Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros












Intervalo de año de publicación
1.
PLoS One ; 19(8): e0307394, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39150954

RESUMEN

The basic tribological experiments have reported that nano-graphene lubricating oil has excellent anti-friction and anti-wear properties, which has been widely concerned. However, the real anti-friction effect of nano-graphene lubricating oil and its impact on engine power performance, economic performance and emission performance remain to be proved. This has seriously hindered the popularization and application of nano-graphene lubricating oil in the engine field. In this paper, nano-graphene powder was chemically grafted to prepare nano-graphene lubricating oil with high dispersion stability. The influence of nano-graphene on physicochemical properties of lubricating oil was studied, and the influence of nano-graphene on engine power performance, economic performance and emission performance was explored. The results show that after modification, the dispersion of nano-graphene in lubricating oil is improved. Compared with pure lubricating oil, the addition of nano-graphene makes the kinematic viscosity of lubricating oil slightly lower, and has little effect on the density, flash point, pour point and total acid value of lubricating oil. The reversed towing torque of nano-graphene lubricating oil is reduced by 1.82-5.53%, indicating that the friction loss decreases. The specific fuel consumption of the engine is reduced, which indicates that the fuel economic performance is improved. Engine HC+NOX, CH4, CO2 emissions do not change much, but particulate matter (PM) emissions increase by 8.85%. The quantity concentration of nuclear particles, accumulated particles and total particles of nano-graphene lubricating oil are significantly higher than that of pure lubricating oil. And the increase of the quantity concentration of accumulated particles is more obvious than that of nuclear particles, and the larger the load, the more obvious this phenomenon. In order to apply nano-graphene lubricating oil to the engine, it is also necessary to further study its impact on the post-processing system, adjust the control strategy of the post-processing system and then test and calibrate.


Asunto(s)
Grafito , Lubricantes , Viscosidad , Grafito/química , Lubricantes/química , Gasolina/análisis , Nanoestructuras/química , Aceites/química , Lubrificación , Emisiones de Vehículos/análisis
2.
J Environ Manage ; 365: 121603, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38963967

RESUMEN

Water treatment has turned out to be more important in most societies due to the expansion of most economies and to advancement of industrialization. Developing efficient materials and technologies for water treatment is of high interest. Thin film nanocomposite membranes are regarded as the most effective membranes available for salts, hydrocarbon, and environmental pollutants removal. These membranes improve productivity while using less energy than conventional asymmetric membranes. Here, the polyvinylidene fluoride (PVDF) membranes have been successfully modified via dip single-step coating by silica-aminopropyl triethoxysilane/trimesic acid/melamine nanocomposite (Si-APTES-TA-MM). The developed membranes were evaluated for separating the emulsified oil/water mixture, the surface wettability of the membrane materials is therefore essential. During the conditioning step, that is when the freshwater was introduced, the prepared membrane reached a flux of about 27.77 L m-2 h-1. However, when the contaminated water was introduced, the flux reached 18 L m-2 h-1, alongside an applied pressure of 400 kPa. Interestingly, during the first 8 h of the filtration test, the membrane showed 90 % rejection for ions including Mg2+, and SO42- and ≈100 % for organic pollutants including pentane, isooctane, toluene, and hexadecane. Also, the membrane showed 98 % rejection for heavy metals including strontium, lead, and cobalt ions. As per the results, the membrane could be recommended as a promising candidate to be used for a mixture of salt ions, hydrocarbons, and mixtures of heavy metals from wastewater.


Asunto(s)
Membranas Artificiales , Silanos , Contaminantes Químicos del Agua , Purificación del Agua , Purificación del Agua/métodos , Silanos/química , Contaminantes Químicos del Agua/química , Metales/química , Aceites/química , Propilaminas/química , Sales (Química)/química , Interacciones Hidrofóbicas e Hidrofílicas , Iones , Polivinilos/química
3.
Int J Biol Macromol ; 275(Pt 2): 134230, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39084996

RESUMEN

Currently, the most effective way to improve the anti-fouling performance of water treatment separation membrane is to enhance the hydrophilicity of the membrane surface, but it can still cause contamination, leading to the occurrence of flux reduction. The construction of a strong hydration layer to resist wastewater contamination is still a challenging task. In this study, a defect-free hydration layer barrier was achieved by grafting chitosan polysaccharide derivatives (CS-SDAEM) on the membrane, which achieved in effective fouling prevention and low flux decline rate. A layer of tannic acid-coated carbon nanotubes (TA@CNTs) has been uniformly deposited on the commercial PVDF membrane so that the surface was rich in -COOH groups, providing sufficient reaction sites. These reactive groups facilitate the grafting of amphiphilic polymers onto the membrane. This modification strategy achieved in enhancing the antifouling performance. The modified membrane achieved low contamination rate with DR of 16.9 % for wastewater filtration, and the flux recovery rate was above 95 % with PWF of 1100 (L·m-2·h-1). The membrane had excellent anti-fouling performance, which provided a new route for the future development of water treatment membrane.


