Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 632
Filtrar
1.
Nutrients ; 16(5)2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38474759

RESUMEN

Inefficient glucose metabolism and decreased ATP production in the brain are linked to ageing, cognitive decline, and neurodegenerative diseases (NDDs). This study employed thermodynamic analysis to assess the effect of fish oil supplementation on glucose metabolism in ageing brains. Data from previous studies on glucose metabolism in the aged human brain and grey mouse lemur brains were examined. The results demonstrated that Omega-3 fish oil supplementation in grey mouse lemurs increased entropy generation and decreased Gibbs free energy across all brain regions. Specifically, there was a 47.4% increase in entropy generation and a 47.4 decrease in Gibbs free energy in the whole brain, indicating improved metabolic efficiency. In the human model, looking at the specific brain regions, supplementation with Omega-3 polyunsaturated fatty acids (n-3 PUFAs) reduced the entropy generation difference between elderly and young individuals in the cerebellum and particular parts of the brain cortex, namely the anterior cingulate and occipital lobe, with 100%, 14.29%, and 20% reductions, respectively. The Gibbs free energy difference was reduced only in the anterior cingulate by 60.64%. This research underscores that the application of thermodynamics is a comparable and powerful tool in comprehending the dynamics and metabolic intricacies within the brain.


Asunto(s)
Ácidos Grasos Omega-3 , Aceites de Pescado , Humanos , Anciano , Aceites de Pescado/metabolismo , Glucosa/metabolismo , Ácidos Grasos Omega-3/metabolismo , Encéfalo/metabolismo , Dieta , Termodinámica , Suplementos Dietéticos
2.
Sci Rep ; 14(1): 5610, 2024 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-38453966

RESUMEN

Given that ketogenic diets (KDs) are extremely high in dietary fat, we compared different fats in KDs to determine which was the best for cancer prevention. Specifically, we compared a Western and a 15% carbohydrate diet to seven different KDs, containing either Western fats or fats enriched in medium chain fatty acids (MCTs), milk fat (MF), palm oil (PO), olive oil (OO), corn oil (CO) or fish oil (FO) for their ability to reduce nicotine-derived nitrosamine ketone (NNK)-induced lung cancer in mice. While all the KDs tested were more effective at reducing lung nodules than the Western or 15% carbohydrate diet, the FO-KD was most effective at reducing lung nodules. Correlating with this, mice on the FO-KD had low blood glucose and the highest ß-hydroxybutyrate level, lowest liver fatty acid synthase/carnitine palmitoyl-1a ratio and a dramatic increase in fecal Akkermansia. We found no liver damage induced by the FO-KD, while the ratio of total cholesterol/HDL was unchanged on the different diets. We conclude that a FO-KD is superior to KDs enriched in other fats in reducing NNK-induced lung cancer, perhaps by being the most effective at skewing whole-body metabolism from a dependence on glucose to fats as an energy source.


Asunto(s)
Dieta Cetogénica , Grasas Insaturadas en la Dieta , Neoplasias Pulmonares , Ratones , Animales , Aceites de Pescado/farmacología , Aceites de Pescado/metabolismo , Grasas Insaturadas en la Dieta/metabolismo , Aceites de Plantas/farmacología , Aceites de Plantas/metabolismo , Neoplasias Pulmonares/inducido químicamente , Neoplasias Pulmonares/prevención & control , Grasas de la Dieta/metabolismo , Aceite de Oliva , Dieta , Carbohidratos
3.
Biomed Res ; 45(1): 33-43, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38325844

RESUMEN

Fish oil (FO) is rich in the n-3 polyunsaturated fatty acids. It has been demonstrated that FO intake possesses lipid-lowering properties. Conversely, a high-cholesterol (CH) diet promotes lipid accumulation in the liver and induces fatty liver. This study investigated the effects of FO feeding on hepatic lipid accumulation induced by high-cholesterol feeding in KK mice. All experimental diets had a fat energy ratio of 25%, the SO group had all fat sources as safflower oil (SO), the 12.5 FO group had half of the SO replaced with FO, and the 25 FO group had all of the SO replaced with FO, each with or without 2 weight % (wt%) cholesterol (SO/CH, 12.5 FO/CH, and 25 FO/CH groups, respectively), for 8 weeks. The hepatic triglyceride and total cholesterol levels were significantly lower in the 25 FO/CH group than in the SO/CH group. The hepatic mRNAs of fatty acid synthesis-related genes were downregulated by the FO feeding groups. In view of importance to establish the benefit of FO for preventing severe NAFLD, our results suggest that FO intake prevents excessive hepatic fat accumulation induced by a high-cholesterol diet in obese KK mice through the inhibition of fatty acid synthesis.


