the RuvAB complex, elucidate discrete and sequential transition-state intermediates for chemo-mechanical coupling of hexameric AAA+ motors and provide a blueprint for the design of state-specific compounds targeting AAA+ motors.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas , Proteínas Bacterianas , ADN Helicasas , ADN Cruciforme , ATPasas Asociadas con Actividades Celulares Diversas/química , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/ultraestructura , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/ultraestructura , Microscopía por Crioelectrón , ADN Helicasas/química , ADN Helicasas/metabolismo , ADN Helicasas/ultraestructura , ADN Cruciforme/química , ADN Cruciforme/metabolismo , ADN Cruciforme/ultraestructura , ADN de Cadena Simple/química , ADN de Cadena Simple/metabolismo , ADN de Cadena Simple/ultraestructura , Recombinación Homóloga , Hidrólisis , Complejos Multienzimáticos/química , Complejos Multienzimáticos/metabolismo , Complejos Multienzimáticos/ultraestructura , Nucleótidos , Conformación Proteica , Rotación
7.
J Mol Biol ; 434(19): 167760, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-35901867

RESUMEN

DPCD is a protein that may play a role in cilia formation and whose absence leads to primary ciliary dyskinesia (PCD), a rare disease caused by impairment of ciliated cells. Except for high-throughput studies that identified DPCD as a possible RUVBL1 (R1) and RUVBL2 (R2) partner, no in-depth cellular, biochemical, and structural investigation involving DPCD have been reported so far. R1 and R2 proteins are ubiquitous highly conserved AAA + family ATPases that assemble and mature a plethora of macromolecular complexes and are pivotal in numerous cellular processes, especially by guaranteeing a co-chaperoning function within R2TP or R2TP-like machineries. In the present study, we identified DPCD as a new R1R2 partner in vivo. We show that DPCD interacts directly with R1 and R2 in vitro and in cells. We characterized the physico-chemical properties of DPCD in solution and built a 3D model of DPCD. In addition, we used a variety of orthogonal biophysical techniques including small-angle X-ray scattering, structural mass spectrometry and electron microscopy to assess the molecular determinants of DPCD interaction with R1R2. Interestingly, DPCD disrupts the dodecameric state of R1R2 complex upon binding and this interaction occurs mainly via the DII domains of R1R2.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas , Proteínas Portadoras , ADN Helicasas , Complejos Multiproteicos , Proteínas , ATPasas Asociadas con Actividades Celulares Diversas/química , Proteínas Portadoras/química , ADN Helicasas/química , Humanos , Complejos Multiproteicos/química , Proteínas/química
8.
Commun Biol ; 5(1): 257, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35322207

RESUMEN

AAA+ proteases regulate numerous physiological and cellular processes through tightly regulated proteolytic cleavage of protein substrates driven by ATP hydrolysis. FtsH is the only known family of membrane-anchored AAA+ proteases essential for membrane protein quality control. Although a spiral staircase rotation mechanism for substrate translocation across the FtsH pore has been proposed, the detailed conformational changes among various states have not been clear due to absence of FtsH structures in these states. We report here the cryo-EM structure for Thermotoga maritima FtsH (TmFtsH) in a fully ADP-bound symmetric state. Comparisons of the ADP-state structure with its apo-state and a substrate-engaged yeast YME1 structure show conformational changes in the ATPase domains, rather than the protease domains. A reconstruction of the full-length TmFtsH provides structural insights for the dynamic transmembrane and the periplasmic domains. Our structural analyses expand the understanding of conformational switches between different nucleotide states in ATP hydrolysis by FtsH.


