Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 14693, 2024 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926545

RESUMEN

Our research aimed to elucidate the mechanism by which aurintricarboxylic acid (ATA) inhibits plasma membrane Ca2+-ATPase (PMCA), a crucial enzyme responsible for calcium transport. Given the pivotal role of PMCA in cellular calcium homeostasis, understanding how it is inhibited by ATA holds significant implications for potentially regulating physiopathological cellular processes in which this pump is involved. Our experimental findings revealed that ATA employs multiple modes of action to inhibit PMCA activity, which are influenced by ATP but also by the presence of calcium and magnesium ions. Specifically, magnesium appears to enhance this inhibitory effect. Our experimental and in-silico results suggest that, unlike those reported in other proteins, ATA complexed with magnesium (ATA·Mg) is the molecule that inhibits PMCA. In summary, our study presents a novel perspective and establishes a solid foundation for future research efforts aimed at the development of new pharmacological molecules both for PMCA and other proteins.


Asunto(s)
Ácido Aurintricarboxílico , Calcio , Magnesio , ATPasas Transportadoras de Calcio de la Membrana Plasmática , Magnesio/metabolismo , Magnesio/farmacología , Ácido Aurintricarboxílico/farmacología , ATPasas Transportadoras de Calcio de la Membrana Plasmática/metabolismo , ATPasas Transportadoras de Calcio de la Membrana Plasmática/antagonistas & inhibidores , Calcio/metabolismo , Adenosina Trifosfato/metabolismo , Membrana Celular/metabolismo , Membrana Celular/efectos de los fármacos , Animales , Humanos
2.
J Physiol Biochem ; 77(2): 321-329, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33704695

RESUMEN

Lysophosphatidic acid (LPA) acts through the activation of G protein-coupled receptors, in a Ca2+-dependent manner. We show the effects of LPA on the plasma membrane Ca2+-ATPase (PMCA) from kidney proximal tubule cells. The Ca2+-ATPase activity was inhibited by nanomolar concentrations of LPA, with maximal inhibition (~50%) obtained with 20 nM LPA. This inhibitory action on PMCA activity was blocked by Ki16425, an antagonist for LPA receptors, indicating that this lipid acts via LPA1 and/or LPA3 receptor. This effect is PKC-dependent, since it is abolished by calphostin C and U73122, PKC, and PLC inhibitors, respectively. Furthermore, the addition of 10-8 M PMA, a well-known PKC activator, mimicked PMCA modulation by LPA. We also demonstrated that the PKC activation leads to an increase in PMCA phosphorylation. These results indicate that LPA triggers LPA1 and/or LPA3 receptors at the BLM, inducing PKC-dependent phosphorylation with further inhibition of PMCA. Thus, LPA is part of the regulatory lipid network present at the BLM and plays an important role in the regulation of intracellular Ca2+ concentration that may result in significant physiological alterations in other Ca2+-dependent events ascribed to the renal tissue.


Asunto(s)
Calcio/metabolismo , Membrana Celular/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Lisofosfolípidos/farmacología , ATPasas Transportadoras de Calcio de la Membrana Plasmática/genética , Receptores del Ácido Lisofosfatídico/genética , Animales , Fraccionamiento Celular , Membrana Celular/metabolismo , Células Epiteliales/citología , Células Epiteliales/metabolismo , Estrenos/farmacología , Regulación de la Expresión Génica , Transporte Iónico/efectos de los fármacos , Isoxazoles/farmacología , Túbulos Renales Proximales/citología , Túbulos Renales Proximales/efectos de los fármacos , Túbulos Renales Proximales/metabolismo , Naftalenos/farmacología , Fosforilación/efectos de los fármacos , ATPasas Transportadoras de Calcio de la Membrana Plasmática/antagonistas & inhibidores , ATPasas Transportadoras de Calcio de la Membrana Plasmática/metabolismo , Cultivo Primario de Células , Propionatos/farmacología , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/genética , Proteína Quinasa C/metabolismo , Pirrolidinonas/farmacología , Receptores del Ácido Lisofosfatídico/antagonistas & inhibidores , Receptores del Ácido Lisofosfatídico/metabolismo , Transducción de Señal , Porcinos , Acetato de Tetradecanoilforbol/farmacología , Fosfolipasas de Tipo C/antagonistas & inhibidores , Fosfolipasas de Tipo C/genética , Fosfolipasas de Tipo C/metabolismo
3.
Neuropharmacology ; 139: 163-172, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-30003902

RESUMEN

The phenothiazine methylene blue (MB) is attracting increasing attention because it seems to have beneficial effects in the pathogenesis of Alzheimer's disease (AD). Among other factors, the presence of neuritic plaques of amyloid-ß peptide (Aß) aggregates, neurofibrilar tangles of tau and perturbation of cytosolic Ca2+ are important players of the disease. It has been proposed that MB decreases the formation of neuritic plaques due to Aß aggregation. However, the molecular mechanism underlying this effect is far from clear. In this work, we show that MB stimulates the Ca2+-ATPase activity of the plasma membrane Ca2+-ATPase (PMCA) in human tissues from AD-affected brain and age-matched controls and also from pig brain and cell cultures. In addition, MB prevents and even blocks the inhibitory effect of Aß on PMCA activity. Functional analysis with mutants and fluorescence experiments strongly suggest that MB binds to PMCA, at the C-terminal tail, in a site located close to the last transmembrane helix and also that MB binds to the peptide. Besides, Aß increases PMCA affinity for MB. These results point out a novel molecular basis of MB action on Aß and PMCA as mediator of its beneficial effect on AD.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Azul de Metileno/farmacología , Fármacos Neuroprotectores/farmacología , ATPasas Transportadoras de Calcio de la Membrana Plasmática/metabolismo , Adenosina Trifosfato/administración & dosificación , Adenosina Trifosfato/metabolismo , Anciano de 80 o más Años , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/enzimología , Animales , Sitios de Unión , Encéfalo/efectos de los fármacos , Encéfalo/enzimología , Células COS , Chlorocebus aethiops , Humanos , Isoenzimas/antagonistas & inhibidores , Isoenzimas/metabolismo , ATPasas Transportadoras de Calcio de la Membrana Plasmática/antagonistas & inhibidores , Conformación Proteica , Saccharomyces cerevisiae , Sus scrofa , Sinaptosomas/efectos de los fármacos , Sinaptosomas/enzimología
4.
J Cell Mol Med ; 22(2): 861-872, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29193716