Asunto(s)
Aceites de Pescado , Metabolismo de los Lípidos , Ratones , Animales , Aceites de Pescado/farmacología , Aceites de Pescado/metabolismo , Hígado/metabolismo , Colesterol/metabolismo , Colesterol/farmacología , Ácidos Grasos/metabolismo , Ácidos Grasos/farmacología , Obesidad/etiología , Obesidad/prevención & control , Obesidad/metabolismo
4.
Artículo en Inglés | MEDLINE | ID: mdl-38061580

RESUMEN

Although the benefits of oleic acid (OA) have been established in mammals, its effects on fish remain understudied. The aim of this study was to evaluate the antioxidant potential of OA in the liver, intestine, and muscle of European sea bass juveniles fed diets containing different lipid levels. For that purpose, six diets with 16 or 22% lipids and 0, 1, and 2% OA were formulated and triplicate groups of European sea bass juveniles (21.4 g) were fed with these experimental diets for 9 weeks. Increasing dietary lipid levels or OA supplementation did not affect antioxidant enzyme activity in the liver and muscle. Superoxide dismutase (SOD) activity in the intestine increased with both the dietary lipid and OA levels, while glucose 6 phosphate dehydrogenase (G6PDH) activity increased only with dietary OA supplementation. Reduced glutathione (GSH) and total glutathione (tGSH) content were higher in the liver and intestine of fish fed the low-lipid diets, while in the high-lipid diets it was lower in the muscle than in the liver and intestine. Present findings suggest that OA plays a role in the antioxidant defense mechanisms of European sea bass, particularly at the intestine level, but additional research is required to further assess the potential benefits of incorporating OA into the diets.


Asunto(s)
Lubina , Animales , Ácido Oléico/farmacología , Ácido Oléico/metabolismo , Antioxidantes/metabolismo , Aceites de Pescado/metabolismo , Grasas de la Dieta , Estrés Oxidativo , Hígado/metabolismo , Mamíferos
5.
Antioxid Redox Signal ; 40(7-9): 433-452, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37265154

RESUMEN

Aims: Studies demonstrated that oxidized fish oil (OFO) promoted oxidative stress and induced mitochondrial dysfunction and lipotoxicity, which attenuated beneficial effects of fish oil supplements in the treatment of nonalcoholic fatty liver disease (NAFLD). The current study was performed on yellow catfish, a good model to study NAFLD, and its hepatocytes to explore whether selenium (Se) could alleviate OFO-induced lipotoxicity via the inhibition of oxidative stress and determine its potential mechanism. Results: The analysis of triglycerides content, oxidative stress parameters, and histological and transmission electronic microscopy observation showed that high dietary Se supplementation alleviated OFO-induced lipotoxicity, oxidative stress, and mitochondrial injury and dysfunction. RNA-sequencing and immunoblotting analysis indicated that high dietary Se reduced OFO-induced decline of peroxisome-proliferator-activated receptor alpha (Pparα) and ubiquitin-specific protease 4 (Usp4) protein expression. High Se supplementation also alleviated OFO-induced reduction of thioredoxin reductase 2 (txnrd2) messenger RNA (mRNA) expression level and activity. The txnrd2 knockdown experiments revealed that txnrd2 mediated Se- and oxidized eicosapentaenoic acid (oxEPA)-induced changes of mitochondrial reactive oxygen species (mtROS) and further altered Usp4 mediated-deubiquitination and stabilization of Pparα, which, in turn, modulated mitochondrial fatty acid ß-oxidation and metabolism. Mechanistically, Usp4 deubiquitinated Pparα and ubiquitin-proteasome-mediated Pparα degradation contributed to oxidative stress-induced mitochondrial dysfunction. Innovation: These findings uncovered a previously unknown mechanism by which Se and OFO interacted to affect lipid metabolism via the Txnrd2-mtROS-Usp4-Pparα pathway, which provides the new target for NAFLD prevention and treatment. Conclusion: Se ameliorated OFO-induced lipotoxicity via the inhibition of mitochondrial oxidative stress, remodeling of Usp4-mediated deubiquitination, and stabilization of Pparα. Antioxid. Redox Signal. 40, 433-452.