Asunto(s)
Proteasas ATP-Dependientes , Thermotoga maritima , Proteasas ATP-Dependientes/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/química , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Adenosina Difosfato , Adenosina Trifosfato/metabolismo , Microscopía por Crioelectrón , Modelos Moleculares , Conformación Proteica
9.
Structure ; 30(1): 156-171.e12, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34492227

RESUMEN

R2TP is a highly conserved chaperone complex formed by two AAA+ ATPases, RUVBL1 and RUVBL2, that associate with PIH1D1 and RPAP3 proteins. R2TP acts in promoting macromolecular complex formation. Here, we establish the principles of R2TP assembly. Three distinct RUVBL1/2-based complexes are identified: R2TP, RUVBL1/2-RPAP3 (R2T), and RUVBL1/2-PIH1D1 (R2P). Interestingly, we find that PIH1D1 does not bind to RUVBL1/RUVBL2 in R2TP and does not function as a nucleotide exchange factor; instead, RPAP3 is found to be the central subunit coordinating R2TP architecture and linking PIH1D1 and RUVBL1/2. We also report that RPAP3 contains an intrinsically disordered N-terminal domain mediating interactions with substrates whose sequences are primarily enriched for Armadillo repeat domains and other helical-type domains. Our work provides a clear and consistent model of R2TP complex structure and gives important insights into how a chaperone machine concerned with assembly of folded proteins into multisubunit complexes might work.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Portadoras/metabolismo , ADN Helicasas/metabolismo , Complejos Multiproteicos/química , ATPasas Asociadas con Actividades Celulares Diversas/química , Proteínas Reguladoras de la Apoptosis/química , Sitios de Unión , Proteínas Portadoras/química , Cromatografía en Gel , ADN Helicasas/química , Humanos , Modelos Moleculares , Complejos Multiproteicos/metabolismo , Conformación Proteica , Dominios Proteicos , Estructura Cuaternaria de Proteína
10.
J Biomol Struct Dyn ; 40(12): 5606-5622, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-33438526

RESUMEN

ATAD2 has recently been shown to promote stomach cancer. However, nothing is known about the functional network of ATAD2 in stomach carcinogenesis. This study illustrates the oncogenic potential of ATAD2 and the participation of its ATPase and bromodomain in stomach malignancy. Expression of ATAD2 in stomach cancer is analyzed by in silico and in vitro techniques including western blot and immunofluorescence microscopy of stomach cancer cells (SCCs) and tissues. The oncogenic potential of ATAD2 is examined thoroughly using genetic alterations, driver gene prediction, survival analysis, identification of interacting partners, and analysis of canonical pathways. To understand the protein-protein interactions (PPI) at residue level, molecular docking and molecular dynamics simulations (1200 ns) are performed. Enhanced expression of ATAD2 is observed in H. pylori-infected SCCs, patient biopsy tissues, and all stages and grades of stomach cancer. High expression of ATAD2 is found to be negatively correlated with the survival of stomach cancer patients. ATAD2 is a cancer driver gene with 37 mutational sites and a predictable factor for stomach cancer prognosis with high accuracy. The top canonical pathways of ATAD2 indicate its participation in stomach malignancy. The ATAD2-PPI in stomach cancer identify top-ranked partners; ESR1, SUMO2, SPTN2, and MYC show preference for the bromodomain whereas NCOA3 and HDA11 have preference for the ATPase domain of ATAD2. The oncogenic characterization of ATAD2 provides strong evidence to consider ATAD2 as a stomach cancer biomarker. These studies offer an insight for the first time into the ATAD2-PPI interface presenting a novel target for cancer therapeutics. Communicated by Ramaswamy H. Sarma.


Asunto(s)
Adenosina Trifosfatasas , Neoplasias Gástricas , ATPasas Asociadas con Actividades Celulares Diversas/química , ATPasas Asociadas con Actividades Celulares Diversas/genética , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Adenosina Trifosfatasas/química , Carcinogénesis/genética , Proteínas de Unión al ADN/química , Humanos , Simulación del Acoplamiento Molecular , Neoplasias Gástricas/genética
11.
Crit Rev Biochem Mol Biol ; 57(2): 188-204, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34923891

RESUMEN

ClpXP is an archetypical AAA+ protease, consisting of ClpX and ClpP. ClpX is an ATP-dependent protein unfoldase and polypeptide translocase, whereas ClpP is a self-compartmentalized peptidase. ClpXP is currently the only AAA+ protease for which high-resolution structures exist, the molecular basis of recognition for a protein substrate is understood, extensive biochemical and genetic analysis have been performed, and single-molecule optical trapping has allowed direct visualization of the kinetics of substrate unfolding and translocation. In this review, we discuss our current understanding of ClpXP structure and function, evaluate competing sequential and probabilistic mechanisms of ATP hydrolysis, and highlight open questions for future exploration.