RESUMEN

Cardiovascular disease is the world's leading cause of morbidity and mortality, with high blood pressure (BP) contributing to increased severity and number of adverse outcomes. Plasma membrane calcium ATPase 4 (PMCA4) has been previously shown to modulate systemic BP. However, published data are conflicting, with both overexpression and inhibition of PMCA4 in vivo shown to increase arterial contractility. Hence, our objective was to determine the role of PMCA4 in the regulation of BP and to further understand how PMCA4 functionally regulates BP using a novel specific inhibitor to PMCA4, aurintricarboxylic acid (ATA). Our approach assessed conscious BP and contractility of resistance arteries from PMCA4 global knockout (PMCA4KO) mice compared to wild-type animals. Global ablation of PMCA4 had no significant effect on BP, arterial structure or isolated arterial contractility. ATA treatment significantly reduced BP and arterial contractility in wild-type mice but had no significant effect in PMCA4KO mice. The effect of ATAin vivo and ex vivo was abolished by the neuronal nitric oxide synthase (nNOS) inhibitor Vinyl-l-NIO. Thus, this highlights differences in the effects of PMCA4 ablation and acute inhibition on the vasculature. Importantly, for doses here used, we show the vascular effects of ATA to be specific for PMCA4 and that ATA may be a further experimental tool for elucidating the role of PMCA4.


Asunto(s)
Presión Sanguínea , Arterias Mesentéricas/fisiopatología , Óxido Nítrico Sintasa de Tipo I/metabolismo , ATPasas Transportadoras de Calcio de la Membrana Plasmática/antagonistas & inhibidores , Animales , Ácido Aurintricarboxílico/farmacología , Presión Sanguínea/efectos de los fármacos , Calcio/metabolismo , Estado de Conciencia , Técnicas In Vitro , Masculino , Arterias Mesentéricas/efectos de los fármacos , Ratones Noqueados , Modelos Biológicos , Péptidos/farmacología , ATPasas Transportadoras de Calcio de la Membrana Plasmática/metabolismo
5.
J Biol Chem ; 292(51): 21047-21059, 2017 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-29042438

RESUMEN

Acute pancreatitis is a disease associated with inflammation and tissue damage. One protein that protects against acute injury, including ischemic injury to both the kidney and heart, is renalase, which is secreted into the blood by the kidney and other tissues. However, whether renalase reduces acute injury associated with pancreatitis is unknown. Here, we used both in vitro and in vivo murine models of acute pancreatitis to study renalase's effects on this condition. In isolated pancreatic lobules, pretreatment with recombinant human renalase (rRNLS) blocked zymogen activation caused by cerulein, carbachol, and a bile acid. Renalase also blocked cerulein-induced cell injury and histological changes. In the in vivo cerulein model of pancreatitis, genetic deletion of renalase resulted in more severe disease, and administering rRNLS to cerulein-exposed WT mice after pancreatitis onset was protective. Because pathological increases in acinar cell cytosolic calcium levels are central to the initiation of acute pancreatitis, we also investigated whether rRNLS could function through its binding protein, plasma membrane calcium ATPase 4b (PMCA4b), which excretes calcium from cells. We found that PMCA4b is expressed in both murine and human acinar cells and that a PMCA4b-selective inhibitor worsens pancreatitis-induced injury and blocks the protective effects of rRNLS. These findings suggest that renalase is a protective plasma protein that reduces acinar cell injury through a plasma membrane calcium ATPase. Because exogenous rRNLS reduces the severity of acute pancreatitis, it has potential as a therapeutic agent.


Asunto(s)
Monoaminooxidasa/metabolismo , Páncreas/metabolismo , Pancreatitis/metabolismo , ATPasas Transportadoras de Calcio de la Membrana Plasmática/metabolismo , Células Acinares/efectos de los fármacos , Células Acinares/metabolismo , Células Acinares/patología , Animales , Antiinflamatorios no Esteroideos/metabolismo , Antiinflamatorios no Esteroideos/uso terapéutico , Biomarcadores/metabolismo , Señalización del Calcio/efectos de los fármacos , Carbacol/farmacología , Línea Celular , Ceruletida/toxicidad , Activación Enzimática/efectos de los fármacos , Técnica del Anticuerpo Fluorescente Indirecta , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Humanos , Hipertensión/etiología , Hipertensión/prevención & control , Ligandos , Moduladores del Transporte de Membrana/farmacología , Ratones , Ratones Noqueados , Monoaminooxidasa/sangre , Monoaminooxidasa/genética , Monoaminooxidasa/uso terapéutico , Páncreas/efectos de los fármacos , Páncreas/inmunología , Páncreas/patología , Pancreatitis/inducido químicamente , Pancreatitis/tratamiento farmacológico , Pancreatitis/patología , ATPasas Transportadoras de Calcio de la Membrana Plasmática/antagonistas & inhibidores , ATPasas Transportadoras de Calcio de la Membrana Plasmática/química , ATPasas Transportadoras de Calcio de la Membrana Plasmática/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/uso terapéutico , Ácido Taurolitocólico/análogos & derivados , Ácido Taurolitocólico/farmacología
6.
Biochim Biophys Acta Mol Cell Res ; 1864(8): 1413-1424, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28527708