Asunto(s)
Enfermedades Mitocondriales , Enfermedad del Hígado Graso no Alcohólico , Selenio , Humanos , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Hígado/metabolismo , Aceites de Pescado/farmacología , Aceites de Pescado/metabolismo , Selenio/farmacología , Selenio/metabolismo , PPAR alfa/genética , Oxidorreductasas/metabolismo , Estrés Oxidativo , Enfermedades Mitocondriales/metabolismo
6.
J Sci Food Agric ; 104(4): 2493-2501, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-37986264

RESUMEN

BACKGROUND: The development and fine-tuning of biotechnological processes for fish oil extraction constitute a very important focus to contribute to the development of a food industry based on fish consumption. This work lies in a comparative analysis of the oil extraction yield of Myliobatis goodei livers using free and immobilized enzymes. RESULTS: An immobilized biocatalyst was designed from the cell-free extract of a Bacillus sp. Mcn4. A complete factorial design was used to study the components of the bacterial culture medium and select the condition with the highest titers of extracellular enzymatic activities. Wheat bran had a significant effect on the culture medium composition for enzymatic production. The immobilized biocatalyst was designed by covalent binding of the proteins present in the cocktail retaining a percentage of different types of enzymatic activities (Mult.Enz@MgFe2 O4 ). Among the biocatalyst used, Alcalase® 2.4 L and Purazyme® AS 60 L (free commercial proteases) showed extraction yields of 87.39% and 84.25%, respectively, while Mult.Enz@MgFe2 O4 achieved a better one of 89.97%. The oils obtained did not show significant differences in their physical-chemical properties while regarding the fatty acid content, the oil extracted with Purazyme® AS 60 L showed a comparatively lower proportion of polyunsaturated fatty acids. CONCLUSIONS: Our results suggest that the use of by-products of M. goodei is a valid alternative and encourages the use of immobilized multienzyme biocatalysts for the treatment of complex substrates in the fishing industry. © 2023 Society of Chemical Industry.


Asunto(s)
Enzimas Inmovilizadas , Lipasa , Hidrólisis , Lipasa/química , Enzimas Inmovilizadas/química , Aceites de Pescado/metabolismo , Hígado/metabolismo
7.
J Nutr Biochem ; 124: 109514, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37918450

RESUMEN

Aquaporin 9 (AQP9) is an integral membrane protein that facilitates glycerol transport in hepatocytes and adipocytes. Glycerol is necessary as a substrate for gluconeogenesis in the physiological fasted state, suggesting that inhibiting AQP9 function may be beneficial for treating type 2 diabetes associated with fasting hyperglycemia. The n-3 polyunsaturated fatty acids (PUFAs), including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are rich in fish oil and lower the risk of metabolic syndrome; however, the effects of EPA and DHA on AQP9 expression in obese and type 2 diabetes are unclear. The KK mouse is an animal model of obesity and type 2 diabetes because of the polymorphisms on leptin receptor gene, which results in a part of cause for obese and diabetic conditions. In this study, we determined the effect of fish oil-derived n-3 PUFA on AQP9 protein expression in the liver and white adipose tissue (WAT) of KK mice and mouse 3T3-L1 adipocytes. The expression of AQP9 protein in the liver, epididymal WAT, and inguinal WAT were markedly decreased following fish oil administration. We also demonstrated that n-3 PUFAs, such as DHA, and to a lesser extent EPA, downregulated AQP9 protein expression in 3T3-L1 adipocytes. Our results suggest that fish oil-derived n-3 PUFAs may regulate the protein expressions of AQP9 in glycerol metabolism-related organs in KK mice and 3T3-L1 adipocytes.


Asunto(s)
Acuaporinas , Diabetes Mellitus Tipo 2 , Ácidos Grasos Omega-3 , Animales , Ratones , Diabetes Mellitus Tipo 2/metabolismo , Células 3T3-L1 , Glicerol , Ácidos Grasos Omega-3/farmacología , Ácidos Grasos Omega-3/metabolismo , Aceites de Pescado/farmacología , Aceites de Pescado/metabolismo , Adipocitos , Ácido Eicosapentaenoico/farmacología , Ácido Eicosapentaenoico/metabolismo , Hígado/metabolismo , Ácidos Docosahexaenoicos/farmacología , Ácidos Docosahexaenoicos/metabolismo , Obesidad/metabolismo , Acuaporinas/genética , Acuaporinas/metabolismo , Acuaporinas/farmacología , Ácidos Grasos Insaturados/farmacología , Tejido Adiposo Blanco/metabolismo
8.
Food Chem ; 440: 138174, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38160593