Asunto(s)
Adenosina Trifosfato , Endopeptidasa Clp , ATPasas Asociadas con Actividades Celulares Diversas/química , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Adenosina Trifosfato/metabolismo , Endopeptidasa Clp/química , Endopeptidasa Clp/metabolismo , Hidrólisis , Péptido Hidrolasas/metabolismo
12.
Sci Rep ; 11(1): 21817, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34751190

RESUMEN

Proliferating cell nuclear antigen (PCNA) plays a critical role as a processivity clamp for eukaryotic DNA polymerases and a binding platform for many DNA replication and repair proteins. The enzymatic activities of PCNA loading and unloading have been studied extensively in vitro. However, the subcellular locations of PCNA loaders, replication complex C (RFC) and CTF18-RFC-like-complex (RLC), and PCNA unloader ATAD5-RLC remain elusive, and the role of their subunits RFC2-5 is unknown. Here we used protein fractionation to determine the subcellular localization of RFC and RLCs and affinity purification to find molecular requirements for the newly defined location. All RFC/RLC proteins were detected in the nuclease-resistant pellet fraction. RFC1 and ATAD5 were not detected in the non-ionic detergent-soluble and nuclease-susceptible chromatin fractions, independent of cell cycle or exogenous DNA damage. We found that small RFC proteins contribute to maintaining protein levels of the RFC/RLCs. RFC1, ATAD5, and RFC4 co-immunoprecipitated with lamina-associated polypeptide 2 (LAP2) α which regulates intranuclear lamin A/C. LAP2α knockout consistently reduced detection of RFC/RLCs in the pellet fraction, while marginally affecting total protein levels. Our findings strongly suggest that PCNA-mediated DNA transaction occurs through regulatory machinery associated with nuclear structures, such as the nuclear matrix.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Proteínas de Unión al ADN/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteína de Replicación C/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/química , Animales , Ciclo Celular , Fraccionamiento Celular , Células Cultivadas , Cromatina/metabolismo , Daño del ADN , Replicación del ADN , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Técnicas de Inactivación de Genes , Células HEK293 , Células HeLa , Humanos , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Lámina Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Fosforilación , Estabilidad Proteica , Subunidades de Proteína , Proteína de Replicación C/química , Fracciones Subcelulares/metabolismo
13.
Int J Mol Sci ; 22(17)2021 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-34502039

RESUMEN

The ATPase Family, AAA domain-containing protein 2 (ATAD2) bromodomain (BRD) has a canonical bromodomain structure consisting of four α-helices. ATAD2 functions as a co-activator of the androgen and estrogen receptors as well as the MYC and E2F transcription factors. ATAD2 also functions during DNA replication, recognizing newly synthesized histones. In addition, ATAD2 is shown to be up-regulated in multiple forms of cancer including breast, lung, gastric, endometrial, renal, and prostate. Furthermore, up-regulation of ATAD2 is strongly correlated with poor prognosis in many types of cancer, making the ATAD2 bromodomain an innovative target for cancer therapeutics. In this study, we describe the recognition of histone acetyllysine modifications by the ATAD2 bromodomain. Residue-specific information on the complex formed between the histone tail and the ATAD2 bromodomain, obtained through nuclear magnetic resonance spectroscopy (NMR) and X-ray crystallography, illustrates key residues lining the binding pocket, which are involved in coordination of di-acetylated histone tails. Analytical ultracentrifugation, NMR relaxation data, and isothermal titration calorimetry further confirm the monomeric state of the functionally active ATAD2 bromodomain in complex with di-acetylated histone ligands. Overall, we describe histone tail recognition by ATAD2 BRD and illustrate that one acetyllysine group is primarily engaged by the conserved asparagine (N1064), the "RVF" shelf residues, and the flexible ZA loop. Coordination of a second acetyllysine group also occurs within the same binding pocket but is essentially governed by unique hydrophobic and electrostatic interactions making the di-acetyllysine histone coordination more specific than previously presumed.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/química , Proteínas de Unión al ADN/química , Histonas/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Acetilación , Proteínas de Unión al ADN/metabolismo , Código de Histonas , Histonas/química , Humanos , Unión Proteica , Dominios Proteicos
14.
Nat Commun ; 12(1): 5421, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34521823