RESUMEN

We have previously shown that purified actin can directly bind to human plasma membrane Ca2+ ATPase 4b (hPMCA4b) and exert a dual modulation on its Ca2+-ATPase activity: F-actin inhibits PMCA while short actin oligomers may contribute to PMCA activation. These studies had to be performed with purified proteins given the nature of the biophysical and biochemical approaches used. To assess whether a functional interaction between the PMCAs and the cortical cytoskeleton is of physiological relevance, we characterized this phenomenon in the context of a living cell by monitoring in real-time the changes in the cytosolic calcium levels ([Ca2+]CYT). In this study, we tested the influence of drugs that change the actin and microtubule polymerization state on the activity and membrane expression of the PMCA transiently expressed in human embryonic kidney (HEK293) cells, which allowed us to observe and quantify these relationships in a live cell, for the first time. We found that disrupting the actin cytoskeleton with cytochalasin D significantly increased PMCA-mediated Ca2+ extrusion (~50-100%) whereas pre-treatment with the F-actin stabilizing agent jasplakinolide caused its full inhibition. When the microtubule network was disrupted by pretreatment of the cells with colchicine, we observed a significant decrease in PMCA activity (~40-60% inhibition) in agreement with the previously reported role of acetylated tubulin on the calcium pump. In none of these cases was there a difference in the level of expression of the pump at the cell surface, thus suggesting that the specific activity of the pump was the regulated parameter. Our results indicate that PMCA activity is profoundly affected by the polymerization state of the cortical cytoskeleton in living cells.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Señalización del Calcio/efectos de los fármacos , Calcio/metabolismo , Membrana Celular/metabolismo , Microtúbulos/metabolismo , ATPasas Transportadoras de Calcio de la Membrana Plasmática/metabolismo , Citoesqueleto de Actina/efectos de los fármacos , Citoesqueleto de Actina/ultraestructura , Actinas/genética , Actinas/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Celular/ultraestructura , Colchicina/farmacología , Citocalasina D/farmacología , Depsipéptidos/farmacología , Regulación de la Expresión Génica , Células HEK293 , Humanos , Microtúbulos/efectos de los fármacos , Microtúbulos/ultraestructura , ATPasas Transportadoras de Calcio de la Membrana Plasmática/antagonistas & inhibidores , ATPasas Transportadoras de Calcio de la Membrana Plasmática/genética , Imagen de Lapso de Tiempo
7.
Mol Psychiatry ; 22(5): 711-723, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-27620840

RESUMEN

Niemann-Pick disease type A (NPA) is a rare lysosomal storage disorder characterized by severe neurological alterations that leads to death in childhood. Loss-of-function mutations in the acid sphingomyelinase (ASM) gene cause NPA, and result in the accumulation of sphingomyelin (SM) in lysosomes and plasma membrane of neurons. Using ASM knockout (ASMko) mice as a NPA disease model, we investigated how high SM levels contribute to neural pathology in NPA. We found high levels of oxidative stress both in neurons from these mice and a NPA patient. Impaired activity of the plasma membrane calcium ATPase (PMCA) increases intracellular calcium. SM induces PMCA decreased activity, which causes oxidative stress. Incubating ASMko-cultured neurons in the histone deacetylase inhibitor, SAHA, restores PMCA activity and calcium homeostasis and, consequently, reduces the increased levels of oxidative stress. No recovery occurs when PMCA activity is pharmacologically impaired or genetically inhibited in vitro. Oral administration of SAHA prevents oxidative stress and neurodegeneration, and improves behavioral performance in ASMko mice. These results demonstrate a critical role for plasma membrane SM in neuronal calcium regulation. Thus, we identify changes in PMCA-triggered calcium homeostasis as an upstream mediator for NPA pathology. These findings can stimulate new approaches for pharmacological remediation in a disease with no current clinical treatments.


Asunto(s)
Enfermedad de Niemann-Pick Tipo A/metabolismo , Enfermedad de Niemann-Pick Tipo A/patología , ATPasas Transportadoras de Calcio de la Membrana Plasmática/antagonistas & inhibidores , Esfingomielinas/metabolismo , Animales , Encéfalo/metabolismo , Estudios de Casos y Controles , Membrana Celular/enzimología , Membrana Celular/metabolismo , Preescolar , Modelos Animales de Enfermedad , Humanos , Lisosomas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedades Neurodegenerativas/enzimología , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Neuronas/enzimología , Neuronas/metabolismo , Enfermedad de Niemann-Pick Tipo A/enzimología , Estrés Oxidativo/fisiología , ATPasas Transportadoras de Calcio de la Membrana Plasmática/metabolismo , Esfingomielina Fosfodiesterasa/genética , Esfingomielina Fosfodiesterasa/metabolismo
8.
Biochim Biophys Acta Mol Cell Res ; 1864(6): 1028-1035, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27818274

RESUMEN

The disruption of Ca2+ signaling in neurons, together with a failure to keep optimal intracellular Ca2+ concentrations, have been proposed as significant factors for neuronal dysfunction in the Ca2+ hypothesis of Alzheimer's disease (AD). Tau is a protein that plays an essential role in axonal transport and can form abnormal structures such as neurofibrillary tangles that constitute one of the hallmarks of AD. We have recently shown that plasma membrane Ca2+-ATPase (PMCA), a key enzyme in the maintenance of optimal cytosolic Ca2+ levels in cells, is inhibited by tau in membrane vesicles. In the present study we show that tau inhibits synaptosomal PMCA purified from pig cerebrum, and reconstituted in phosphatidylserine-containing lipid bilayers, with a Ki value of 1.5±0.2nM tau. Noteworthy, the inhibitory effect of tau is dependent on the charge of the phospholipid used for PMCA reconstitution. In addition, nanomolar concentrations of calmodulin, the major endogenous activator of PMCA, protects against inhibition of the Ca2+-ATPase activity by tau. Our results in a cellular model such as SH-SY5Y human neuroblastoma cells yielded an inhibition of PMCA by nanomolar tau concentrations and protection by calmodulin against this inhibition similar to those obtained with purified synaptosomal PMCA. Functional studies were also performed with native and truncated versions of human cerebral PMCA4b, an isoform that has been showed to be functionally regulated by amyloid peptides, whose aggregates constitutes another hallmark of AD. Kinetic assays point out that tau binds to the C-terminal tail of PMCA, at a site distinct but close to the calmodulin binding domain. In conclusion, PMCA can be seen as a molecular target for tau-induced cytosolic calcium dysregulation in synaptic terminals. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.


Asunto(s)
Calmodulina/metabolismo , Fosfolípidos/metabolismo , ATPasas Transportadoras de Calcio de la Membrana Plasmática/antagonistas & inhibidores , Proteínas tau/metabolismo , Animales , Línea Celular Tumoral , Humanos , ATPasas Transportadoras de Calcio de la Membrana Plasmática/metabolismo , Porcinos
9.
Am J Physiol Endocrinol Metab ; 311(1): E214-23, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27245334

RESUMEN

Previously, ß-thalassemia, an inherited anemic disorder with iron overload caused by loss-of-function mutation of ß-globin gene, has been reported to induce osteopenia and impaired whole body calcium metabolism, but the pathogenesis of aberrant calcium homeostasis remains elusive. Herein, we investigated how ß-thalassemia impaired intestinal calcium absorption and whether it could be restored by administration of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] or hepcidin, the latter of which was the liver-derived antagonist of intestinal iron absorption. The results showed that, in hemizygous ß-globin knockout (BKO) mice, the duodenal calcium transport was lower than that in wild-type littermates, and severity was especially pronounced in female mice. Both active and passive duodenal calcium fluxes in BKO mice were found to be less than those in normal mice. This impaired calcium transport could be restored by 7-day 1,25(OH)2D3 treatment. The 1,25(OH)2D3-induced calcium transport was diminished by inhibitors of calcium transporters, e.g., L-type calcium channel, NCX1, and PMCA1b, as well as vesicular transport inhibitors. Interestingly, the duodenal calcium transport exhibited an inverse correlation with transepithelial iron transport, which was markedly enhanced in thalassemic mice. Thus, 3-day subcutaneous hepcidin injection and acute direct hepcidin exposure in the Ussing chamber were capable of restoring the thalassemia-associated impairment of calcium transport; however, the positive effect of hepcidin on calcium transport was completely blocked by proteasome inhibitors MG132 and bortezomib. In conclusion, both 1,25(OH)2D3 and hepcidin could be used to alleviate the ß-thalassemia-associated impairment of calcium absorption. Therefore, our study has shed light on the development of a treatment strategy to rescue calcium dysregulation in ß-thalassemia.


Asunto(s)
Calcitriol/farmacología , Calcio/metabolismo , Duodeno/efectos de los fármacos , Hepcidinas/farmacología , Absorción Intestinal/efectos de los fármacos , Hierro/metabolismo , Talasemia beta/metabolismo , Animales , Bortezomib/farmacología , Bloqueadores de los Canales de Calcio/farmacología , Inhibidores de Cisteína Proteinasa/farmacología , Duodeno/metabolismo , Femenino , Hemicigoto , Leupeptinas/farmacología , Masculino , Ratones , Ratones Noqueados , ATPasas Transportadoras de Calcio de la Membrana Plasmática/antagonistas & inhibidores , Intercambiador de Sodio-Calcio/antagonistas & inhibidores , Proteínas de Transporte Vesicular/antagonistas & inhibidores , Globinas beta/genética , Talasemia beta/genética
10.
Sci Rep ; 6: 25505, 2016 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-27148852

RESUMEN

Regulation of Ca(2+) transport is vital in physiological processes, including lactation, proliferation and apoptosis. The plasmalemmal Ca(2+) pump isoform 2 (PMCA2) a calcium ion efflux pump, was the first protein identified to be crucial in the transport of Ca(2+) ions into milk during lactation in mice. In these studies we show that PMCA2 is also expressed in human epithelia undergoing lactational remodeling and also report strong PMCA2 staining on apical membranes of luminal epithelia in approximately 9% of human breast cancers we assessed. Membrane protein expression was not significantly associated with grade or hormone receptor status. However, PMCA2 mRNA levels were enriched in Basal breast cancers where it was positively correlated with survival. Silencing of PMCA2 reduced MDA-MB-231 breast cancer cell proliferation, whereas silencing of the related isoforms PMCA1 and PMCA4 had no effect. PMCA2 silencing also sensitized MDA-MB-231 cells to the cytotoxic agent doxorubicin. Targeting PMCA2 alone or in combination with cytotoxic therapy may be worthy of investigation as a therapeutic strategy in breast cancer. PMCA2 mRNA levels are also a potential tool in identifying poor responders to therapy in women with Basal breast cancer.


Asunto(s)
Neoplasias de la Mama/genética , Calcio/metabolismo , Carcinoma Basocelular/genética , Transformación Celular Neoplásica/genética , Regulación Neoplásica de la Expresión Génica , ATPasas Transportadoras de Calcio de la Membrana Plasmática/genética , Antibióticos Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/patología , Señalización del Calcio , Carcinoma Basocelular/tratamiento farmacológico , Carcinoma Basocelular/mortalidad , Carcinoma Basocelular/patología , Línea Celular Tumoral , Membrana Celular/efectos de los fármacos , Membrana Celular/enzimología , Membrana Celular/patología , Proliferación Celular , Transformación Celular Neoplásica/efectos de los fármacos , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Doxorrubicina/farmacología , Células Epiteliales/enzimología , Células Epiteliales/patología , Femenino , Humanos , Isoenzimas/antagonistas & inhibidores , Isoenzimas/genética , Isoenzimas/metabolismo , Lactancia/fisiología , Glándulas Mamarias Humanas/enzimología , Glándulas Mamarias Humanas/patología , ATPasas Transportadoras de Calcio de la Membrana Plasmática/antagonistas & inhibidores , ATPasas Transportadoras de Calcio de la Membrana Plasmática/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Análisis de Supervivencia
11.
Diabetologia ; 58(12): 2843-50, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26362865

RESUMEN

AIMS/HYPOTHESIS: Calcium plays an important role in the process of glucose-induced insulin release in pancreatic beta cells. These cells are equipped with a double system responsible for Ca(2+) extrusion--the Na/Ca exchanger (NCX) and the plasma membrane Ca(2+)-ATPase (PMCA). We have shown that heterozygous inactivation of NCX1 in mice increased glucose-induced insulin release and stimulated beta cell proliferation and mass. In the present study, we examined the effects of heterozygous inactivation of the PMCA on beta cell function. METHODS: Biological and morphological methods (Ca(2+) imaging, Ca(2+) uptake, glucose metabolism, insulin release and immunohistochemistry) were used to assess beta cell function and proliferation in Pmca2 (also known as Atp2b2) heterozygous mice and control littermates ex vivo. Blood glucose and insulin levels were also measured to assess glucose metabolism in vivo. RESULTS: Pmca (isoform 2) heterozygous inactivation increased intracellular Ca(2+) stores and glucose-induced insulin release. Moreover, increased beta cell proliferation, mass, viability and islet size were observed in Pmca2 heterozygous mice. However, no differences in beta cell glucose metabolism, proinsulin immunostaining and insulin content were observed. CONCLUSIONS/INTERPRETATION: The present data indicates that inhibition of Ca(2+) extrusion from the beta cell and its subsequent intracellular accumulation stimulates beta cell function, proliferation and mass. This is in agreement with our previous results observed in mice displaying heterozygous inactivation of NCX, and indicates that inhibition of Ca(2+) extrusion mechanisms by small molecules in beta cells may represent a new approach in the treatment of type 1 and type 2 diabetes.


Asunto(s)
Membrana Celular/enzimología , Glucosa/farmacología , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , ATPasas Transportadoras de Calcio de la Membrana Plasmática/antagonistas & inhibidores , ATPasas Transportadoras de Calcio de la Membrana Plasmática/genética , Animales , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Prueba de Tolerancia a la Glucosa , Células Secretoras de Insulina/efectos de los fármacos , Ratones , Intercambiador de Sodio-Calcio/genética
12.
J Biol Chem ; 290(41): 24760-71, 2015 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-26294767

RESUMEN

Evidence suggests that the plasma membrane Ca(2+)-ATPase (PMCA), which is critical for maintaining a low intracellular Ca(2+) concentration ([Ca(2+)]i), utilizes glycolytically derived ATP in pancreatic ductal adenocarcinoma (PDAC) and that inhibition of glycolysis in PDAC cell lines results in ATP depletion, PMCA inhibition, and an irreversible [Ca(2+)]i overload. We explored whether this is a specific weakness of highly glycolytic PDAC by shifting PDAC cell (MIA PaCa-2 and PANC-1) metabolism from a highly glycolytic phenotype toward mitochondrial metabolism and assessing the effects of mitochondrial versus glycolytic inhibitors on ATP depletion, PMCA inhibition, and [Ca(2+)]i overload. The highly glycolytic phenotype of these cells was first reversed by depriving MIA PaCa-2 and PANC-1 cells of glucose and supplementing with α-ketoisocaproate or galactose. These culture conditions resulted in a significant decrease in both glycolytic flux and proliferation rate, and conferred resistance to ATP depletion by glycolytic inhibition while sensitizing cells to mitochondrial inhibition. Moreover, in direct contrast to cells exhibiting a high glycolytic rate, glycolytic inhibition had no effect on PMCA activity and resting [Ca(2+)]i in α-ketoisocaproate- and galactose-cultured cells, suggesting that the glycolytic dependence of the PMCA is a specific vulnerability of PDAC cells exhibiting the Warburg phenotype.


Asunto(s)
Adenosina Trifosfato/metabolismo , Membrana Celular/enzimología , Glucólisis , Neoplasias Pancreáticas/patología , ATPasas Transportadoras de Calcio de la Membrana Plasmática/metabolismo , Adenocarcinoma/patología , Calcio/metabolismo , Línea Celular Tumoral , Membrana Celular/efectos de los fármacos , Citosol/efectos de los fármacos , Citosol/metabolismo , Inhibidores Enzimáticos/farmacología , Galactosa/farmacología , Glucólisis/efectos de los fármacos , Humanos , Ácido Yodoacético/farmacología , Cetoácidos/farmacología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , ATPasas Transportadoras de Calcio de la Membrana Plasmática/antagonistas & inhibidores
13.
J Biol Chem ; 290(21): 13293-307, 2015 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-25847233

RESUMEN

The new G protein-coupled estrogen receptor 1 (GPER/GPR30) plays important roles in many organ systems. The plasma membrane Ca(2+)-ATPase (PMCA) is essential for removal of cytoplasmic Ca(2+) and for shaping the time courses of Ca(2+)-dependent activities. Here, we show that PMCA and GPER/GPR30 physically interact and functionally influence each other. In primary endothelial cells, GPER/GPR30 agonist G-1 decreases PMCA-mediated Ca(2+) extrusion by promoting PMCA tyrosine phosphorylation. GPER/GPR30 overexpression decreases PMCA activity, and G-1 further potentiates this effect. GPER/GPR30 knockdown increases PMCA activity, whereas PMCA knockdown substantially reduces GPER/GPR30-mediated phosphorylation of the extracellular signal-related kinase (ERK1/2). GPER/GPR30 co-immunoprecipitates with PMCA with or without treatment with 17ß-estradiol, thapsigargin, or G-1. Heterologously expressed GPER/GPR30 in HEK 293 cells co-localizes with PMCA4b, the main endothelial PMCA isoform. Endothelial cells robustly express the PDZ post-synaptic density protein (PSD)-95, whose knockdown reduces the association between GPER/GPR30 and PMCA. Additionally, the association between PMCA4b and GPER/GPR30 is substantially reduced by truncation of either or both of their C-terminal PDZ-binding motifs. Functionally, inhibition of PMCA activity is significantly reduced by truncation of GPER/GPR30's C-terminal PDZ-binding motif. These data strongly indicate that GPER/GPR30 and PMCA4b form a hetero-oligomeric complex in part via the anchoring action of PSD-95, in which they constitutively affect each other's function. Activation of GPER/GPR30 further inhibits PMCA activity through tyrosine phosphorylation of the pump. These interactions represent cross-talk between Ca(2+) signaling and GPER/GPR30-mediated activities.


Asunto(s)
Aorta/metabolismo , Calcio/metabolismo , Membrana Celular/metabolismo , Endotelio Vascular/metabolismo , ATPasas Transportadoras de Calcio de la Membrana Plasmática/metabolismo , Receptores de Estrógenos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Aorta/citología , Western Blotting , Células Cultivadas , Endotelio Vascular/citología , Células HEK293 , Humanos , Inmunoprecipitación , Fosforilación , ATPasas Transportadoras de Calcio de la Membrana Plasmática/antagonistas & inhibidores , ATPasas Transportadoras de Calcio de la Membrana Plasmática/genética , Unión Proteica , ARN Interferente Pequeño/genética , Receptores de Estrógenos/antagonistas & inhibidores , Receptores de Estrógenos/genética , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Receptores Acoplados a Proteínas G/genética , Transducción de Señal , Porcinos
14.
J Biol Chem ; 289(49): 34308-24, 2014 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-25315779

RESUMEN

Fast inhibitory glycinergic transmission occurs in spinal cord, brainstem, and retina to modulate the processing of motor and sensory information. After synaptic vesicle fusion, glycine is recovered back to the presynaptic terminal by the neuronal glycine transporter 2 (GlyT2) to maintain quantal glycine content in synaptic vesicles. The loss of presynaptic GlyT2 drastically impairs the refilling of glycinergic synaptic vesicles and severely disrupts neurotransmission. Indeed, mutations in the gene encoding GlyT2 are the main presynaptic cause of hyperekplexia in humans. Here, we show a novel endogenous regulatory mechanism that can modulate GlyT2 activity based on a compartmentalized interaction between GlyT2, neuronal plasma membrane Ca(2+)-ATPase (PMCA) isoforms 2 and 3, and Na(+)/Ca(2+)-exchanger 1 (NCX1). This GlyT2·PMCA2,3·NCX1 complex is found in lipid raft subdomains where GlyT2 has been previously found to be fully active. We show that endogenous PMCA and NCX activities are necessary for GlyT2 activity and that this modulation depends on lipid raft integrity. Besides, we propose a model in which GlyT2·PMCA2-3·NCX complex would help Na(+)/K(+)-ATPase in controlling local Na(+) increases derived from GlyT2 activity after neurotransmitter release.


Asunto(s)
Proteínas de Transporte de Glicina en la Membrana Plasmática/metabolismo , ATPasas Transportadoras de Calcio de la Membrana Plasmática/metabolismo , Células Receptoras Sensoriales/metabolismo , Intercambiador de Sodio-Calcio/metabolismo , Animales , Tronco Encefálico/citología , Tronco Encefálico/efectos de los fármacos , Tronco Encefálico/metabolismo , Regulación de la Expresión Génica , Proteínas de Transporte de Glicina en la Membrana Plasmática/genética , Péptidos y Proteínas de Señalización Intercelular , Masculino , Microdominios de Membrana/química , Microdominios de Membrana/efectos de los fármacos , Microdominios de Membrana/metabolismo , Péptidos/farmacología , ATPasas Transportadoras de Calcio de la Membrana Plasmática/antagonistas & inhibidores , ATPasas Transportadoras de Calcio de la Membrana Plasmática/genética , Terminales Presinápticos/efectos de los fármacos , Cultivo Primario de Células , Unión Proteica , Ratas , Ratas Wistar , Células Receptoras Sensoriales/citología , Células Receptoras Sensoriales/efectos de los fármacos , Intercambiador de Sodio-Calcio/antagonistas & inhibidores , Intercambiador de Sodio-Calcio/genética , Médula Espinal/citología , Médula Espinal/efectos de los fármacos , Médula Espinal/metabolismo , Transmisión Sináptica , Tiourea/análogos & derivados , Tiourea/farmacología , beta-Ciclodextrinas/farmacología
15.
PLoS One ; 9(7): e102352, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25014339

RESUMEN

Plasma membrane Ca(2+)-ATPase (PMCA) by extruding Ca(2+) outside the cell, actively participates in the regulation of intracellular Ca(2+) concentration. Acting as Ca(2+)/H(+) counter-transporter, PMCA transports large quantities of protons which may affect organellar pH homeostasis. PMCA exists in four isoforms (PMCA1-4) but only PMCA2 and PMCA3, due to their unique localization and features, perform more specialized function. Using differentiated PC12 cells we assessed the role of PMCA2 and PMCA3 in the regulation of intracellular pH in steady-state conditions and during Ca(2+) overload evoked by 59 mM KCl. We observed that manipulation in PMCA expression elevated pHmito and pHcyto but only in PMCA2-downregulated cells higher mitochondrial pH gradient (ΔpH) was found in steady-state conditions. Our data also demonstrated that PMCA2 or PMCA3 knock-down delayed Ca(2+) clearance and partially attenuated cellular acidification during KCl-stimulated Ca(2+) influx. Because SERCA and NCX modulated cellular pH response in neglectable manner, and all conditions used to inhibit PMCA prevented KCl-induced pH drop, we considered PMCA2 and PMCA3 as mainly responsible for transport of protons to intracellular milieu. In steady-state conditions, higher TMRE uptake in PMCA2-knockdown line was driven by plasma membrane potential (Ψp). Nonetheless, mitochondrial membrane potential (Ψm) in this line was dissipated during Ca(2+) overload. Cyclosporin and bongkrekic acid prevented Ψm loss suggesting the involvement of Ca(2+)-driven opening of mitochondrial permeability transition pore as putative underlying mechanism. The findings presented here demonstrate a crucial role of PMCA2 and PMCA3 in regulation of cellular pH and indicate PMCA membrane composition important for preservation of electrochemical gradient.


Asunto(s)
Calcio/metabolismo , Membrana Celular/metabolismo , Mitocondrias/metabolismo , ATPasas Transportadoras de Calcio de la Membrana Plasmática/metabolismo , Animales , Ácido Bongcréquico/farmacología , Diferenciación Celular , Membrana Celular/efectos de los fármacos , Ciclosporina/farmacología , Citosol/efectos de los fármacos , Citosol/metabolismo , Inhibidores Enzimáticos/farmacología , Regulación de la Expresión Génica , Homeostasis/fisiología , Concentración de Iones de Hidrógeno/efectos de los fármacos , Transporte Iónico/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Potenciales de la Membrana/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Proteínas de Transporte de Membrana Mitocondrial/antagonistas & inhibidores , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Células PC12 , ATPasas Transportadoras de Calcio de la Membrana Plasmática/antagonistas & inhibidores , ATPasas Transportadoras de Calcio de la Membrana Plasmática/genética , Cloruro de Potasio/farmacología , Ratas , Transducción de Señal
16.
Mol Cell Endocrinol ; 394(1-2): 70-9, 2014 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-25017733

RESUMEN

Sweet taste receptor regulates GLP-1 secretion in enteroendocrine L-cells. We investigated the signaling system activated by this receptor using Hutu-80 cells. We stimulated them with sucralose, saccharin, acesulfame K and glycyrrhizin. These sweeteners stimulated GLP-1 secretion, which was attenuated by lactisole. All these sweeteners elevated cytoplasmic cyclic AMP ([cAMP]c) whereas only sucralose and saccharin induced a monophasic increase in cytoplasmic Ca(2+) ([Ca(2+)]c). Removal of extracellular calcium or sodium and addition of a Gq/11 inhibitor greatly reduced the [Ca(2+)]c responses to two sweeteners. In contrast, acesulfame K induced rapid and sustained reduction of [Ca(2+)]c. In addition, glycyrrhizin first reduced [Ca(2+)]c which was followed by an elevation of [Ca(2+)]c. Reductions of [Ca(2+)]c induced by acesulfame K and glycyrrhizin were attenuated by a calmodulin inhibitor or by knockdown of the plasma membrane calcium pump. These results indicate that various sweet molecules act as biased agonists and evoke strikingly different patterns of intracellular signals.


Asunto(s)
Calcio/metabolismo , Duodeno/efectos de los fármacos , Péptido 1 Similar al Glucagón/metabolismo , Transducción de Señal/efectos de los fármacos , Edulcorantes/farmacología , Derivados del Benceno/farmacología , Calmodulina/genética , Calmodulina/metabolismo , Línea Celular Tumoral , AMP Cíclico/metabolismo , Duodeno/citología , Duodeno/metabolismo , Inhibidores Enzimáticos/farmacología , Regulación de la Expresión Génica , Péptido 1 Similar al Glucagón/biosíntesis , Ácido Glicirrínico/química , Ácido Glicirrínico/farmacología , Factores de Intercambio de Guanina Nucleótido/antagonistas & inhibidores , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Humanos , ATPasas Transportadoras de Calcio de la Membrana Plasmática/antagonistas & inhibidores , ATPasas Transportadoras de Calcio de la Membrana Plasmática/genética , ATPasas Transportadoras de Calcio de la Membrana Plasmática/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Sacarina/química , Sacarina/farmacología , Sacarosa/análogos & derivados , Sacarosa/química , Sacarosa/farmacología , Edulcorantes/química , Tiazinas/química , Tiazinas/farmacología
17.
Eur J Pharmacol ; 740: 733-41, 2014 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-24912144

RESUMEN

Plasma membrane Ca2+-ATPase (PMCA) plays an important role in regulating intracellular Ca2+ homeostasis by extruding excessive Ca2+ to extracellular spaces. PMCA has four isoforms and is widely expressed in different tissues and cells including airway smooth muscle cells (ASMCs). In the present study, we investigated the role of PMCA in the maintenance of Ca2+ homeostasis and regulation of ASMCs proliferation. By using Ca2+ fluorescence, we found that inhibition of PMCA with LaCl3 or carboxyeosin (CE) decreased the decay rate of Ca2+ transient induced by bradykinin (BK). No obvious decay was observed when SERCA was inhibited by thapsigargin (TpG). LaCl3 and CE also induced a spontaneous [Ca2+]i increase in the presence of TpG even in Ca2+-free bath solution. Both LaCl3 and CE inhibited UTP-induced Ca2+ oscillations in ASMCs. PCR assay found that PMCA1 and PMCA4 mRNA were expressed in rat ASMCs. The expression of PMCA4 was downregulated in proliferating ASMCs when compared to resting cells. Both the isoform-nonselective PMCA inhibitor caloxin 2a1 and PMCA4-selective inhibitor caloxin 1b1 decreased the decay rate of Ca2+ transient induced by TpG or BK. PMCA inhibitors except caloxin 2a1 promoted ASMCs proliferation. Annexin-V apoptosis assay detected that caloxin 2a1 increased ASMCs apoptosis, suggesting that inhibition of PMCA with different blockers results in different [Ca2+]i and thus different cellular response. Our results provide evidences to support the hypothesis that PMCA is involved in the regulation of Ca2+ homeostasis and ASMCs proliferation. These data suggest that PMCA may be a new target in the treatment of chronic asthma.


Asunto(s)
Señalización del Calcio , Miocitos del Músculo Liso/metabolismo , ATPasas Transportadoras de Calcio de la Membrana Plasmática/metabolismo , Animales , Bronquios/citología , Calcio/metabolismo , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Péptidos y Proteínas de Señalización Intercelular , Lantano/farmacología , Masculino , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/fisiología , Péptidos/farmacología , ATPasas Transportadoras de Calcio de la Membrana Plasmática/antagonistas & inhibidores , ATPasas Transportadoras de Calcio de la Membrana Plasmática/genética , ARN Mensajero/metabolismo , Ratas Sprague-Dawley
18.
J Pharm Pharm Sci ; 16(2): 217-30, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23958191

RESUMEN

PURPOSE: ATPases, which constitute a major category of ion transporters in the human body, have a variety of significant biological and pathological roles. However, the lack of high throughput assays for ATPases has significantly limited drug discovery in this area. We have recently found that the genetic deletion of the ATP dependent calcium pump PMCA4 (plasma membrane calcium/calmodulin dependent ATPase, isoform 4) results in infertility in male mice due to a selective defect in sperm motility. In addition, recent discoveries in humans have indicated that a single nucleotide polymorphism (SNP) in the PMCA4 gene determines the susceptibility towards malaria plasmodium infection. Therefore, there is an urgent need to develop specific PMCA4 inhibitors. In the current study, we aim to optimise and validate a high throughput screening compatible assay using recombinantly expressed PMCA4 and the HTRF® Transcreener® ADP (TR-FRET) assay to screen a drug library. METHODS AND RESULTS: PMCA4 membrane microsomes were prepared from HEK293 cells overexpressing PMCA4. Western blot quantification revealed nearly nine-fold increased expression of PMCA4 compared to LacZ (control virus)-infected cells. Maximal PMCA4 microsomal activity was achieved in the TR-FRET assay with 15ng/µl microsomal concentration, 30-minute pre-incubation with compounds at 37°C, and calcium buffering with 1mM EGTA providing 1µM free-calcium. Finally a dose-response curve for carboxyeosin (a non-specific PMCA inhibitor) under optimised conditions showed significant PMCA4 inhibition. Upon confirmation that the assay was suitable for high-throughput screening, we have screened the ChemBioNet small molecule library (~21,000 compounds) against the PMCA4 assay to identify those that are its apparent inhibitors. This screening yielded 1,494 primary hits. CONCLUSIONS: We have optimised the HTRF® Transcreener® ADP assay for high-throughput screening to identify PMCA4 inhibitors. The output of the screening campaign has provided preliminary chemical starting points that could be further developed to specific PMCA4 inhibitors for non-hormonal contraception or anti-malaria therapy.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Ensayos Analíticos de Alto Rendimiento , ATPasas Transportadoras de Calcio de la Membrana Plasmática/antagonistas & inhibidores , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Anticoncepción , Células HEK293 , Humanos , Malaria/tratamiento farmacológico , Malaria/metabolismo , Microsomas/metabolismo , ATPasas Transportadoras de Calcio de la Membrana Plasmática/metabolismo
19.
J Pharm Pharm Sci ; 16(2): 190-206, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23958189

RESUMEN

Plasma membrane Ca2+ ATPases (PMCAs) are highly regulated transporters responsible for Ca2+ extrusion from all eukaryotic cells. Different PMCA isoforms are implicated in various tasks of Ca2+ regulation including bulk Ca2+ transport and localized Ca2+ signaling in specific membrane microdomains. Accumulating evidence shows that loss, mutation or inappropriate expression of different PMCAs is associated with pathologies ranging from hypertension, low bone density and male infertility to hearing loss and cerebellar ataxia. Compared to Ca2+ influx channels, PMCAs have lagged far behind as targets for drug development, mainly due to the lack of detailed understanding of their structure and specific function. This is rapidly changing thanks to integrated efforts combining biochemical, structural, cellular and physiological studies suggesting that selective modulation of PMCA isoforms may be of therapeutic value in the management of different and complex diseases. Both structurally informed rational design and high-throughput small molecule library screenings are promising strategies that are expected to lead to specific and isoform-selective modulators of PMCA function. This short review will provide an overview of the diverse roles played by PMCA isoforms in different cells and tissues and their emerging involvement in pathophysiological processes, summarize recent progress in obtaining structural information on the PMCAs, and discuss current and future strategies to develop specific PMCA inhibitors and activators for potential therapeutic applications.


Asunto(s)
ATPasas Transportadoras de Calcio de la Membrana Plasmática/metabolismo , Animales , Enfermedad , Diseño de Fármacos , Inhibidores Enzimáticos , Humanos , Isoenzimas/metabolismo , ATPasas Transportadoras de Calcio de la Membrana Plasmática/antagonistas & inhibidores , ATPasas Transportadoras de Calcio de la Membrana Plasmática/química
20.
J Mol Cell Cardiol ; 63: 57-68, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23880607

RESUMEN

Isoform 4 of the plasma membrane calcium/calmodulin dependent ATPase (PMCA4) has recently emerged as an important regulator of several key pathophysiological processes in the heart, such as contractility and hypertrophy. However, direct monitoring of PMCA4 activity and assessment of calcium dynamics in its vicinity in cardiomyocytes are difficult due to the lack of molecular tools. In this study, we developed novel calcium fluorescent indicators by fusing the GCaMP2 calcium sensor to the N-terminus of PMCA4 to generate the PMCA4-GCaMP2 fusion molecule. We also identified a novel specific inhibitor of PMCA4, which might be useful for studying the role of this molecule in cardiomyocytes and other cell types. Using an adenoviral system we successfully expressed PMCA4-GCaMP2 in both neonatal and adult rat cardiomyocytes. This fusion molecule was correctly targeted to the plasma membrane and co-localised with caveolin-3. It could monitor signal oscillations in electrically stimulated cardiomyocytes. The PMCA4-GCaMP2 generated a higher signal amplitude and faster signal decay rate compared to a mutant inactive PMCA4(mut)GCaMP2 fusion protein, in electrically stimulated neonatal and adult rat cardiomyocytes. A small molecule library screen enabled us to identify a novel selective inhibitor for PMCA4, which we found to reduce signal amplitude of PMCA4-GCaMP2 and prolong the time of signal decay (Tau) to a level comparable with the signal generated by PMCA4(mut)GCaMP2. In addition, PMCA4-GCaMP2 but not the mutant form produced an enhanced signal in response to ß-adrenergic stimulation. Together, the PMCA4-GCaMP2 and PMCA4(mut)GCaMP2 demonstrate calcium dynamics in the vicinity of the pump under active or inactive conditions, respectively. In summary, the PMCA4-GCaMP2 together with the novel specific inhibitor provides new means with which to monitor calcium dynamics in the vicinity of a calcium transporter in cardiomyocytes and may become a useful tool to further study the biological functions of PMCA4. In addition, similar approaches could be useful for studying the activity of other calcium transporters during excitation-contraction coupling in the heart.


Asunto(s)
Calmodulina/metabolismo , Genes Reporteros , Proteínas Fluorescentes Verdes/metabolismo , Miocitos Cardíacos/metabolismo , ATPasas Transportadoras de Calcio de la Membrana Plasmática/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Adenoviridae/genética , Animales , Animales Recién Nacidos , Ácido Aurintricarboxílico/farmacología , Calcio/metabolismo , Señalización del Calcio , Calmodulina/genética , Caveolas/metabolismo , Membrana Celular/metabolismo , Expresión Génica , Vectores Genéticos/genética , Proteínas Fluorescentes Verdes/genética , Humanos , Masculino , Miocitos Cardíacos/efectos de los fármacos , ATPasas Transportadoras de Calcio de la Membrana Plasmática/antagonistas & inhibidores , ATPasas Transportadoras de Calcio de la Membrana Plasmática/genética , Transporte de Proteínas , Ratas , Proteínas Recombinantes de Fusión/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...