RESUMEN

Aiming to assess the effects of lard oil (LO) and fish oil (FO) on the nutritional value of mud crabs (Scylla paramamosain), non-targeted lipidomics analysis was performed on the muscle of crabs after eight weeks of feeding trail. Compared to FO, dietary LO reduced the content of phosphatidylethanolamine (PE) and phosphatidylserine (PS) with 18:0 bound at sn-1/3 site, the content of ether phospholipids containing 20:5n-3 (EPA) and 22:6n-3 (DHA) combined at sn-2 site, and increased the content of ether PE containing 18:0 and 18:1n-9. Furthermore, the deposition of 16:0, 16:1n-7, 18:2n-6, 18:3n-3, 20:4n-6, EPA and DHA at each site of PE, PS, phosphatidylcholine and/or triacylglycerols were reduced by dietary LO, while the DHA content at the sn-2 position of PE was increased. In conclusion, the nutritional value of mud crabs was reduced by dietary LO with the manifestation of variation in FA composition and positional distribution on phospholipids.


Asunto(s)
Braquiuros , Grasas Insaturadas en la Dieta , Grasas de la Dieta , Animales , Aceites de Pescado/metabolismo , Braquiuros/metabolismo , Ácidos Grasos/metabolismo , Lipidómica , Músculos/metabolismo , Nutrientes
9.
Sci Rep ; 13(1): 21269, 2023 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-38042956

RESUMEN

The large use of fish meal/fish oil in carnivorous fish feeds is the main concern regarding environmental sustainability of aquaculture. Here, we evaluated the effects of an innovative diet, designed to be (1) environmentally sustainable by lowering the marine protein content while being (2) cost effective by using sustainable alternative raw materials with acceptable cost and produced on an industrial scale, on growth performance, gut microbiota composition, health and welfare of European sea bass (Dicentrarchus labrax), a key species of the Mediterranean marine aquaculture, reared in sea cages. Results show that the specific growth rate of fish fed the low marine protein diet was significantly lower than those fed conventional diet (0.67% vs 0.69%). Fatty acid profile of fillets from fish fed a low marine protein diet presented significant lower n-6 and higher n-3 content when compared to conventional ones. Then, a significant increase in the abundance of Vibrio and reduction of Photobacterium were found in the gut of fish fed with the low marine protein diet but effects on sea bass health needs further investigation. Finally, no major health and welfare alterations for fish fed the low marine protein diet were observed, combined with a potential slight benefit related to humoral immunity. Overall, these results suggest that despite the low marine protein diet moderately affects growth performance, it nevertheless may enhance environmental and economic sustainability of the sea bass aquaculture.


Asunto(s)
Lubina , Microbioma Gastrointestinal , Animales , Lubina/metabolismo , Dieta , Aceites de Pescado/metabolismo , Ácidos Grasos/metabolismo , Dieta con Restricción de Proteínas , Alimentación Animal/análisis
10.
Nutrients ; 15(24)2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38140297

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is a serious public health concern, which calls for appropriate diet/nutrition intervention. Fish oil (FO) has several benefits in reducing obesity, but its intergenerational role in reducing the effects of paternal obesity has not been established. Hence, we hypothesized that FO supplementation to an obese father during the pre-conceptional period could improve the metabolic health of the offspring, specifically in the liver. Three groups of male mice were fed with a low-fat (LF), high-fat (HF), or high-fat diet supplemented with FO (HF-FO) for 10 weeks and were then allowed to mate with female mice fed a chow diet. Offspring were sacrificed at 16 weeks. The liver tissue was harvested for genomic and histological analyses. The offspring of HF and HF-FO fathers were heavier compared to that of the LF mice during 9-16 weeks. The glucose tolerance of the offspring of HF-FO fathers were significantly improved as compared to the offspring of HF fathers. Paternal FO supplementation significantly lowered inflammation and fatty acid synthesis biomarkers and increased fatty acid oxidation biomarkers in the offspring liver. In summary, FO supplementation in fathers shows the potential to reduce metabolic and cardiovascular diseases through genetic means in offspring.


Asunto(s)
Aceites de Pescado , Enfermedad del Hígado Graso no Alcohólico , Masculino , Femenino , Ratones , Animales , Humanos , Aceites de Pescado/farmacología , Aceites de Pescado/metabolismo , Obesidad/prevención & control , Obesidad/metabolismo , Suplementos Dietéticos , Dieta Alta en Grasa/efectos adversos , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Padre , Biomarcadores/metabolismo , Ácidos Grasos/metabolismo , Ratones Endogámicos C57BL
11.
Nutrients ; 15(20)2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37892532