RESUMEN

MAD2L2 (REV7) plays an important role in DNA double-strand break repair. As a member of the shieldin complex, consisting of MAD2L2, SHLD1, SHLD2 and SHLD3, it controls DNA repair pathway choice by counteracting DNA end-resection. Here we investigated the requirements for shieldin complex assembly and activity. Besides a dimerization-surface, HORMA-domain protein MAD2L2 has the extraordinary ability to wrap its C-terminus around SHLD3, likely creating a very stable complex. We show that appropriate function of MAD2L2 within shieldin requires its dimerization, mediated by SHLD2 and accelerating MAD2L2-SHLD3 interaction. Dimerization-defective MAD2L2 impairs shieldin assembly and fails to promote NHEJ. Moreover, MAD2L2 dimerization, along with the presence of SHLD3, allows shieldin to interact with the TRIP13 ATPase, known to drive topological switches in HORMA-domain proteins. We find that appropriate levels of TRIP13 are important for proper shieldin (dis)assembly and activity in DNA repair. Together our data provide important insights in the dependencies for shieldin activity.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/genética , Proteínas de Ciclo Celular/genética , Reparación del ADN , Proteínas de Unión al ADN/genética , ADN/genética , Proteínas Mad2/genética , ATPasas Asociadas con Actividades Celulares Diversas/química , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Animales , Sitios de Unión , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Línea Celular Tumoral , Cisplatino/farmacología , ADN/química , ADN/metabolismo , Roturas del ADN de Doble Cadena , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Expresión Génica , Células HEK293 , Células HeLa , Humanos , Proteínas Mad2/química , Proteínas Mad2/metabolismo , Ratones , Ftalazinas/farmacología , Piperazinas/farmacología , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
15.
Nat Commun ; 12(1): 3483, 2021 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-34108481

RESUMEN

The hexameric AAA-ATPase Drg1 is a key factor in eukaryotic ribosome biogenesis and initiates cytoplasmic maturation of the large ribosomal subunit by releasing the shuttling maturation factor Rlp24. Drg1 monomers contain two AAA-domains (D1 and D2) that act in a concerted manner. Rlp24 release is inhibited by the drug diazaborine which blocks ATP hydrolysis in D2. The mode of inhibition was unknown. Here we show the first cryo-EM structure of Drg1 revealing the inhibitory mechanism. Diazaborine forms a covalent bond to the 2'-OH of the nucleotide in D2, explaining its specificity for this site. As a consequence, the D2 domain is locked in a rigid, inactive state, stalling the whole Drg1 hexamer. Resistance mechanisms identified include abolished drug binding and altered positioning of the nucleotide. Our results suggest nucleotide-modifying compounds as potential novel inhibitors for AAA-ATPases.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/química , Adenosina Trifosfatasas/química , Compuestos de Boro/química , Proteínas de Saccharomyces cerevisiae/química , Dominio AAA , ATPasas Asociadas con Actividades Celulares Diversas/antagonistas & inhibidores , ATPasas Asociadas con Actividades Celulares Diversas/genética , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Adenosina Trifosfatasas/antagonistas & inhibidores , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Sitios de Unión , Compuestos de Boro/farmacología , Resistencia a Medicamentos/genética , Activación Enzimática/efectos de los fármacos , Activación Enzimática/genética , Mutación , Nucleótidos/química , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
16.
Elife ; 102021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33847559

