Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Parasit Vectors ; 17(1): 347, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39160562

RESUMEN

BACKGROUND: The encystation of Acanthamoeba castellanii has important ecological and medical significance. Blocking encystation is the key to preventing transmission and curing infections caused by A. castellanii. The formation of autophagosomes is one of the most important changes that occur during the encystation of Acanthamoeba. Our previous studies have shown that the heat shock protein 20 of A. castellanii (Ac-HSP20) is involved in its encystation. This study aimed to determine the role and mechanism of Ac-HSP20 in regulating autophagy involved in the encystation of A. castellanii. METHODS: Immunofluorescence assay, western blotting and transmission electron microscopy were used to analyze the dynamic changes in autophagy during the initiation and continuation of encystation. The knockdown of Ac-HSP20 was performed to clarify its regulation of encystation and autophagy and to elucidate the molecular mechanism by which Ac-HSP20 participates in autophagy to promote cyst maturation. RESULTS: The encystation rates and autophagosomes were significantly decreased by treatment with the autophagy inhibitor 3-MA. The autophagy marker LC3B and autophagic lysosomes increased with the induced duration of encystation and reached the maximum at 48 h. The encystation rate, LC3B expression and autophagosomes decreased when Ac-HSP20 was knocked down by siRNA transfection. In addition, the expression levels of Ac-HSP20 and LC3B increased and the expressions of p-AKT and p-mTOR decreased after 48 h of encystation without knockdown. However, the expressions of p-AKT and p-mTOR increased while the expression of LC3B decreased under the knockdown of Ac-HSP20. Furthermore, the protein expression of LC3B increased when the PI3K/AKT/mTOR signaling pathway was inhibited but decreased when the pathway was activated. CONCLUSIONS: The results demonstrated that autophagy is positively correlated with the encystation of A. castellanii, and Ac-HSP20 regulates autophagy to maintain the homeostasis of A. castellanii by inhibiting the PI3K /AKT /mTOR signaling pathway, thus promoting the maturation and stability of encystation.


Asunto(s)
Acanthamoeba castellanii , Autofagia , Proteínas del Choque Térmico HSP20 , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Serina-Treonina Quinasas TOR , Serina-Treonina Quinasas TOR/metabolismo , Serina-Treonina Quinasas TOR/genética , Acanthamoeba castellanii/fisiología , Acanthamoeba castellanii/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas del Choque Térmico HSP20/metabolismo , Proteínas del Choque Térmico HSP20/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Enquistamiento de Parásito/fisiología , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Autofagosomas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...