RESUMEN

Long-chain polyunsaturated fatty acids (LC-PUFAs) are important modulators of red blood cell (RBC) rheology. Dietary LC-PUFAs are readily incorporated into the RBC membrane, improving RBC deformability, fluidity, and hydration. Female C57BL/6J mice consumed diets containing increasing amounts of fish oil (FO) ad libitum for 8 weeks. RBC deformability, filterability, and post-transfusion recovery (PTR) were evaluated before and after cold storage. Lipidomics and lipid peroxidation markers were evaluated in fresh and stored RBCs. High-dose dietary FO (50%, 100%) was associated with a reduction in RBC quality (i.e., in vivo lifespan, deformability, lipid peroxidation) along with a reduced 24 h PTR after cold storage. Low-dose dietary FO (6.25-12.5%) improved the filterability of fresh RBCs and reduced the lipid peroxidation of cold-stored RBCs. Although low doses of FO improved RBC deformability and reduced oxidative stress, no improvement was observed for the PTR of stored RBCs. The improvement in RBC deformability observed with low-dose FO supplementation could potentially benefit endurance athletes and patients with conditions resulting from reduced perfusion, such as peripheral vascular disease.


Asunto(s)
Grasas Insaturadas en la Dieta , Deformación Eritrocítica , Humanos , Femenino , Ratones , Animales , Ratones Endogámicos C57BL , Eritrocitos/metabolismo , Aceites de Pescado/farmacología , Aceites de Pescado/metabolismo , Ácidos Grasos Insaturados/metabolismo , Ácidos Grasos/metabolismo , Grasas Insaturadas en la Dieta/metabolismo , Conservación de la Sangre/métodos
12.
J Agric Food Chem ; 71(40): 14550-14561, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37769277

RESUMEN

The prevalence of depression is increasing, and geriatric depression, in particular, is difficult to recognize and treat. Depression in older adults is often accompanied by neuroinflammation in the central nervous system (CNS). Neuroinflammation affects the brain's physiological and immune functions through several pathways and induces depressive symptoms. This study investigated the relationship among depression, neuroinflammation, and fish oil supplementation. Thirty-six male Sprague-Dawley rats were used in an aging-related depression animal model to simulate geriatric depression. Cognitive function, depressive-like symptoms, peripheral nervous system and CNS inflammation status, and the tryptophan-related metabolic pathway were analyzed. The geriatric depression animal model was associated with depressive-like behaviors and cognitive impairment. The integrity of the blood-brain barrier was compromised, resulting in increased expression of ionized calcium-binding adapter molecule 1 and the glial fibrillary acidic protein in the brain, indicating increased neuroinflammation. Tryptophan metabolism was also negatively affected. The geriatric-depressive-like rats had high levels of neurotoxic 5-hydroxyindoleacetic acid and kynurenine in their hippocampus. Fish oil intake improved depressive-like symptoms and cognitive impairment, reduced proinflammatory cytokine expression, activated the brain's glial cells, and increased the interleukin-10 level in the prefrontal cortex. Thus, fish oil intervention could ameliorate abnormal neurobehaviors and neuroinflammation and elevate the serotonin level in the hippocampus.


Asunto(s)
Aceites de Pescado , Triptófano , Ratas , Masculino , Animales , Triptófano/metabolismo , Aceites de Pescado/metabolismo , Enfermedades Neuroinflamatorias , Ratas Sprague-Dawley , Envejecimiento , Depresión/tratamiento farmacológico , Depresión/etiología , Hipocampo/metabolismo
13.
An Acad Bras Cienc ; 95(2): e20210330, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37585893

RESUMEN

This study investigated the effect of vegetable and fish oils with different n-3 / n-6 PUFAS ratios on the lipoprotein profile and on the development of murine breast cancer 4T1. Female Balb/c mice (6-7 weeks) received diets containing 4.0% fat during seven weeks. On the fourth week, animals were inoculated into the posterior left flank with 2.5 × 106 4T1 cells. Body weight and food intake were registered and the profile serum lipoproteins was determined. Tumor volume, histopathological and immunohistochemical studies, myeloperoxidase and N-acetylglucosaminidase activities, TNF-α, hemoglobin and VEGF levels were analysed. The highest n-3 / n-6 ratio was found in fish oil (15.8:1), followed by linseed (2.4:1), canola (1:2.1) and soybean (1:9.4) oils. Body weight, food and caloric intake, lipoprotein profile, tumor weight, tumor evolution and histopathological analysis were not different. Canola oil increased cell proliferation when compared to soybean oil, and fish oil changed the inflammatory response and increased VEGF in tumors compared to other groups. The type of fatty acid and the high ratio of n-3 / n-6 PUFAs in the diet influenced cell proliferation and inflammation in the tumor differentially, highlighting the increase of neutrophils and VEGF levels in animals fed on fish oil.