RESUMEN

Clamp loaders are AAA+ ATPases that load sliding clamps onto DNA. We mapped the mutational sensitivity of the T4 bacteriophage sliding clamp and clamp loader by deep mutagenesis, and found that residues not involved in catalysis or binding display remarkable tolerance to mutation. An exception is a glutamine residue in the AAA+ module (Gln 118) that is not located at a catalytic or interfacial site. Gln 118 forms a hydrogen-bonded junction in a helical unit that we term the central coupler, because it connects the catalytic centers to DNA and the sliding clamp. A suppressor mutation indicates that hydrogen bonding in the junction is important, and molecular dynamics simulations reveal that it maintains rigidity in the central coupler. The glutamine-mediated junction is preserved in diverse AAA+ ATPases, suggesting that a connected network of hydrogen bonds that links ATP molecules is an essential aspect of allosteric communication in these proteins.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Adenosina Trifosfato/metabolismo , Bacteriófago T4/enzimología , ADN Polimerasa Dirigida por ADN/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/química , ATPasas Asociadas con Actividades Celulares Diversas/genética , Regulación Alostérica , Bacteriófago T4/genética , Bacteriófago T4/crecimiento & desarrollo , Catálisis , Replicación del ADN , ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/genética , Glutamina/metabolismo , Enlace de Hidrógeno , Simulación de Dinámica Molecular , Mutación , Conformación Proteica , Relación Estructura-Actividad , Replicación Viral
17.
EMBO J ; 40(8): e106283, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33665835

RESUMEN

Mitochondrial DNA (mtDNA) encodes several key components of respiratory chain complexes that produce cellular energy through oxidative phosphorylation. mtDNA is vulnerable to damage under various physiological stresses, especially oxidative stress. mtDNA damage leads to mitochondrial dysfunction, and dysfunctional mitochondria can be removed by mitophagy, an essential process in cellular homeostasis. However, how damaged mtDNA is selectively cleared from the cell, and how damaged mtDNA triggers mitophagy, remain mostly unknown. Here, we identified a novel mitophagy receptor, ATAD3B, which is specifically expressed in primates. ATAD3B contains a LIR motif that binds to LC3 and promotes oxidative stress-induced mitophagy in a PINK1-independent manner, thus promoting the clearance of damaged mtDNA induced by oxidative stress. Under normal conditions, ATAD3B hetero-oligomerizes with ATAD3A, thus promoting the targeting of the C-terminal region of ATAD3B to the mitochondrial intermembrane space. Oxidative stress-induced mtDNA damage or mtDNA depletion reduces ATAD3B-ATAD3A hetero-oligomerization and leads to exposure of the ATAD3B C-terminus at the mitochondrial outer membrane and subsequent recruitment of LC3 for initiating mitophagy. Furthermore, ATAD3B is little expressed in m.3243A > G mutated cells and MELAS patient fibroblasts showing endogenous oxidative stress, and ATAD3B re-expression promotes the clearance of m.3243A > G mutated mtDNA. Our findings uncover a new pathway to selectively remove damaged mtDNA and reveal that increasing ATAD3B activity is a potential therapeutic approach for mitochondrial diseases.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales/metabolismo , Mitofagia , Estrés Oxidativo , ATPasas Asociadas con Actividades Celulares Diversas/química , ATPasas Asociadas con Actividades Celulares Diversas/genética , Animales , Células Cultivadas , Daño del ADN , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Células HEK293 , Células HeLa , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Unión Proteica
18.
Biochemistry ; 60(30): 2349-2363, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-33739091

RESUMEN

Tetratricopeptide repeat domains, or TPR domains, are protein domains that mediate protein:protein interaction. As they allow contacts between proteins, they are of particular interest in transient steps of the assembly process of macromolecular complexes, such as the ribosome or the dynein arms. In this study, we focused on the first TPR domain of the human SPAG1 protein. SPAG1 is a multidomain protein that is important for ciliogenesis whose known mutations are linked to primary ciliary dyskinesia syndrome. It can interact with the chaperones RUVBL1/2, HSP70, and HSP90. Using protein sequence optimization in combination with structural and biophysical approaches, we analyzed, with atomistic precision, how the C-terminal tails of HSPs bind a variant form of SPAG1-TPR1 that mimics the wild-type domain. We discuss our results with regard to other complex three-dimensional structures with the aim of highlighting the motifs in the TPR sequences that could drive the positioning of the HSP peptides. These data could be important for the druggability of TPR regulators.


Asunto(s)
Antígenos de Superficie/química , Proteínas de Unión al GTP/química , Proteínas HSP70 de Choque Térmico/química , Proteínas HSP90 de Choque Térmico/química , ATPasas Asociadas con Actividades Celulares Diversas/química , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Antígenos de Superficie/metabolismo , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , ADN Helicasas/química , ADN Helicasas/metabolismo , Proteínas de Unión al GTP/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Unión Proteica , Dominios Proteicos
19.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33597306

RESUMEN

The Shieldin complex, composed of REV7, SHLD1, SHLD2, and SHLD3, protects DNA double-strand breaks (DSBs) to promote nonhomologous end joining. The AAA+ ATPase TRIP13 remodels Shieldin to regulate DNA repair pathway choice. Here we report crystal structures of human SHLD3-REV7 binary and fused SHLD2-SHLD3-REV7 ternary complexes, revealing that assembly of Shieldin requires fused SHLD2-SHLD3 induced conformational heterodimerization of open (O-REV7) and closed (C-REV7) forms of REV7. We also report the cryogenic electron microscopy (cryo-EM) structures of the ATPγS-bound fused SHLD2-SHLD3-REV7-TRIP13 complexes, uncovering the principles underlying the TRIP13-mediated disassembly mechanism of the Shieldin complex. We demonstrate that the N terminus of REV7 inserts into the central channel of TRIP13, setting the stage for pulling the unfolded N-terminal peptide of C-REV7 through the central TRIP13 hexameric channel. The primary interface involves contacts between the safety-belt segment of C-REV7 and a conserved and negatively charged loop of TRIP13. This process is mediated by ATP hydrolysis-triggered rotatory motions of the TRIP13 ATPase, thereby resulting in the disassembly of the Shieldin complex.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Mad2/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/química , Proteínas de Ciclo Celular/química , Proteínas de Unión al ADN/química , Humanos , Hidrólisis , Proteínas Mad2/química , Modelos Moleculares , Conformación Proteica
20.
Gene ; 774: 145420, 2021 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-33434627

RESUMEN

ClpXP in Escherichia coli is a proteasome degrading protein substrates. It consists of one hexamer of ATPase (ClpX) and two heptamers of peptidase (ClpP). The ClpX binds ATP and translocates the substrate protein into the ClpP chamber by binding and hydrolysis of ATP. At single molecular level, ClpX harnesses cycles of power stroke (dwell and burst) to unfold the substrates, then releases the ADP and Pi. Based on the construction and function of ClpXP, especially the recent progress on how ClpX unfold protein substrates, in this mini-review, a currently proposed single ClpX molecular model system detected by optical tweezers, and its prospective for the elucidation of the mechanism of force generation of ClpX in its power stroke and the subunit interaction with each other, were discussed in detail.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/fisiología , Endopeptidasa Clp/fisiología , Proteínas de Escherichia coli/fisiología , Escherichia coli/enzimología , Chaperonas Moleculares/fisiología , Imagen Individual de Molécula , ATPasas Asociadas con Actividades Celulares Diversas/química , Investigación Biomédica , Endopeptidasa Clp/química , Proteínas de Escherichia coli/química , Redes y Vías Metabólicas , Mitocondrias/fisiología , Modelos Moleculares , Chaperonas Moleculares/química , Proteínas Motoras Moleculares/química , Proteínas Motoras Moleculares/fisiología , Estructura Molecular , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA