Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 952
Filtrar
1.
J Texture Stud ; 55(4): e12855, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38992897

RESUMEN

The effects of oil type, emulsifier type, and emulsion particle size on the texture, gel strength, and rheological properties of SPI emulsion-filled gel (SPI-FG) and TFSP emulsion-filled gel (TFSP-FG) were investigated. Using soybean protein isolate or sodium caseinate as emulsifiers, emulsions with cocoa butter replacer (CBR), palm oil (PO), virgin coconut oil (VCO), and canola oil (CO) as oil phases were prepared. These emulsions were filled into SPI and TFSP gel substrates to prepare emulsion-filled gels. Results that the hardness and gel strength of both gels increased with increasing emulsion content when CBR was used as the emulsion oil phase. However, when the other three liquid oils were used as the oil phase, the hardness and gel strength of TFSP-FG decreased with the increasing of emulsion content, but those of SPI-FG increased when SPI was used as emulsifier. Additionally, the hardness and gel strength of both TFSP-FG and SPI-FG increased with the decreasing of mean particle size of emulsions. Rheological measurements were consistent with textural measurements and found that compared with SC, TFSP-FG, and SPI-FG showed higher G' values when SPI was used as emulsifier. Confocal laser scanning microscopy (CLSM) observation showed that the distribution and stability of emulsion droplets in TFSP-FG and SPI-FG were influenced by the oil type, emulsifier type and emulsion particle size. SPI-stabilized emulsion behaved as active fillers in SPI-FG reinforcing the gel matrix; however, the gel matrix of TFSP-FG still had many void pores when SPI-stabilized emulsion was involved. In conclusion, compared to SPI-FG, the emulsion filler effect that could reinforce gel networks became weaker in TFSP-FG.


Asunto(s)
Emulsionantes , Emulsiones , Geles , Tamaño de la Partícula , Reología , Proteínas de Soja , Proteínas de Soja/química , Emulsiones/química , Emulsionantes/química , Geles/química , Aceites de Plantas/química , Aceite de Palma/química , Aceite de Brassica napus/química , Aceite de Coco/química , Dureza , Caseínas/química , Grasas de la Dieta
2.
Fish Shellfish Immunol ; 150: 109635, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38754648

RESUMEN

The present study explored the effects of different lipid sources on growth performance, lipid deposition, antioxidant capacity, inflammatory response and disease resistance of largemouth bass (Micropterus salmoides). Four isonitrogenous (crude protein 50.46 %) and isolipidic (crude lipid 11.12 %) diets were formulated to contain 7 % of different oil sources including fish oil (FO) (control), soybean oil (SO), linseed oil (LO) and coconut oil (CO). Largemouth bass with initial body weight of 36.0 ± 0.2 g were randomly distributed into 12 tanks, with 30 fish per tank and 3 tanks per treatment. The fish were fed with the experiment diets twice daily for 8 weeks. The results indicated that the weight gain of largemouth bass fed the FO diet was significantly higher than that of fish fed the LO and CO diets. The liver crude lipid content in FO group was significantly higher than other groups, while the highest liver triglyceride content was showed in SO group and the lowest was detected in LO group. At transcriptional level, expression of lipogenesis related genes (pparγ, srebp1, fas, acc, dgat1 and dgat2) in the SO and CO group were significantly higher than the FO group. However, the expression of lipolysis and fatty acids oxidation related genes (pparα, cpt1, and aco) in vegetable oils groups were significantly higher than the FO group. As to the antioxidant capacity, vegetable oils significantly reduced the malondialdehyde content of largemouth bass. Total antioxidant capacity in the SO and LO groups were significantly increased compared with the FO group. Catalase in the LO group was significantly increased compared with the FO group. Furthermore, the ER stress related genes, such as grp78, atf6α, atf6ß, chop and xbp1 were significantly enhanced in the vegetable oil groups compared with the FO group. The activity of serum lysozyme in vegetable oil groups were significantly higher than in FO group. Additionally, the relative expression of non-specific immune related genes, including tlr2, mapk11, mapk13, mapk14, rela, tgf-ß1, tnfα, 5lox, il-1ß and il10, were all significantly increased in SO and CO groups compared to the other groups. In conclusion, based on the indexes including growth performance, lipid deposition, antioxidant capacity and inflammatory response, SO and LO could be alternative oil sources for largemouth bass.


Asunto(s)
Alimentación Animal , Antioxidantes , Lubina , Dieta , Metabolismo de los Lípidos , Animales , Lubina/inmunología , Lubina/crecimiento & desarrollo , Dieta/veterinaria , Alimentación Animal/análisis , Antioxidantes/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Distribución Aleatoria , Suplementos Dietéticos/análisis , Grasas de la Dieta/administración & dosificación , Aceites de Pescado/administración & dosificación , Aceite de Linaza/administración & dosificación , Enfermedades de los Peces/inmunología , Inflamación/veterinaria , Inflamación/inmunología , Aceite de Soja/administración & dosificación , Aceite de Coco/administración & dosificación
3.
J Contemp Dent Pract ; 25(3): 260-266, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38690700

RESUMEN

AIM AND BACKGROUND: This study aimed to explore the potential synergistic interaction of virgin coconut oil (VCO) and virgin olive oil (VOO) mixture against Streptococcus sanguinis, Streptococcus mutans, and Lactobacillus casei in a single and mixture species through the minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), antiadherence, and antibiofilm activities. MATERIALS AND METHODS: The broth microdilution technique was used to individually determine the MIC of both oils and an oil mixture (in the ratio of 1:1) in a 96-well microtiter plate. As for the MBC, the subcultured method was used. The fractional inhibitory concentration index (ΣFIC) was determined to identify the interaction types between both oils. The oil mixture at its MIC was then tested on its antibiofilm and antiadherence effect. RESULTS: The MIC of the oil mixture against the tested microbiota was 50-100%. The oil mixture was bactericidal at 100% concentration for all the mentioned microbes except S. mutans. The ΣFIC value was 2 to 4, indicating that the VCO and VOO acted additively against the microbiota. Meanwhile, the oil mixture at MIC (50% for S. sanguinis and L. casei; 100% for S. mutans and mixture species) exhibited antiadherence and antibiofilm activity toward the microbiota in mixture species. CONCLUSION: The oil mixture possesses antibacterial, antibiofilm, and antiadherence properties toward the tested microbiota, mainly at 50-100% concentration of oil mixture. There was no synergistic interaction found between VCO and VOO. CLINICAL SIGNIFICANCE: Children and individuals with special care may benefit from using the oil mixture, primarily to regulate the biofilm formation and colonization of the bacteria. Furthermore, the oil mixture is natural and nontoxic compared to chemical-based oral healthcare products. How to cite this article: Ng YM, Sockalingam SNMP, Shafiei Z, et al. Biological Activities of Virgin Coconut and Virgin Olive Oil Mixture against Oral Primary Colonizers: An In Vitro Study. J Contemp Dent Pract 2024;25(3):260-266.


Asunto(s)
Biopelículas , Aceite de Coco , Lacticaseibacillus casei , Pruebas de Sensibilidad Microbiana , Aceite de Oliva , Streptococcus mutans , Streptococcus sanguis , Aceite de Oliva/farmacología , Streptococcus mutans/efectos de los fármacos , Biopelículas/efectos de los fármacos , Aceite de Coco/farmacología , Técnicas In Vitro , Streptococcus sanguis/efectos de los fármacos , Lacticaseibacillus casei/efectos de los fármacos , Humanos , Antibacterianos/farmacología , Adhesión Bacteriana/efectos de los fármacos
4.
An Acad Bras Cienc ; 96(2): e20230373, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38747835

RESUMEN

Bioactive substances can be found in wine lees, a waste from the winemaking industry. This work developed two formulations, a nanoemulsion with coconut oil (NE-OC) and a nanoemulsion with coconut oil and 0.5% of wine lees extract (NE-OC-Ext), to investigate their effect on untreated, bleached, and bleached-colored hair. The oil-in-water (O/W) nanoemulsions were prepared with coconut oil, TweenTM 80, SpanTM 80, AristoflexTM AVC, Conserve NovaMit MFTM, wine lees extract, and deionized water. The hydration measurements were carried out using a Corneometer® CM 825 with the capacitance method. Scanning electron microscopy (SEM) was used to characterize the effect of formulations on hair fibers. Differential Thermal Analysis (DTA) was to assess the thermal stability and compatibility of wine lees and coconut oil in formulations. Compared to NE-OC, NE-OC-Ext showed a greater hydration effect on bleached-colored hair. DTA showed that NE-OC-Ext presented a smaller number of exothermic degradation events than those of NE-OC, suggesting good interaction and compatibility of the wine lees extract in this formulation. This study highlights the value of wine lees, a residue from the winemaking process, and its possibility of use as raw material for the cosmetic hair industry since it shows a greater moisturizing potential in colored hair.


Asunto(s)
Aceite de Coco , Emulsiones , Vino , Vino/análisis , Aceite de Coco/química , Microscopía Electrónica de Rastreo , Cabello/química , Cabello/efectos de los fármacos , Humanos , Tecnología Química Verde/métodos
5.
Int J Biol Macromol ; 267(Pt 1): 131483, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38599426

RESUMEN

Probiotics are susceptible to diverse conditions during processing, storage, and digestion. Here, shellac (SC), sodium alginate (SA), coconut oil (CO), soybean oil (SO), and trehalose (AL) were used to prepare microcapsules aiming to improve the survival of Lactiplantibacillus plantarum KLDS1.0318 during freeze-drying, storage process, and gastrointestinal digestion. The results showed that for SA/AL/SC/CO and SA/AL/SC/SO, the survival loss decreased by 51.2 % and 51.0 % after a freeze-drying process compared with microcapsules embedded by SA; the viable bacteria count loss decreased by 4.36 and 4.24 log CFU/mL compared with free cell (CON) during storage for 28 d under 33%RH at 25 °C, respectively; while for simulating digestion in vitro, the survival loss decreased by 3.05 and 2.70 log CFU/mL, 0.63 and 0.55 log CFU/mL after digestion at simulated gastric fluid for 120 min and small intestine fluid for 180 min, respectively (P < 0.05). After microcapsules were added to fermented dairy stored at 4 °C for 21 d, the viable bacteria count of SA/AL/SC/CO and SA/AL/SC/SO significantly increased by 2.10 and 1.70 log CFU/mL compared with CON, respectively (P < 0.05). In conclusion, the current study indicated that shellac-based probiotic microcapsules have superior potential to protect and deliver probiotics in food systems.


Asunto(s)
Alginatos , Cápsulas , Digestión , Liofilización , Viabilidad Microbiana , Probióticos , Alginatos/química , Viabilidad Microbiana/efectos de los fármacos , Tracto Gastrointestinal/microbiología , Trehalosa/química , Aceite de Soja/química , Aceite de Coco/química
6.
Int J Biol Macromol ; 268(Pt 2): 131942, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38685546

RESUMEN

The interaction of monoglycerides and phytosterols in olive- and coconut oil on the structuring of oleogels was analyzed. Specifically, bigels with gelatin hydrogel in different ratios (40:60 and 60:40 w/w) were formed. The physicochemical and microstructural attributes of these systems were assessed. The olive oil to coconut oil ratio (0-100 w/w) and the added oleogelators affected the crystal structure and the mechanical properties of the oleogels. Polarized light microscopy revealed that the addition of coconut oil created a denser triglycerides crystal network and the presence of phytosterols created more needle-like crystals, enhancing the textural properties of the oleogels and of the resulting bigels. The hardness of the oleogels ranged from 0.50 N to 1.24 N and for bigels was 5.96-36.75 N. Bigels hardness decreased as the oleogel ratio in the bigel increased. Microscopy and FTIR revealed that the addition of coconut oil in oleogels hampered the formation of a distinct crystalline monoglycerides network. Also, the absence of new peaks in the bigels indicated that the two structured phases interact with each other mostly physically, without the formation of new chemical bonds. Consequently, the oleogels and bigels developed, comprise a promising hard fat substitute with improved nutritional profile.


Asunto(s)
Aceite de Coco , Aceite de Oliva , Compuestos Orgánicos , Compuestos Orgánicos/química , Aceite de Coco/química , Aceite de Oliva/química , Monoglicéridos/química , Gelatina/química , Fenómenos Mecánicos , Triglicéridos/química , Fitosteroles/química , Dureza , Espectroscopía Infrarroja por Transformada de Fourier
7.
J Agric Food Chem ; 72(12): 6544-6553, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38484109

RESUMEN

Cheese is one of the most common dairy products and is characterized by its complex aroma. However, in times of climate change and resource scarcity, the possibility to mimic the characteristic cheese-like aroma from plant-based sources is in demand to offer alternatives to cheese. Accordingly, the production of a natural cheese-like aroma via fermentation of four plant-based proteins and coconut oil with basidiomycetes has been addressed. Mixtures of soy and sunflower protein with coconut oil (15 g/L) have shown the formation of a cheese-like aroma after 72 and 56 h after fermentation with Cyclocybe aegerita and Trametes versicolor, respectively. Isovaleric acid, butanoic acid, ethyl butanoate, 1-octen-3-ol, and various ketones were identified as the key odorants. Similarities to typical cheeses were observed by the principal component analysis. Overall, the finding offered an approach to a sustainable production of a natural cheese-like aroma from a plant source, thus contributing to the development of cheese alternatives.


Asunto(s)
Agaricales , Queso , Odorantes , Polyporaceae , Aceite de Coco , Trametes , Queso/análisis , Fermentación , Proteínas de Plantas
8.
J Oleo Sci ; 73(4): 489-502, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38556283

RESUMEN

Skincare industries are growing rapidly around the globe but most products are formulated using synthetic chemicals and organic solvent extracted plant extracts, thus may be hazardous to the users and incur higher cost for purification that eventually leads to phytonutrient degradation. Therefore, this study aimed to formulate a stable natural formulation with antioxidant and antimicrobial activities by using supercritical carbon dioxide (SC-CO 2 ) extracted palm-pressed fiber oil (PPFO) as an active ingredient with virgin coconut oil (VCO) as a formulation base. PPFO was extracted from fresh palm-pressed fiber (PPF) while VCO was from dried grated coconut copra using SC-CO 2 before being subjected to the analyses of physicochemical properties, phytonutrient content and biological activities including antioxidant and antimicrobial. The nanoemulgel formulations were then developed and examined for their stability through accelerated stability study for 3 months by measuring their pH, particle size, polydispersity index and zeta potential. The results showed that PPFO contained a high amount of phytonutrients, especially total carotenoid (1497 ppm) and total tocopherol and tocotrienol (2269 ppm) contents. The newly developed nanoemulgels maintained their particles in nano size and showed good stability with high negative zeta potentials. Sample nanoemulgel formulated with 3% PPFO diluted in VCO as effective concentration showed significantly stronger antioxidant activity than the control which was formulated from 3% tocopheryl acetate diluted in mineral oil, towards DPPH and ABTS radicals, with IC 50 values of 67.41 and 44.28 µL/mL, respectively. For the antibacterial activities, the sample nanoemulgel was found to inhibit Gram positive bacteria S. aureus and S. epidermidis growth but not the Gram negative strain E. coli. Overall, this study revealed the potential of SF-extracted PPFO as an active ingredient in the antioxidant topical formulations thus future study on in vitro skin cell models is highly recommended for validation.


Asunto(s)
Antioxidantes , Hidrogeles , Antioxidantes/farmacología , Aceite de Palma/química , Aceite de Coco/química , Escherichia coli , Staphylococcus aureus , Emulsiones/química , Antibacterianos/farmacología , Fitoquímicos
9.
J Histochem Cytochem ; 72(4): 233-243, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38553997

RESUMEN

Xylene is the commonest clearing agent even though it is hazardous and costly. This study evaluated the clearing properties of coconut oil as an alternative cost-effective clearing agent for histological processes. Ten (10) prostate samples fixed in formalin were taken and each one was cut into 4 before randomly separating them into four groups (A, B, C and D). Tissues were subjected to ascending grades of alcohol for dehydration. Group A was cleared in xylene and Groups B, C, and D were cleared at varying times of 1hr 30mins, 3hrs, and 4hrs in coconut oil respectively before embedding, sectioning, and staining were carried out. Gross and histological features were compared. Results indicated a significant shrinkage in coconut oil-treated specimen compared with the xylene-treated specimen and only the tissues cleared in coconut oil for 4hrs were as rigid as the tissues cleared in xylene (p > 0.05). No significant difference was found in either of the sections when checked for cellular details and staining quality (p > 0.999). Coconut oil is an efficient substitute for xylene in prostate tissues with a minimum clearing time of 4hrs, as it is environmentally friendly and less expensive, but causes significant shrinkage to prostate tissue.


Asunto(s)
Formaldehído , Xilenos , Aceite de Coco , Xilenos/química , Coloración y Etiquetado , Indicadores y Reactivos
11.
Nutrition ; 121: 112370, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38401196

RESUMEN

OBJECTIVE: The aim of this article is to investigate the effect of intermittent fasting, associated or not with coconut oil intake, on the gut-liver axis of obese rats. METHODS: A total of 50 rats were divided into five groups: control, obese, obese with intermittent fasting, obese with intermittent fasting plus coconut oil, and obese with caloric restriction. The rats were induced to obesity with a high-sugar diet for 17 wk. The respective interventions were carried out in the last 4 wk. RESULTS: The groups with intermittent fasting protocols had reduced total cholesterol (on average 54.31%), low-density lipoprotein (on average 53.39%), and triacylglycerols (on average 23.94%) versus the obese group; and the obese with intermittent fasting plus coconut oil group had the highest high-density lipoprotein compared with all groups. The obese with intermittent fasting plus coconut oil and obese with caloric restriction groups had lower metabolic load compared with the other groups. The obese group had high citric and succinic acid concentrations, which affected the hepatic tricarboxylic acid cycle, while all the interventions had reduced concentrations of these acids. No histologic changes were observed in the intestine or liver of the groups. CONCLUSION: Intermittent fasting, especially when associated with coconut oil, had effects comparable with caloric restriction in modulating the parameters of the gut-liver axis.


Asunto(s)
Cocos , Ayuno Intermitente , Ratas , Animales , Aceite de Coco/metabolismo , Aceite de Coco/farmacología , Dieta , Obesidad/metabolismo , Lipoproteínas HDL , Hígado/metabolismo , Aceites de Plantas/metabolismo
12.
Eur J Nutr ; 63(4): 1225-1239, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38372798

RESUMEN

PURPOSE: Dietary fats with an abundance of phytonutrients have garnered public attention beyond fatty acids per se. This study was set to investigate the impact of consuming diets with red palm olein (RPOO), extra virgin coconut oil (EVCO) and extra virgin olive oil (EVOO, as a control) on cardiometabolic risk biomarkers and lipid profile. METHODS: We recruited a total of 156 individuals with central obesity, aged 25-45 years, with waist circumference ≥ 90 cm for men and ≥ 80 cm for women in a parallel single-blind 3-arm randomised controlled trial. The participants consumed isocaloric diets (~ 2400 kcal) enriched with respective test fats (RPOO, EVCO or EVOO) for a 12-week duration. RESULTS: The mean of the primary outcome plasma high sensitivity C-reactive protein was statistically similar between the three diets after a 12-week intervention. EVOO resulted in significantly lower mean LDL cholesterol compared with RPOO and EVCO, despite similar effects on LDL and HDL cholesterol subfractions. The RPOO diet group showed elevated mean α and ß -carotenes levels compared with EVCO and EVOO diet groups (P < 0.05), corresponding with the rich carotenoid content in RPOO. CONCLUSION: The three oils, each of which has unique phytonutrient and fatty acid compositions, manifested statistically similar cardiometabolic effects in individuals with central obesity at risk of developing cardiovascular diseases with distinct circulating antioxidant properties. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov (NCT05791370).


Asunto(s)
Biomarcadores , Aceite de Coco , Obesidad Abdominal , Aceite de Oliva , Aceite de Palma , Humanos , Aceite de Oliva/administración & dosificación , Masculino , Femenino , Adulto , Persona de Mediana Edad , Aceite de Coco/administración & dosificación , Biomarcadores/sangre , Aceite de Palma/administración & dosificación , Método Simple Ciego , Factores de Riesgo Cardiometabólico , Proteína C-Reactiva/análisis , Proteína C-Reactiva/metabolismo , Enfermedades Cardiovasculares/prevención & control , Dieta/métodos , Dieta/estadística & datos numéricos , HDL-Colesterol/sangre , LDL-Colesterol/sangre , Circunferencia de la Cintura
13.
Dermatitis ; 35(S1): S62-S69, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38394048

RESUMEN

Background: Preliminary studies support the use of topical coconut and sunflower seed oil for atopic dermatitis (AD). However, standardized topical formulations of fatty acids from these sources have not been studied. Objective: This study investigates whether coconut oil- and sunflower seed oil-derived isosorbide diesters can be used in conjunction with colloidal oatmeal to improve itch, AD severity, and the need for topical steroids in adults. Methods: This was a single-center, 4-week, randomized, double-blind, and vehicle-controlled study conducted between 2021 and 2022. Thirty-two male and female adults with mild-to-moderate AD were enrolled and completed the study. Participants were randomized to receive either 0.1% colloidal oatmeal (vehicle) or isosorbide diesters (IDEAS, 4% isosorbide dicaprylate and 4% isosorbide disunflowerseedate) along with 0.1% colloidal oatmeal. The main outcomes of the study were changes in the visual analogue rating of itch and 75% improvement in the Eczema Area and Severity Index score (EASI 75) at 4 weeks. Other measures included the use of topical steroids and the relative abundance of skin Staphylococcus aureus. Results: Participants in the IDEAS group had a 65.6% improvement in itch compared with 43.8% in the vehicle group (P = 0.013). In total, 56.5% and 25% of the those in the IDEAS and vehicle groups, respectively, achieved EASI 75 at 4 weeks (P = 0.07). There was no difference in skin hydration or transepidermal water loss. The relative abundance of S. aureus was decreased in the IDEAS group at week 4 compared with no change in the vehicle group (P = 0.044). Topical corticosteroid use increased in the vehicle group compared with a decrease in the IDEAS group at week 1 (292.5% vs 24.8%; P value = 0.039) and week 2 (220% vs 46%; P value = 0.08). Conclusions: Topical application of emollients containing coconut oil- and sunflower seed oil-derived fatty esters may improve itch, reduce topical steroid use, and reduce the relative abundance of S. aureus in mild-to-moderate AD. CTR number: NCT04831892.


Asunto(s)
Dermatitis Atópica , Adulto , Humanos , Masculino , Femenino , Dermatitis Atópica/tratamiento farmacológico , Aceite de Girasol , Aceite de Coco , Staphylococcus aureus , Cocos , Estudios Prospectivos , Resultado del Tratamiento , Prurito/tratamiento farmacológico , Emolientes , Método Doble Ciego , Índice de Severidad de la Enfermedad , Esteroides
14.
Food Chem ; 446: 138818, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38417282

RESUMEN

In this work, we investigated structural characteristics and stability analysis of the coconut oil body (COB) and its application for loading ß-carotene (ß-CA). The COB contained neutral lipids (81.1 ± 2.1 %), membrane proteins (0.6 ± 0.0 %), and moistures (18.3 ± 3.2 %), in which the molecular weights of membrane proteins ranged from 12 kDa to 40 kDa, as analyzed by the SDS-PAGE. The COB exhibited a small droplet diameter (5.1 ± 0.3 µm) with a monomodal diameter distribution, as reflected by the dynamic light scattering. The COB showed stable states at alkaline pH values (pH 8-10) and instability against ionic strengths (50-200 mmol/L) and thermal treatment (30-90℃) after analyzing the instability indexes. COB-based emulsions were favorable for the loading and retention of ß-CA, as reflected by free fatty acids release rates and bioaccessibility in the simulated gastrointestinal digestion. This study will contribute to using the coconut oil bodies for loading bioactive nutraceuticals to enhance their bioaccessibility.


Asunto(s)
Cocos , beta Caroteno , beta Caroteno/química , Aceite de Coco , Cocos/metabolismo , Emulsiones/química , Proteínas de la Membrana/metabolismo , Digestión , Disponibilidad Biológica
15.
J Food Sci ; 89(2): 1035-1046, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38193170

RESUMEN

In our rapidly changing world, where consumers' expectations for healthy food are on the rise, the edible oil content in packaged foods has become a central focus. Among various types of oils, palm oil is often regarded as one of the most contentious. This research study aimed to identify the types of fats present in packaged food products in Türkiye and examined the reasons for their utilization. A total of 1380 packaged food items, classified into 11 categories, were scrutinized, and the types of oils within their ingredients were classified using principal component analysis and hierarchical cluster analysis. The study's results have determined that among packaged food products available in Türkiye, 50.1% contain palm oil, 30.4% contain sunflower oil, 16.4% contain canola oil, 14.9% contain cottonseed oil, 17.9% contain cocoa oil, and 12.6% contain coconut oil. In particular, it was determined that palm oil was used in 91% of bakery products, 81% of margarine and shortening products, and 71.3% of ice creams. Consequently, the data obtained in the context of ongoing debates regarding the fat content in packaged foods, especially concerning palm oil usage, will make a valuable contribution to the literature.


Asunto(s)
Margarina , Aceites de Plantas , Aceite de Palma , Análisis de Componente Principal , Turquía , Aceite de Coco
16.
J Food Sci ; 89(2): 913-924, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38221799

RESUMEN

The characteristics of bread prepared with coconut oil were investigated to determine whether it can be used as an alternative to butter and shortening. Loaf height of the bread increased by adding butter and shortening water content of bread containing oils and fats was lower than that without oils and fats, and baking loss increased with decreasing water content. The addition of oils and fats influenced the baking color of bread and hindered the hardening of bread samples over time. Moreover, the addition and type of oils and fats influenced the crust density of bread samples and dough expansion. Furthermore, numerous fine bubbles were present in bread samples without oils and fats, whereas the size and number of bubbles increased and decreased in bread samples containing oils and fats, respectively. The band concentrations of insoluble proteins at approximately 39, 41, and 48 kDa in freeze-dried bread samples without oils and fats were significantly lower than those containing oils and fats. Thirty volatile compounds were detected in all bread samples tested, and the number was high in the following order: bread samples with butter, shortening, and coconut oil, and without oils and fats. However, sensory evaluation showed no significant differences among all bread samples tested. Therefore, it was suggested that bread containing coconut oil had the same characteristics as that containing butter and shortening. PRACTICAL APPLICATION: Butter and shortening are usually used in bread making, although bread prepared with coconut oil can possess the same characteristics as that containing them. Therefore, this study evaluated the characteristics of bread prepared with coconut oil and revealed that use of coconut oil enabled a vegan bread with reduced environmental impact because coconut oil is a vegetable-derived oil that does not require the cutting of tropical rainforests.


Asunto(s)
Mantequilla , Grasas de la Dieta , Aceite de Coco , Pan , Aceites de Plantas , Grasas , Agua
17.
J Sci Food Agric ; 104(9): 5139-5148, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38284624

RESUMEN

BACKGROUND: The inherent properties of coconut oil (CO), including its elevated saturated fatty acid content and low melting point, make it suitable for application in plastic fat processing. The present study explores the physicochemical characteristics, micromorphology and oxidative stability of oleogels produced from CO using various gelators [ethylcellulose (EC), ß-sitosterol/γ-oryzanol (PS) and glyceryl monostearate (MG)] to elucidate the formation mechanisms of coconut oleogels (EC-COO, PS-COO and MG-COO). RESULTS: Three oleogel systems exhibited a solid-like behavior, with the formation of crystalline forms dominated by ß and ß'. Among them, PS-COO exhibited enhanced capability with respect to immobilizing liquid oils, resulting in solidification with high oil-binding capacity, moderate hardness and good elasticity. By contrast, MG-COO demonstrated inferior stability compared to PS-COO and EC-COO. Furthermore, MG-COO and PS-COO demonstrated antioxidant properties against CO oxidation, whereas EC-COO exhibited the opposite effect. PS-COO and EC-COO exhibited superior thermodynamic behavior compared to MG-COO. CONCLUSION: Three oleogels based on CO were successfully prepared. The mechanical strength, storage modulus and thermodynamic stability of the CO oleogel exhibited concentration dependence with increasing gelling agent addition. PS-COO demonstrated relatively robust oil-binding capacity and oxidative stability, particularly with a 15% PS addition. This information contributes to a deeper understanding of CO-based oleogels and offers theoretical insights for their application in food products. © 2024 Society of Chemical Industry.


Asunto(s)
Aceite de Coco , Cocos , Compuestos Orgánicos , Compuestos Orgánicos/química , Aceite de Coco/química , Cocos/química , Oxidación-Reducción , Glicéridos/química , Geles/química , Sitoesteroles/química , Antioxidantes/química , Celulosa/química , Fenilpropionatos
18.
J Nutr Sci ; 13: e5, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38282651

RESUMEN

A clinical study conducted in 2020 showed that virgin coconut oil (VCO) has been found effective in the rapid relief of COVID-19 symptoms and normalization of the C-reactive protein (CRP) concentration among probable and suspected cases of COVID-19. This present study aimed to validate those results and to evaluate the effects of VCO among COVID-19 patients through a 28-day randomized, single-blind trial conducted among 76 SARS-CoV-2 RT-PCR (reverse transcription-polymerase chain report)-confirmed adults, with VCO given as a COVID-19 adjunct therapy. The results showed that VCO recipients were free from symptoms and had normal CRP concentrations by day 14. In comparison, participants in the control group reported relief from signs and symptoms on day 23, with normal CRP concentrations on day 25. This second study bolsters the use of VCO as an effective adjunct therapy for COVID-19-positive patients showing mild-to-moderate symptoms.


Asunto(s)
COVID-19 , Adulto , Humanos , Aceite de Coco/farmacología , Método Simple Ciego , SARS-CoV-2 , Inflamación/tratamiento farmacológico , Suplementos Dietéticos
19.
Nutr Neurosci ; 27(5): 487-498, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-37409587

RESUMEN

BACKGROUND AND AIM: Metabolic syndrome is associated with health conditions and neurological disorders. Brain-derived neurotrophic factor (BDNF) plays a protective role on the nervous system. Decreased levels of BDNF have been shown in MetS and neurodegenerative diseases. There is promising evidence regarding the anti-inflammatory antioxidant, and neuroprotective properties of virgin coconut oil (VCO). The aim of this study was to evaluate the effects of VCO consumption on serum BDNF levels, oxidative stress status, and insulin resistance in adults with MetS. METHODS: This randomized controlled clinical trial was conducted on 48 adults with MetS aged 20-50 years. The intervention group received 30 ml of VCO daily to substitute the same amounts of oil in their usual diet. The control group continued their usual diet. Serum BDNF levels, total antioxidant capacity (TAC), malondialdehyde (MDA) as well as HOMA-IR and QUICKI index were measured after four weeks of intervention. RESULTS: VCO consumption significantly reduced serum levels of MDA (p = .01), fasting insulin (p < .01) and HOMA-IR index (p < .01) and increased serum TAC (p < .01) and QUICKI index (p = .01) compared to the control group. Serum BDNF levels increased significantly in VCO group compared to the baseline (p = .02); however, this change was not significant when compared to the control group (p = .07). CONCLUSION: VCO consumption improved oxidative stress status and insulin resistance and had a promising effect on BDNF levels in adults with MetS. Further studies are needed to understand the long-term effects of VCO consumption.


Asunto(s)
Resistencia a la Insulina , Síndrome Metabólico , Adulto , Humanos , Antioxidantes/farmacología , Biomarcadores , Factor Neurotrófico Derivado del Encéfalo , Aceite de Coco/farmacología , Estrés Oxidativo
20.
J Am Nutr Assoc ; 43(3): 244-251, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37708389

RESUMEN

OBJECTIVE: Statin monotherapy for dyslipidemia is limited by adverse effects and limited effectiveness in certain subgroups like metabolic syndrome. Add-on therapy with an agent with a known safety profile may improve clinical outcomes, and virgin coconut oil (VCO) may be the candidate agent for improving the cardiometabolic profile. The present study was conducted to evaluate the effect of add-on VCO with atorvastatin in dyslipidemia in adults. METHODS: A randomized, double-blind clinical trial was conducted on 150 patients with dyslipidemia who were randomized into control and test groups. The control group received atorvastatin monotherapy, whereas the test group received add-on VCO with atorvastatin for 8 weeks. At baseline, demographic, clinical, and biochemical parameters were assessed and repeated after 8 weeks of therapy. The main outcome measures were lipid profile, cardiovascular risk indices, 10-year cardiovascular risk, body fat compositions, and thiobarbituric acid reactive substances (TBARS). RESULTS: The increase in HDL in the test group was significantly greater than in the control group (MD: 2.76; 95%CI: 2.43-3.08; p < 0.001). The changes in the atherogenic index (p = 0.003), coronary risk index (p < 0.001), cardiovascular risk index (p = 0.001), and TBARS (p < 0.001) were significantly greater in the test group. The decrease in LDL, total cholesterol and lipoprotein(a), were significantly higher in the control group. There were no significant differences between the groups with respect to the changes in triglyceride, VLDL, and 10-year cardiovascular risk. CONCLUSIONS: Add-on VCO (1000 mg/day) with atorvastatin (10 mg/day) can achieve a better clinical outcome in patients with dyslipidemia by increasing HDL and improving oxidative stress cardiovascular risk indices.


Asunto(s)
Aterosclerosis , Dislipidemias , Adulto , Humanos , Aceite de Coco/uso terapéutico , Atorvastatina/uso terapéutico , Sustancias Reactivas al Ácido Tiobarbitúrico , Dislipidemias/tratamiento farmacológico , Aterosclerosis/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...