Asunto(s)
Ácidos Grasos Omega-3 , Factor A de Crecimiento Endotelial Vascular , Animales , Femenino , Ratones , Aceites de Plantas , Grasas de la Dieta , Ácidos Grasos Omega-3/análisis , Aceites de Pescado/metabolismo , Ácidos Grasos/análisis , Lipoproteínas , Peso Corporal
14.
J Trace Elem Med Biol ; 79: 127204, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37244044

RESUMEN

BACKGROUND: Selenium (Se) functions through selenoproteins and is essential to growth and metabolism of vertebrates. The present study was conducted to identify twelve selenoproteins genes (selenoe, selenof, selenoh, selneoi, selenom, selenok, selneon, selenoo, selenot, selenos, selenou and msrb1) from yellow catfish. Their mRNA expression patterns, as well as their response to dietary oxidized fish oils and Se addition were explored. METHODS: We use 3'and 5' RACE PCR to clone full-length cDNA sequence of twelve selenoprotein genes from yellow catfish. Their mRNA expression patterns were assessed via quantitative real-time PCR. Yellow catfish were fed diet adequate Se+ fresh fish oil, adequate Se+ oxidized fish oil, high Se+ fresh fish oil and high Se+ oxidized fish oil, respectively, for 10 weeks. Their kidney, heart, brain and testis were used to assess the mRNA expression of twelve selenoprotein. RESULTS: Twelve selenoprotein genes had similar domains with mammals and the other fish. Their mRNAs were expressed widely in eleven tissues but varied with the tissues. Dietary oxidized fish oils and Se addition influenced their mRNA abundances of twelve selenoproteins in a tissue-dependent manner. CONCLUSION: Our study demonstrated the characterization and expression of twelve selenoproteins, and elucidated their responses in yellow catfish fed diets varying in oxidized fish oils and Se addition, which increased our knowledge into the biological function and regulatory mechanism of Se and selenoproteins in fish.


Asunto(s)
Bagres , Selenio , Masculino , Animales , Selenio/farmacología , Selenio/metabolismo , Aceites de Pescado/metabolismo , Bagres/genética , Hígado/metabolismo , Selenoproteínas/genética , Selenoproteínas/metabolismo , Dieta , ARN Mensajero/genética , ARN Mensajero/metabolismo , Mamíferos/genética , Mamíferos/metabolismo
15.
Int J Mol Sci ; 24(7)2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-37047740

RESUMEN

The present study was conducted to investigate the effects of dietary fish oil replacement with a mixture of vegetable oils and probiotic supplementation on plasma biochemical parameters, oxidative stress, and antioxidant ability of Seriola dumerili. Specimens with an initial weight of 175 g were used. Four feeds were formulated with 0% (FO-100), 75% (FO-25), and 100% (FO-0 and FO-0+ with the addition of Lactobacillus probiotics) substitution of fish oil with a mixture of linseed, sunflower, and palm oils. After 109 days, no significant differences were observed in the activity of antioxidant enzymes in the liver, foregut, and hindgut, only glucose-6-phosphate dehydrogenase activity in the liver was higher in the fish fed the FO-100 diet than in those fed the FO-0 diet. No significant differences were observed in the total, reduced, and oxidized glutathione and the oxidative stress index in the liver. In addition, lipid peroxidation in the liver and red muscle values were higher in the fish fed the FO-100 diet than in the fish fed the FO-0+ diet, however, the foregut of the fish fed the FO-100 diet presented lower values than that of the fish fed the FO replacement diet, with and without probiotics. There were significant differences in cholesterol levels in the FO-100 group; they were significantly higher than those observed with the fish diets without fish oil. To sum up, fish oil can be replaced by up to 25% with vegetable oils in diets for Seriola dumerili juveniles, but total fish oil substitution is not feasible because it causes poor survival. The inclusion of probiotics in the FO-0+ diet had no effects on the parameters measured.