Asunto(s)
Quitosano , Emulsiones , Membranas Artificiales , Nanotubos de Carbono , Polivinilos , Purificación del Agua , Purificación del Agua/métodos , Quitosano/química , Polivinilos/química , Nanotubos de Carbono/química , Taninos/química , Polisacáridos/química , Agua/química , Aguas Residuales/química , Aceites/química , Interacciones Hidrofóbicas e Hidrofílicas , Filtración/métodos , Polímeros de Fluorocarbono
4.
Int J Biol Macromol ; 275(Pt 1): 133576, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38950802

RESUMEN

To optimize the stability of oil-based inks and ensure their wide application in freshness indication, new natural indicator inks were prepared using a stable oil-in-water structure. This study selected natural Lycium ruthenicum anthocyanin as the dye and glucose as the pigment carrier. Soybean oil was introduced as a linker and xanthan gum as a thickener, and an oil-in-water ink with the function of freshness indication was successfully developed. In ensuring the safety of ink labels for use on food packaging, particular attention is paid to the origin and properties of the materials used. All ingredients are of food-grade or bio-friendly provenance, thereby ensuring the safety of the product when in direct contact with food. We measured the viscosity, particle size and fineness of the ink for micro characterization and evaluated its macro printing performance by its printing effect on A4 paper. According to the experimental results, when the water-oil ratio of the ink is 10:5, the average particle size of the emulsion system is 822.83 nm, and the fineness reaches 5 µm. These values are relatively low, which indicates that the stability of the ink system is high at this time, and the ink shows excellent rheological and printing characteristics. With this water-to-oil ratio, the ink can show the best results when printed on A4 paper, clearly displaying image details. In addition, in fresh pork applications, inks with a 10: 5 water-to-oil ratio provide an accurate and highly sensitive indication of the freshness of pork. When the freshness of the pork changes, the ink color responds promptly. This high sensitivity makes the ink ideal for use as a food freshness indication tool, providing consumers with an intuitive and reliable reference for pork freshness. As a further innovation, combining this ink-printed label with a WeChat app not only allows consumers to know the freshness of the food in real-time but also tracks the supply chain information of the food, providing a more comprehensive application prospect for freshness-indicating products.


Asunto(s)
Tinta , Polisacáridos Bacterianos , Agua , Polisacáridos Bacterianos/química , Agua/química , Animales , Porcinos , Reología , Viscosidad , Conservación de Alimentos/métodos , Tamaño de la Partícula , Emulsiones/química , Embalaje de Alimentos/métodos , Carne de Cerdo/análisis , Aceite de Soja/química , Aceites/química
5.
Int J Biol Macromol ; 275(Pt 1): 133609, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38960220

RESUMEN

Developing plastic/fluorine/silicon-free and degradable water/oil-resistant coatings for paper-based packaging materials to replace disposable plastic products is a very effective way to solve the problem of 'white pollution' or microplastics pollution. A novel water/oil-resistant coating was developed by alkyl ketene dimer (AKD)-based Pickering emulsion and chitosan in this work. Cellulose nanofibrils (CNF) were used as a stabilizing solid for AKD emulsion, with the addition of chitosan as an oil-resistance agent. The coating provides excellent hydrophobicity, water/oil resistance as well as good barrier properties. The water contact angle was as high as 130° and the minimum Cobb60 value was 5.7 g/m2, which was attributed to the hydrophobicity of AKD. In addition, the kit rating reached maximum 12/12 at coating weight of 8.26 g/m2 and the water vapor transmittance rate (WVTR) was reduced to 153.4 g/(m2⋅day) at the coating weight of 10.50 g/m2. The tensile strength of the paper was increased from 28.1 to 43.6 MPa after coating. Overall, this coating can effectively improve the performance of paper-based materials, which may play an important role in the process of replacing disposable plastic packaging with paper-based materials.


Asunto(s)
Celulosa , Quitosano , Emulsiones , Aceites , Papel , Agua , Quitosano/química , Celulosa/química , Emulsiones/química , Agua/química , Aceites/química , Interacciones Hidrofóbicas e Hidrofílicas , Resistencia a la Tracción , Nanofibras/química
6.
J Colloid Interface Sci ; 674: 951-958, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38959740

RESUMEN

HYPOTHESIS: Our hypothesis is that dynamic interfacial tension values as measured by the partitioned-Edge-based Droplet GEneration (EDGE) tensiometry can be connected to those obtained with classical techniques, such as the automated drop tensiometer (ADT), expanding the range of timescales towards very short ones. EXPERIMENTS: Oil-water and air-water interfaces are studied, with whey protein isolate solutions (WPI, 2.5 - 10 wt%) as the continuous phase. The dispersed phase consists of pure hexadecane or air. The EDGE tensiometer and ADT are used to measure the interfacial (surface) tension at various timescales. A comparative assessment is carried out to identify differences between protein concentrations as well as between oil-water and air-water interfaces. FINDINGS: The EDGE tensiometer can measure at timescales down to a few milliseconds and up to around 10 s, while the ADT provides dynamic interfacial tension values after at least one second from droplet injection and typically is used to also cover hours. The interfacial tension values measured with both techniques exhibit overlap, implying that the techniques provide consistent and complementary information. Unlike the ADT, the EDGE tensiometer distinguishes differences in protein adsorption dynamics at protein concentrations as high as 10 wt% (which is the highest concentration tested) at both oil-water and air-water interfaces.


Asunto(s)
Tensión Superficial , Agua , Proteína de Suero de Leche , Adsorción , Proteína de Suero de Leche/química , Agua/química , Aire , Alcanos/química , Aceites/química , Tamaño de la Partícula , Propiedades de Superficie , Técnicas Analíticas Microfluídicas/instrumentación
7.
AAPS J ; 26(4): 78, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38981948

RESUMEN

A soft-core oil-in-water (o/w) nanoemulsion (NE) is composed of nanometer (nm) sized oil droplets, stabilized by a surfactant layer and dispersed in a continuous bulky water phase. Characterization of the o/w NE molecule arrangements non-invasively, particularly the drug phase distribution (DPD) and its correlation to oil globule size (OGS), remains a challenge. Here we demonstrated the analytical methods of intact 19F Nuclear Magnetic Resonance (NMR) and 1H diffusion ordered spectroscopy (DOSY) NMR for their specificity in measuring DPD and OGS, respectively, on three NE formulations containing the active ingredient difluprednate (DFPN) at the same concentration. The results illustrated synchronized molecular rearrangement reflected in the DPD and OGS upon alterations in formulation. Addition of surfactant resulted in a higher DPD in the surfactant layer, and concomitantly smaller OGS. Mechanic perturbation converted most of the NE globules to the smaller thermodynamically stable microemulsion (ME) globules, changing both DPD and OGS to ME phase. These microstructure changes were not observed using 1D 1H NMR; and dynamic light scattering (DLS) was only sensitive to OGS of ME globule in mechanically perturbed formulation. Collectively, the study illustrated the specificity and essential role of intact NMR methods in measuring the critical microstructure attributes of soft-core NE systems quickly, accurately, and non-invasively. Therefore, the selected NMR approach can be a unique diagnostic tool of molecular microstructure or Q3 property in o/w NE formulation development, and quality assurance after manufacture process or excipient component changes.


Asunto(s)
Emulsiones , Espectroscopía de Resonancia Magnética , Aceites , Agua , Espectroscopía de Resonancia Magnética/métodos , Agua/química , Aceites/química , Tensoactivos/química , Fluprednisolona/química , Fluprednisolona/análogos & derivados , Tamaño de la Partícula , Composición de Medicamentos/métodos , Nanopartículas/química , Química Farmacéutica/métodos
8.
Chemosphere ; 363: 142768, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38969221

RESUMEN

In the alkaline-surfactant-polymer flooding emulsion, oil droplets with various sizes exhibited different interfacial properties, resulting in different stabilization and destabilization behaviors. In view of this, it is expected to achieve outstanding oil-water separation efficiency by screening targeted demulsifier for oil droplets with different size ranges (0-1, 1-5 and 5-10 µm). Based on the size effect of oil droplets, a series of multibranched polyether-polyquaternium demulsifiers that integrated different charge neutralization and interfacial displacement functionalities were designed by regulating the cationicity and EO:PO ratios. As a result, the most effective polyether-polyquaternium variant for each size range of oil droplet was screened out. By employing these three selected polyether-polyquaternium variants in a sequential batch demulsification test, the maximum demulsification efficiency of 95.1% was obtained, which was much higher than that using a single polyether-polyquaternium variant (82.5%, 80.5% and 83.8%). The adsorption behaviors of polyether-polyquaternium variants on the oil/water interface were investigated by the molecular dynamics simulation. Moreover, the interfacial properties and oil droplet size variations during the demulsification process were monitored, so as explore the demulsification mechanism. This demulsification protocol based on the size effect of oil droplets with its excellent oil-water separation performance offered significant technical promise for the emulsified oil wastewater disposal.


Asunto(s)
Emulsiones , Polímeros , Tensoactivos , Tensoactivos/química , Polímeros/química , Emulsiones/química , Aceites/química , Agua/química , Adsorción , Contaminantes Químicos del Agua/química , Tamaño de la Partícula , Simulación de Dinámica Molecular
9.
J Environ Sci (China) ; 146: 118-126, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38969440

RESUMEN

With the increasing demand of recycling disposal of industrial wastewater, oil-in-water (O/W) emulsion has been paid much attention in recent years owing to its high oil content. However, due to the presence of surfactant and salt, the emulsion was usually stable with complex physicochemical interfacial properties leading to increased processing difficulty. Herein, a novel flow-through electrode-based demulsification reactor (FEDR) was well designed for the treatment of saline O/W emulsion. In contrast to 53.7% for electrical demulsification only and 80.3% for filtration only, the COD removal efficiency increased to 92.8% under FEDR system. Moreover, the pore size of electrode and the applied voltage were two key factors that governed the FEDR demulsification performance. By observing the morphology of oil droplets deposited layer after different operation conditions and the behavior of oil droplets at the electrode surface under different voltage conditions, the mechanism was proposed that the oil droplets first accumulated on the surface of flow-through electrode by sieving effect, subsequently the gathered oil droplets could further coalesce with the promoting effect of the anode, leading to a high-performing demulsification. This study offers an attractive option of using flow-through electrode to accomplish the oil recovery with simultaneous water purification.


Asunto(s)
Electrodos , Filtración , Eliminación de Residuos Líquidos , Purificación del Agua , Purificación del Agua/métodos , Filtración/métodos , Eliminación de Residuos Líquidos/métodos , Aceites/química , Aguas Residuales/química , Contaminantes Químicos del Agua/química , Emulsiones/química , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación
10.
Biomed Phys Eng Express ; 10(5)2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38959869

RESUMEN

Objective. The availability of tissue-mimicking materials (TMMs) for manufacturing high-quality phantoms is crucial for standardization, evaluating novel quantitative approaches, and clinically translating new imaging modalities, such as photoacoustic imaging (PAI). Recently, a gel comprising the copolymer styrene-ethylene/butylene-styrene (SEBS) in mineral oil has shown significant potential as TMM due to its optical and acoustic properties akin to soft tissue. We propose using artists' oil-based inks dissolved and diluted in balsam turpentine to tune the optical properties.Approach. A TMM was fabricated by mixing a SEBS copolymer and mineral oil, supplemented with additives to tune its optical absorption and scattering properties independently. A systematic investigation of the tuning accuracies and relationships between concentrations of oil-based pigments and optical absorption properties of the TMM across visible and near-infrared wavelengths using collimated transmission spectroscopy was conducted. The photoacoustic spectrum of various oil-based inks was studied to analyze the effect of increasing concentration and depth.Main results. Artists' oil-based inks dissolved in turpentine proved effective as additives to tune the optical absorption properties of mineral oil SEBS-gel with high accuracy. The TMMs demonstrated long-term stability and suitability for producing phantoms with desired optical absorption properties for PAI studies.Significance. The findings, including tuning of optical absorption and spectral shape, suggest that this TMM facilitates the development of more sophisticated phantoms of arbitrary shapes. This approach holds promise for advancing the development of PAI, including investigation of the spectral coloring effect. In addition, it can potentially aid in the development and clinical translation of ultrasound optical tomography.


Asunto(s)
Fantasmas de Imagen , Técnicas Fotoacústicas , Polímeros , Técnicas Fotoacústicas/métodos , Polímeros/química , Aceite Mineral/química , Tinta , Materiales Biomiméticos/química , Humanos , Trementina/química , Aceites/química
11.
J Agric Food Chem ; 72(30): 16988-16997, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39024566

RESUMEN

Reducing salt intake without affecting the saltiness perception remains a great challenge for the food industry. Herein, the demulsification of water droplets and air bubbles was controlled to modulate the release of sodium from oleogel-stabilized water-in-oil emulsions (OGEs) stabilized by monoglyceride crystals. The effect of monoglycerides with carbon chain length (glycerol monolaurate-GML, glyceryl monostearate-GMS, and glycerol monopalmitate-GMP) and homogenization methods (hand-shaking or high-speed blender) on sodium release and saltiness was investigated by in vitro and in vivo oral processing tests. Milky-white stable emulsions were formed with both water droplets and air bubbles dispersing in the oil phase, regardless of the selected homogenization methods. Air bubbles were more unstable than water droplets during oral digestion. GML OGEs with more and larger air bubbles and the lowest hardness exhibited the highest sodium release rate and the strongest saltiness, independent of homogenization methods. The balance between air bubbles and water droplets in the GMS and GMP OGEs caused slower sodium release and lower saltiness. Overall, the presence of air bubbles in NaCl-loaded W/O oleogel-based emulsions was shown to have important implications for tailoring their sodium release and saltiness.


Asunto(s)
Emulsiones , Compuestos Orgánicos , Agua , Emulsiones/química , Compuestos Orgánicos/química , Agua/química , Humanos , Cloruro de Sodio/química , Monoglicéridos/química , Gusto , Aceites/química , Aire , Masculino
12.
Int J Pharm ; 661: 124418, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38964488

RESUMEN

There is increasing pharmaceutical interest in deep eutectic solvents not only as a green alternative to organic solvents in drug manufacturing, but also as liquid formulation for drug delivery. The present work introduces a hydrophobic deep eutectic solvent (HDES) to the field of lipid-based formulations (LBF). Phase behavior of a mixture with 2:1 M ratio of decanoic- to dodecanoic acid was studied experimentally and described by thermodynamic modelling. Venetoclax was selected as a hydrophobic model drug and studied by atomistic molecular dynamics simulations of the mixtures. As a result, valuable molecular insights were gained into the interaction networks between the different components. Moreover, experimentally the HDES showed greatly enhanced drug solubilization compared to conventional glyceride-based vehicles, but aqueous dispersion behavior was limited. Hence surfactants were studied for their ability to improve aqueous dispersion and addition of Tween 80 resulted in lowest droplet sizes and high in vitro drug release. In conclusion, the combination of HDES with surfactant(s) provides a novel LBF with high pharmaceutical potential. However, the components must be finely balanced to keep the integrity of the solubilizing HDES, while enabling sufficient dispersion and drug release.


Asunto(s)
Composición de Medicamentos , Liberación de Fármacos , Interacciones Hidrofóbicas e Hidrofílicas , Lípidos , Simulación de Dinámica Molecular , Solubilidad , Solventes , Tensoactivos , Solventes/química , Tensoactivos/química , Lípidos/química , Composición de Medicamentos/métodos , Polisorbatos/química , Ácidos Láuricos/química , Química Farmacéutica/métodos , Sulfonamidas/química , Sulfonamidas/administración & dosificación , Aceites/química
13.
J Oleo Sci ; 73(8): 1035-1043, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39019620

RESUMEN

With increases in consumer demand for fried foods in Japan over the last several decades, the consumption of frying oil has also steadily increased. Fryers used in restaurants to cook large quantities of food are typically cleaned using neutral kitchen detergents at the end of the day after removing the oil from the tank. However, significant amounts of debris can remain in the fryer after cleaning, possibly accelerating oil deterioration and thus reducing the quality of the fried foods. In this study, debris obtained from fryer tanks used in actual restaurants was assessed using scanning electron microscopy-energy dispersive X-ray spectroscopy together with Fourier transform infrared spectroscopy, and were determined to comprise polymerized oil and carbonized organic matter. Experiments using artificially prepared debris confirmed that these materials increased the acid value (AV) of frying oil. Trials in two restaurants serving similar amounts of fried chicken, French fries and doughnuts examined the effects of cleaning the fryer with either an alkaline detergent or a neutral kitchen detergent on debris removal and oil life. The alkaline detergent was found to completely remove debris while the neutral detergent left significant amounts of debris. After cleaning, the fryers were operated with new oil as usual and the deterioration of this oil was monitored by assessing the color difference, AV, carbonyl value and peroxide value. These indices increased 1.3 to 2.0 times faster in the case that the neutral kitchen detergent was used, suggesting that cleaning fryer tanks with an alkaline detergent could contribute to extending the lifetime of frying oil, reducing food losses and thus achieving sustainable development goals.


Asunto(s)
Culinaria , Detergentes , Culinaria/métodos , Detergentes/química , Restaurantes , Calidad de los Alimentos , Aceites/química , Factores de Tiempo
14.
Methods Mol Biol ; 2817: 45-56, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38907146

RESUMEN

Single-cell proteomic analyses are of fundamental importance in order to capture biological heterogeneity within complex cell systems' heterogeneous populations. Mass spectrometry (MS)-based proteomics is a promising alternative for quantitative single-cell proteomics. Various techniques are continually evolving to address the challenges of limited sample material, detection sensitivity, and throughput constraints. In this chapter, we describe a nanoliter-scale glass-oil-air-droplet (gOAD) chip engineered for heat tolerance, which combines droplet-based microfluidics and shotgun proteomic analysis techniques to enable multistep sample pretreatment.


Asunto(s)
Vidrio , Proteómica , Análisis de la Célula Individual , Proteómica/métodos , Análisis de la Célula Individual/métodos , Análisis de la Célula Individual/instrumentación , Vidrio/química , Humanos , Aceites/química , Espectrometría de Masas/métodos , Técnicas Analíticas Microfluídicas/instrumentación , Técnicas Analíticas Microfluídicas/métodos , Dispositivos Laboratorio en un Chip , Aire , Proteoma/análisis , Nanotecnología/métodos , Nanotecnología/instrumentación , Microfluídica/métodos , Microfluídica/instrumentación
15.
Langmuir ; 40(26): 13386-13396, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38904703

RESUMEN

This study investigates the stability and structure of oil-in-water emulsions stabilized by pea protein. Of the wide range of emulsion compositions explored, a region of stability at a minimum of 5% w/v pea protein and 30-50% v/v oil was determined. This pea protein concentration is more than what is needed to form a layer covering the interface. X-ray scattering revealed a thick, dense protein layer at the interface as well as hydrated protein dispersed in the continuous phase. Shear-thinning behavior was observed, and the high viscosity in combination with the thick protein layer at the interface creates a good stability against creaming and coalescence. Emulsions in a pH range from acidic to neutral were studied, and the overall stability was observed to be broadly similar independently of pH. Size measurements revealed polydisperse protein particles. The emulsion droplets are also very polydisperse. Apart from understanding pea protein-stabilized emulsions in particular, insights are gained about protein stabilization in general. Knowledge of the location and the role of the different components in the pea protein material suggests that properties such as viscosity and stability can be tailored for various applications, including food and nutraceutical products.


Asunto(s)
Emulsiones , Aceites , Proteínas de Guisantes , Agua , Emulsiones/química , Agua/química , Proteínas de Guisantes/química , Aceites/química , Concentración de Iones de Hidrógeno , Tamaño de la Partícula , Viscosidad , Pisum sativum/química
16.
Int J Biol Macromol ; 273(Pt 1): 132967, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38851609

RESUMEN

Conventional oil-water separation membranes are difficult to establish a trade-off between membrane flux and separation efficiency, and often result in serious secondary contamination due to their fouling issue and non-degradability. Herein, a double drying strategy was introduced through a combination of oven-drying and freeze-drying to create a super-wettable and eco-friendly oil-water separating aerogel membrane (TMAdf). Due to the regular nacre-like structures developed in the drying process and the pores formed by freeze-drying, TMAdf aerogel membrane finally develops regularly arranged porous structures. In addition, the aerogel membrane possesses excellent underwater superoleophobicity with a contact angle above 168° and antifouling properties. TMAdf aerogel membrane can effectively separate different kinds of oil-water mixtures and highly emulsified oil-water dispersions under gravity alone, achieving exceptionally high flux (3693 L·m-2·h-1) and efficiency (99 %), while being recyclable. The aerogel membrane also displays stability and universality, making it effective in removing oil droplets from water in corrosive environments such as acids, salts and alkalis. Furthermore, TMAdf aerogel membrane shows long-lasting antibacterial properties (photothermal sterilization up to 6 times) and biodegradability (completely degraded after 50 days in soil). This study presents new ideas and insights for the fabrication of multifunctional membranes for oil-water separation.


Asunto(s)
Antibacterianos , Membranas Artificiales , Aceites , Agua , Antibacterianos/química , Antibacterianos/farmacología , Aceites/química , Agua/química , Geles/química , Porosidad , Desecación/métodos , Interacciones Hidrofóbicas e Hidrofílicas , Liofilización/métodos
17.
Acta Biomater ; 183: 330-340, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38838909

RESUMEN

Although vaccination with inactivated vaccines is a popular preventive method against pseudorabies virus (PRV) infection, inactivated vaccines have poor protection efficiency because of their weak immunogenicity. The development of an effective adjuvant is urgently needed to improve the efficacy of inactivated PRV vaccines. In this study, a promising nanocomposite adjuvant named as MIL@A-SW01-C was developed by combining polyacrylic acid-coated metal-organic framework MIL-53(Al) (MIL@A) and squalene (oil)-in-water emulsion (SW01) and then mixing it with a carbomer solution. One part of the MIL@A was loaded onto the oil/water interface of SW01 emulsion via hydrophobic interaction and coordination, while another part was dispersed in the continuous water phase using carbomer. MIL@A-SW01-C showed good biocompatibility, high PRV (antigen)-loading capability, and sustained antigen release. Furthermore, the MIL@A-SW01-C adjuvanted PRV vaccine induced high specific serum antibody titers, increased splenocyte proliferation and cytokine secretion, and a more balanced Th1/Th2 immune response compared with commercial adjuvants, such as alum and biphasic 201. In the mouse challenge experiment, two- and one-shot vaccinations resulted in survival rates of 73.3 % and 86.7 %, respectively. After one-shot vaccination, the host animal pigs were also challenged with wild PRV. A protection rate of 100 % was achieved, which was much higher than that observed with commercial adjuvants. This study not only establishes the superiority of MIL@A-SW01-C composite nanoadjuvant for inactivated PRV vaccine in mice and pigs but also presents an effective method for developing promising nanoadjuvants. STATEMENT OF SIGNIFICANCE: We have developed a nanocomposite of MIL-53(Al) and oil-in-water emulsion (MIL@A-SW01-C) as a promising adjuvant for the inactivated PRV vaccines. MIL@A-SW01-C has good biocompatibility, high PRV (antigen) loading capability, and prolonged antigen release. The developed nanoadjuvant induced much higher specific IgG antibody titers, increased splenocyte proliferation and cytokine secretion, and a more balanced Th1/Th2 immune response than commercial adjuvants alum and biphasic 201. In mouse challenge experiments, survival rates of 73.3 % and 86.7 % were achieved from two-shot and one-shot vaccinations, respectively. At the same time, a protection rate of 100 % was achieved with the host animal pigs challenged with wild PRV.


Asunto(s)
Adyuvantes Inmunológicos , Emulsiones , Animales , Adyuvantes Inmunológicos/farmacología , Emulsiones/química , Ratones , Porcinos , Herpesvirus Suido 1/inmunología , Vacunas contra la Seudorrabia/inmunología , Ratones Endogámicos BALB C , Aceites/química , Femenino , Agua/química , Vacunas de Productos Inactivados/inmunología , Seudorrabia/prevención & control , Seudorrabia/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Citocinas/metabolismo
18.
Int J Pharm ; 660: 124334, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-38871135

RESUMEN

Tranexamic acid (TXA) is an anti-fibrinolysis agent widely used in postoperative blood loss management. As a highly water-soluble drug, TXA is suffering from rapid clearance from the action site, therefore, large amount of drug is required when administered either by intravenously or topically. In this study, a TXA preparation with prolonged action site residence was designed using the nano-micro strategy. TXA nanoparticles were dispersed in oil by emulsification followed by lyophilization to give a solid-in-oil suspension, which was used as the oil phase for the preparation of TXA-loaded solid-in-oil-in-water (TXA@S/O/W) system. The particle size of TXA in oil was 207.4 ± 13.50 nm, and the particle size of TXA@S/O/W was 40.5 µm. The emulsion-in-gel system (TXA@S/O/G) was prepared by dispersing TXA@S/O/W in water solution of PLGA-b-PEG-b-PLGA (PPP). And its gelling temperature was determined to be 26.6 ℃ by a rheometer. Sustained drug release was achieved by TXA@S/O/G with 72.85 ± 7.52 % of TXA released at 120 h. Formulation retention at the joint cavity was studied by live imaging, and the fluorescent signals dropped gradually during one week. Drug escape from the injection site via drainage and absorption was investigated by a self-made device and plasma TXA concentration determination, respectively. TXA@S/O/G showed the least drug drainage during test, while more than 70 % of drug was drained in TXA@S/O/W group and TXA solution group. Besides, low yet steady plasma TXA concentration (less than 400 ng/mL) was found after injecting TXA@S/O/G into rat knees at a dosage of 2.5 mg/kg, which was much lower than those of TXA dissolved in PPP gel or TXA solution. In conclusion, sustained drug release as well as prolonged action site retention were simultaneously achieved by the designed TXA@S/O/G system. More importantly, due to the steady plasma concentration, this strategy could be further applied to other highly water-soluble drugs with needs on sustained plasma exposure.


Asunto(s)
Antifibrinolíticos , Emulsiones , Nanopartículas , Ácido Tranexámico , Ácido Tranexámico/administración & dosificación , Ácido Tranexámico/farmacocinética , Ácido Tranexámico/química , Animales , Antifibrinolíticos/administración & dosificación , Antifibrinolíticos/química , Antifibrinolíticos/farmacocinética , Masculino , Nanopartículas/química , Polietilenglicoles/química , Tamaño de la Partícula , Ratas Sprague-Dawley , Geles , Preparaciones de Acción Retardada , Liberación de Fármacos , Aceites/química , Ratas , Poliésteres/química , Portadores de Fármacos/química , Poliglactina 910
19.
Se Pu ; 42(6): 581-589, 2024 Jun.
Artículo en Chino | MEDLINE | ID: mdl-38845519

RESUMEN

Oils and fats are commonly used in the pharmaceutical industry as solvents, emulsifiers, wetting agents, and dispersants, and are an important category of pharmaceutical excipients. Fatty acids with unique compositions are important components of oil pharmaceutical excipients. The Chinese Pharmacopoeia provides clear descriptions of the fatty acid types and limits suitable for individual oil pharmaceutical excipient. An unqualified fatty acid composition or content may indicate adulteration or deterioration. The fatty acid composition, as a key indicator for the identification and adulteration evaluation of oil pharmaceutical excipients, can directly affect the quality and safety of oil pharmaceutical excipients and preparations. Gas chromatography is the most widely used technique for fatty acid analysis, but it generally requires derivatization, which affects quantitative accuracy. Supercritical fluid chromatography (SFC), an environmentally friendly technique with excellent separation capability, offers an efficient method for detecting fatty acids without derivatization. Unlike other chromatographic methods, SFC does not use nonvolatile solvents (e. g., water) as the mobile phase, rendering it compatible with an evaporative light-scattering detector (ELSD) for enhanced detection sensitivity. However, the fatty acids in oil pharmaceutical excipients exist in the free and bound forms, and the low content of free fatty acids in these oil pharmaceutical excipients not only poses challenges for their detection but also complicates the determination of characteristic fatty acid compositions and contents. Moreover, the compositions and ratios of fatty acids are influenced by environmental factors, leading to interconversion between their two forms. In this context, saponification provides a simpler and faster alternative to derivatization. Saponification degrades oils and fats by utilizing the reaction between esters and an alkaline solution, ultimately releasing the corresponding fatty acids. Because this method is more cost effective than derivatization, it is a suitable pretreatment method for the detection of fatty acids in oil pharmaceutical excipients using the SFC-ELSD approach. In this study, we employed SFC-ELSD to simultaneously determine six fatty acids, namely, myristic acid, palmitic acid, stearic acid, arachidic acid, docosanoic acid, and lignoceric acid, in oil pharmaceutical excipients. Saponification of the oil pharmaceutical excipients using sodium hydroxide methanol solution effectively avoided the bias in the determination of fatty acid species and contents caused by the interconversion of fatty acids and esters. The separation of the six fatty acids was achieved within 12 min, with good linearity within their respective mass concentration ranges. The limits of detection and quantification were 5-10 mg/L and 10-25 mg/L, respectively, and the spiked recoveries were 80.93%-111.66%. The method proved to be sensitive, reproducible, and stable, adequately meeting requirements for the analysis of fatty acids in oil pharmaceutical excipients. Finally, the analytical method was successfully applied to the determination of six fatty acids in five types of oil pharmaceutical excipients, namely, corn oil, soybean oil, coconut oil, olive oil, and peanut oil. It can be combined with principal component analysis to accurately differentiate different types of oil pharmaceutical excipients, providing technical support for the rapid identification and quality control of oil pharmaceutical excipients. Thus, the proposed method may potentially be applied to the analysis of complex systems adulterated with oil pharmaceutical excipients.


Asunto(s)
Cromatografía con Fluido Supercrítico , Excipientes , Ácidos Grasos , Ácidos Grasos/análisis , Ácidos Grasos/química , Cromatografía con Fluido Supercrítico/métodos , Excipientes/análisis , Excipientes/química , Dispersión de Radiación , Luz , Aceites/química , Aceites/análisis
20.
Int J Biol Macromol ; 272(Pt 1): 132674, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38850815

RESUMEN

This study aimed to develop novel nanoparticles that can serve as an excellent oil-in-water (O/W) Pickering stabilizer. The polysaccharide-protein complex nanoparticles (PPCNs-20 and PPCNs-40) were prepared at different ultrasonication amplitudes (20 % and 40 %, respectively) from the polysaccharide-protein complexes (PPCs) which were extracted from the residue of Clitocybe squamulose. Compared with PPCs and PPCNs-20, the PPCNs-40 exhibited dispersed blade and rod shape, smaller average size, and larger zeta potential, which indicated significant potential in O/W Pickering emulsion stabilizers. Subsequently, PPCNs-40 stabilized Pickering emulsions were characterized at different concentrations, pHs, and oil phase contents. The average size, micromorphology, rheological properties, and storage stability of the emulsions were improved as the concentration of PPCNs-40, the ratio of the soybean oil phase and pH value increased. Pickering emulsions showed the best stability when the concentration of PPCNs-40 was 3 wt%, and the soybean oil fraction was 30 % under both neutral and alkaline conditions. The emulsions demonstrated shear thinning and gelation behavior. These findings have implications for the use of eco-friendly nanoparticles as stabilizers for Pickering emulsions and provide strategies for increasing the added value of C. squamulosa.


Asunto(s)
Emulsiones , Nanopartículas , Polisacáridos , Agua , Emulsiones/química , Nanopartículas/química , Polisacáridos/química , Agua/química , Reología , Tamaño de la Partícula , Concentración de Iones de Hidrógeno , Aceites/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...