Asunto(s)
Perciformes , Probióticos , Animales , Aceites de Pescado/farmacología , Aceites de Pescado/metabolismo , Antioxidantes/farmacología , Aceites de Plantas/farmacología , Aceites de Plantas/metabolismo , Dieta , Hígado/metabolismo , Músculos , Estrés Oxidativo , Probióticos/farmacología
16.
Reprod Toxicol ; 118: 108367, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36963525

RESUMEN

Proteins are required for biological functions and their inadequacy might impair the growth and development of the reproductive system. The study investigated the effects of fish oil (FO) supplementation on low-protein diet-induced alterations in male and female reproductive organs. Male and female rats were assigned randomly to four groups respectively. The NPD rats had five rats per group and were given 16% casein diet while the LPD rats had eight rats per group and received 5% casein diet. After the 8th week, FO was administered for 3 weeks via oral gavage at a concentration of 400 mg Kg-1 after which the rats were sacrificed and testes and ovaries were excised. LPD-fed rats showed lower body weights for both genders. In LPD-fed rats, NO was significantly increased while GSH, vitamins C and E levels, the activities of CAT (except in ovaries), and GST were significantly reduced in both tissues. The activities of SOD and GPx were only reduced in the testes including sperm count, motility, and increase deformed sperm cells. Testosterone and progesterone levels were also reduced and lipid homeostasis was disrupted in the plasma of LPD-fed rats. FO supplementation reduces the NO, CHOL, TG, LDL (in females), and VLDL but significantly improves HDL (in females), testosterone, and progesterone levels, sperm count, motility, and morphology. The antioxidant status of both tissues also increased significantly in LPD-fed rats. Conclusively, FO might be effective in improving testicular and ovarian functions and for the maintenance of plasma lipid homeostasis in LPD-fed rats.


Asunto(s)
Desnutrición , Testículo , Ratas , Masculino , Femenino , Animales , Aceites de Pescado/farmacología , Aceites de Pescado/metabolismo , Ratas Sprague-Dawley , Ovario/metabolismo , Caseínas/farmacología , Progesterona/farmacología , Semen/metabolismo , Testosterona , Suplementos Dietéticos
17.
Fish Shellfish Immunol ; 134: 108511, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36599381

RESUMEN

Under oxidative stress condition, the protective effects of dietary chlorogenic acid (CGA) supplementation on liver antioxidant capacity, intestinal inflammation and barrier function, muscle development and skin coloration in channel catfish Ictalurus punctatus were explored in the current study. With that purpose, I. punctatus were fed five experimental diets containing 2% fresh fish oil (FFO, 9.2 meqO2/kg) or 2% oxidized fish oil (OFO, 897.4 meqO2/kg) without or with CGA supplementation (0.02%, 0.04% and 0.08%) for 8 weeks. Upon comparative analysis, the oxidized fish oil consumption significantly lowered weight gain rate, decreased intestinal villi length and muscular thickness values and the tight junction proteins mRNA abundance, augmented the intestinal proinflammatory factors, attenuated hepatic antioxidant enzymes activities and related genes mRNA expression levels, influenced the myogenic regulatory factors expression profile and impacted the myocyte density, myocyte area values as well as the skin pigments contents compared to the FFO treatment. Collectively, long-term feeding of the oxidized fish oil diet suppressed the growth performance, destroyed intestinal structural integrity, caused intestinal inflammation and hepatic oxidative stress, impacted the skeletal development and skin color of I. punctatus. Whereas CGA supplementation in oxidized fish oil diets partially counteracted the negative effects of the oxidized fish oil on I. punctatus in terms of increasing the growth performance, improving the intestinal mucosal structure, alleviating hepatic oxidative stress and intestinal inflammation, recompiling the myogenic regulatory factors expression and improving skin color. In conclusion, CGA has great potential to be an aquatic feed additive.


Asunto(s)
Grasas Insaturadas en la Dieta , Ictaluridae , Animales , Antioxidantes/metabolismo , Suplementos Dietéticos , Ácido Clorogénico , Pigmentación de la Piel , Dieta , Aceites de Pescado/metabolismo , Grasas Insaturadas en la Dieta/metabolismo , Hígado/metabolismo , Desarrollo de Músculos , Inflamación/metabolismo , Alimentación Animal/análisis
18.
Nutrients ; 15(2)2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36678298

RESUMEN

Although fish oil (FO) and lipid mediators (LM) derived from polyunsaturated fatty acids can prevent obesity, their combined effects and cellular metabolism remain unclear. Therefore, this study aimed to examine the potential protective and metabolic effects of FO in combination with LM (a mixture of 17S-monohydroxy docosahexaenoic acid, resolvin D5, and protectin DX [3:47:50], derived from docosahexaenoic acid (DHA)) on palmitic acid (PA)-induced HepG2 cells and high-fat- diet (HFD)-induced C57BL/6J mice after 9-week treatment. Lipid metabolism disorders and inflammation induced by HFD and PA were substantially reduced after FO and LM treatment. Further, FO and LM treatments reduced lipid accumulation by increasing fatty acid oxidation via peroxisome proliferator-activated receptor α and carnitine-palmitoyl transferase 1 as well as by decreasing fatty acid synthesis via sterol regulatory element-binding protein-1c and fatty acid synthase. Finally, FO and LM treatment reduced inflammation by blocking the NF-κB signaling pathway. Importantly, the combination of FO and LM exhibited more robust efficacy against nonalcoholic fatty liver disease, suggesting that FO supplemented with LM is a beneficial dietary strategy for treating this disease.


Asunto(s)
Aceites de Pescado , Metabolismo de los Lípidos , Animales , Humanos , Ratones , Dieta Alta en Grasa , Ácidos Docosahexaenoicos/farmacología , Ácidos Docosahexaenoicos/metabolismo , Aceites de Pescado/farmacología , Aceites de Pescado/metabolismo , Células Hep G2 , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Hígado/metabolismo , Ratones Endogámicos C57BL
19.
J Dairy Sci ; 106(1): 245-256, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36400611

RESUMEN

Small ruminants are susceptible to milk fat depression (MFD) induced by marine lipid supplementation. However, as observed in dairy cows, there is wide individual variation in the response to MFD-inducing diets, which may be due to individual differences in ruminal processes. Therefore, we compared the ruminal responses of goats and sheep with varying degrees of MFD extent to improve our understanding of this complex syndrome. Our specific aims were to attempt to elucidate whether pre-existing variations in ruminal fermentation and biohydrogenation determine a higher tolerance or susceptibility to MFD, and whether the severity of MFD depends exclusively on the response to the diet. The trial was conducted with 25 does and 23 ewes fed a basal diet without lipid supplementation for 3 wk (control period). Then, 2% fish oil (FO) was added to the same diet for 5 additional weeks (MFD period). Based on the extent of the elicited MFD (i.e., the percentage variation between milk fat concentrations recorded at the end of the control and MFD periods), the 5 most responsive (RESPON+) and the 5 least responsive (RESPON-) animals were selected within each species. On the last day of each period, ruminal fluid samples were collected to examine fermentation parameters and fatty acid profiles. In general, the individual degree of MFD in sheep and goats did not seem to be predetermined by traits related to ruminal fermentation and biohydrogenation, including fatty acids that may serve as biomarkers of microorganisms. Regarding differences in the response to FO, the results suggest no link between MFD susceptibility and concentration of biohydrogenation intermediates such as trans-10-containing C18, C20, and C22 metabolites. The explanation for individual responses based on a shortage of ruminal acetate and 18:0 for mammary uptake also seems to be dismissed, based on the lack of variation in these compounds between RESPON+ and RESPON-. However, the concentration of unsaturated fatty acids provided by FO (e.g., cis-9 16:1, cis-11 18:1, and 20:5n-3) was higher in the rumen of RESPON+ than RESPON- ewes and does. Thus, although further research is needed, the extent of biohydrogenation of these fatty acids might be associated with tolerance or susceptibility to MFD.


Asunto(s)
Cabras , Rumen , Bovinos , Ovinos , Femenino , Animales , Cabras/metabolismo , Fermentación , Rumen/metabolismo , Leche/metabolismo , Depresión , Suplementos Dietéticos , Aceites de Pescado/metabolismo , Ácidos Grasos/metabolismo , Dieta/veterinaria
20.
Food Chem ; 406: 135044, 2023 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-36455314

RESUMEN

The health-beneficial long-chain omega-3 polyunsaturated fatty acids (n-3 LC-PUFA) are easily affected by the undesired process of lipid oxidation in fish oil, while being stable in the lipid extracts of photoautotrophic microalgae. The current research investigates the role of carotenoids by evaluating the oxidative stability of mixtures of fish oil with total lipid extracts of two different microalgae (Phaeodactylum and Isochrysis) throughout an accelerated storage experiment of 4 weeks at 37 °C. A clear separation between oxidatively stable and oxidatively unstable mixtures was observed for which the initial amount of carotenoids relative to the amount of n-3LC-PUFA was a good indicator. The lipid class composition, clearly differing between the two algae, was probably of minor influence. The antioxidative role of fucoxanthin, and diatoxanthin and ß-carotene as minor carotenoids, was illustrated by their gradual degradation throughout storage. However, when their initial contents were too low, this role could not be exerted leading to thorough lipid oxidation.


Asunto(s)
Ácidos Grasos Omega-3 , Microalgas , Microalgas/metabolismo , Antioxidantes/metabolismo , Carotenoides/metabolismo , Ácidos Grasos Omega-3/metabolismo , Aceites de Pescado/metabolismo , Ácidos Docosahexaenoicos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA