Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 514
Filtrar
1.
J Toxicol Environ Health A ; 87(18): 719-729, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-38884257

RESUMEN

Corn is the second most cultivated crop in Brazil, the number-one country in pesticide consumption. Chemical control of weeds is performed using herbicides such as S-metolachlor with pre- and post-emergence action and thus the toxicity of herbicides constitutes a matter of great concern. The present investigation aimed to examine the effects of an S-metolachlor-based herbicide on Lactuca sativa L. (lettuce) and Zea mays L. (maize) utilizing various bioassays. The test solutions were prepared from commercial products containing the active ingredient. Seeds from the plant models were exposed in petri dishes and maintained under biochemical oxygen demand (BOD) at 24°C. Distilled water was negative and aluminium positive control. Macroscopic analyses (germination and growth) were conducted for both plant species, and microscopic analysis (cell cycle and chromosomal alterations) were performed for L. sativa root tip cells. Detrimental interference of S-metolachlor-based herbicide was noted with lettuce for all parameters tested reducing plant germination by over 50% and the germination speed by over 45% and showing a significant decrease in mitotic index, from 16.25% to 9,28% even on the lowest concentration tested. In maize, there was no significant interference in plant germination; however, speed of germination was significantly hampered, reaching a 51.22% reduction for the highest concentration tested. Data demonstrated that the herbicide was toxic as evidenced by its phyto- and cytotoxicity in L. sativa L. and Z. mays L.


Asunto(s)
Acetamidas , Herbicidas , Lactuca , Zea mays , Zea mays/efectos de los fármacos , Herbicidas/toxicidad , Lactuca/efectos de los fármacos , Lactuca/crecimiento & desarrollo , Acetamidas/toxicidad , Germinación/efectos de los fármacos , Semillas/efectos de los fármacos , Semillas/crecimiento & desarrollo
2.
Pestic Biochem Physiol ; 202: 105930, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38879323

RESUMEN

Due to the widespread use of metolachlor (MET), the accumulation of MET and its metabolites in the environment has brought serious health problems to aquatic organisms. At present, the toxicity of MET on the physiological metabolism of aquatic animals mainly focused on the role of enzymes. There is still a lack of research on the molecular mechanisms of MET hepatotoxicity, especially on antagonizing MET toxicity. Therefore, this study focuses on grass carp hepatocytes (L8824 cells) closely related to toxin accumulation. By establishing a MET exposed L8824 cells model, it is determined that MET exposure induces pyrolytic inflammation of L8824 cells. Subsequent mechanistic studies found that MET exposure induces pyroptosis in L8824 cells through mitochondrial dysfunction, and siCaspase-1 inhibits the MET induced ROS production, suggesting a regulation of ROS-NLRP3- Caspase-1 pyroptotic inflammation cycling center in MET induced injury to L8824 cells. Molecular docking revealed a strong binding energy between melatonin (MT) and Caspase-1. Finally, a model of L8824 cells with MT intervention in MET exposure was established. MT can antagonize the pyroptosis induced by MET exposure in L8824 cells by targeting Caspase-1, thereby restoring mitochondrial function and inhibiting the ROS-pyroptosis cycle. This study discovered targets and mechanisms of MT regulating pyroptosis in MET exposed-L8824 cells, and the results are helpful to provide new targets for the design of MET antidotes.


Asunto(s)
Acetamidas , Carpas , Hepatocitos , Melatonina , Simulación del Acoplamiento Molecular , Animales , Carpas/metabolismo , Melatonina/farmacología , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Acetamidas/toxicidad , Acetamidas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Línea Celular , Piroptosis/efectos de los fármacos , Caspasa 1/metabolismo , Herbicidas/toxicidad , Simulación por Computador , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo
3.
Water Res ; 259: 121844, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824795

RESUMEN

Trace iron ions (Fe(III)) are commonly found in water and wastewater, where free chlorine is very likely to coexist with Fe(III) affecting the disinfectant's stability and N-DBPs' fate during UV/chlorine disinfection, and yet current understanding of these mechanisms is limited. This study investigates the effects of Fe(III) on the formation and toxicity alteration of halonitromethanes (HNMs), dichloroacetonitrile (DCAN), and dichloroacetamide (DCAcAm) from polyethyleneimine (PEI) during UV/chlorine disinfection. Results reveal that the maxima concentrations of HNMs, DCAN, and DCAcAm during UV/chlorine disinfection with additional Fe(III) were 1.39, 1.38, and 1.29 times higher than those without additional Fe(III), instead of being similar to those of Fe(III) inhibited the formation of HNMs, DCAN and DCAcAm during chlorination disinfection. Meanwhile, higher Fe(III) concentration, acidic pH, and higher chlorine dose were more favorable for forming HNMs, DCAN, and DCAcAm during UV/chlorine disinfection, which were highly dependent on the involvement of HO· and Cl·. Fe(III) in the aquatic environment partially hydrolyzed to the photoactive Fe(III)­hydroxyl complexes Fe(OH)2+ and [Fe(H2O)6]3+, which undergone UV photoactivation and coupling reactions with HOCl to achieve effective Fe(III)/Fe(II) interconversion, a process that facilitated the sustainable production of HO·. Extensive product analysis and comparison verified that the HO· production enhanced by the Fe(III)/Fe(II) internal cycle played a primary role in increasing HNMs, DCAN, and DCAcAm productions during UV/chlorine disinfection. Note that the incorporation of Fe(III) increased the cytotoxicity and genotoxicity of HNMs, DCAN, and DCAcAm formed during UV/chlorine disinfection, and yet Fe(III) did not have a significant effect on the acute toxicity of water samples before, during, and after UV/chlorine disinfection. The new findings broaden the knowledge of Fe(III) affecting HNMs, DCAN, and DCAcAm formation and toxicity alteration during UV/chlorine disinfection.


Asunto(s)
Desinfección , Desinfección/métodos , Rayos Ultravioleta , Cloro/química , Polietileneimina/química , Acetonitrilos/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/toxicidad , Hierro/química , Purificación del Agua/métodos , Acetamidas/química , Acetamidas/toxicidad , Desinfectantes/química
4.
Regul Toxicol Pharmacol ; 150: 105641, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38723937

RESUMEN

In dietary risk assessment of plant protection products, residues of active ingredients and their metabolites need to be evaluated for their genotoxic potential. The European Food Safety Authority recommend a tiered approach focussing assessment and testing on classes of similar chemicals. To characterise similarity, in terms of metabolism, a metabolic similarity profiling scheme has been developed from an analysis of 69 α-chloroacetamide herbicides for which either Ames, chromosomal aberration or micronucleus test results are publicly available. A set of structural space alerts were defined, each linked to a key metabolic transformation present in the α-chloroacetamide metabolic space. The structural space alerts were combined with covalent chemistry profiling to develop categories suitable for chemical prioritisation via read-across. The method is a robust and reproducible approach to such read-across predictions, with the potential to reduce unnecessary testing. The key challenge in the approach was identified as being the need for metabolism data individual groups of plant protection products as the basis for the development of the structural space alerts.


Asunto(s)
Acetamidas , Herbicidas , Pruebas de Mutagenicidad , Acetamidas/toxicidad , Acetamidas/química , Medición de Riesgo , Herbicidas/toxicidad , Herbicidas/química , Residuos de Plaguicidas/toxicidad , Humanos , Mutágenos/toxicidad , Mutágenos/química , Animales
5.
Water Res ; 256: 121562, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38604064

RESUMEN

Halophenylacetamides (HPAcAms) have been identified as a new group of nitrogenous aromatic disinfection byproducts (DBPs) in drinking water, but the toxicity mechanisms associated with HPAcAms remain almost completely unknown. In this work, the cytotoxicity of HPAcAms in human hepatoma (HepG2) cells was evaluated, intracellular oxidative stress/damage levels were analyzed, their binding interactions with antioxidative enzyme were explored, and a quantitative structure-activity relationship (QSAR) model was established. Results indicated that the EC50 values of HPAcAms ranged from 2353 µM to 9780 µM, and the isomeric structure as well as the type and number of halogen substitutions could obviously induce the change in the cytotoxicity of HPAcAms. Upon exposure to 2-(3,4-dichlorophenyl)acetamide (3,4-DCPAcAm), various important biomarkers linked to oxidative stress and damage, such as reactive oxygen species, 8­hydroxy-2-deoxyguanosine, and cell apoptosis, exhibited a significant increase in a dose-dependent manner. Moreover, 3,4-DCPAcAm could directly bind with Cu/Zn-superoxide dismutase and induce the alterations in the structure and activity, and the formation of complexes was predominantly influenced by the van der Waals force and hydrogen bonding. The QSAR model supported that the nucleophilic reactivity as well as the molecular compactness might be highly important in their cytotoxicity mechanisms in HepG2 cells, and 2-(2,4-dibromophenyl)acetamide and 2-(3,4-dibromophenyl)acetamide deserved particular attention in future studies due to the relatively higher predicted cytotoxicity. This study provided the first comprehensive investigation on the cytotoxicity mechanisms of HPAcAm DBPs.


Asunto(s)
Desinfección , Agua Potable , Agua Potable/química , Humanos , Células Hep G2 , Relación Estructura-Actividad Cuantitativa , Acetamidas/toxicidad , Acetamidas/química , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/química , Estrés Oxidativo/efectos de los fármacos , Desinfectantes/toxicidad , Desinfectantes/química , Especies Reactivas de Oxígeno/metabolismo
6.
J Hazard Mater ; 471: 134270, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38640676

RESUMEN

Alachlor, a widely used chloroacetanilide herbicide for controlling annual grasses in crops, has been reported to rapidly trigger protein denaturation and aggregation in the eukaryotic model organism Saccharomyces cerevisiae. Therefore, this study aimed to uncover cellular mechanisms involved in preventing alachlor-induced proteotoxicity. The findings reveal that the ubiquitin-proteasome system (UPS) plays a crucial role in eliminating alachlor-denatured proteins by tagging them with polyubiquitin for subsequent proteasomal degradation. Exposure to alachlor rapidly induced an inhibition of proteasome activity by 90 % within 30 min. The molecular docking analysis suggests that this inhibition likely results from the binding of alachlor to ß subunits within the catalytic core of the proteasome. Notably, our data suggest that nascent proteins in the endoplasmic reticulum (ER) are the primary targets of alachlor. Consequently, the unfolded protein response (UPR), responsible for coping with aberrant proteins in the ER, becomes activated within 1 h of alachlor treatment, leading to the splicing of HAC1 mRNA into the active transcription activator Hac1p and the upregulation of UPR gene expression. These findings underscore the critical roles of the protein quality control systems UPS and UPR in mitigating alachlor-induced proteotoxicity by degrading alachlor-denatured proteins and enhancing the protein folding capacity of the ER.


Asunto(s)
Acetamidas , Retículo Endoplásmico , Herbicidas , Complejo de la Endopetidasa Proteasomal , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Respuesta de Proteína Desplegada , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Acetamidas/farmacología , Acetamidas/toxicidad , Herbicidas/toxicidad , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Respuesta de Proteína Desplegada/efectos de los fármacos , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/efectos de los fármacos , Citosol/metabolismo , Citosol/efectos de los fármacos , Simulación del Acoplamiento Molecular , Estrés Proteotóxico
7.
Environ Microbiol ; 25(12): 2972-2987, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37994199

RESUMEN

Herbicides are important, ubiquitous environmental contaminants, but little is known about their interaction with bacterial aquatic communities. Here, we sampled a protected natural freshwater habitat and characterised its microbiome in interaction with herbicides. We evolved the freshwater microbiomes in a microcosm assay of exposure (28 days) to flufenacet and metazachlor at environmental concentrations of 0.5, 5 and 50 µg L-1 . Inhibitory effects of herbicides were exemplarily assessed in cultured bacteria from the same pond (Pseudomonas alcaligenes, Paenibacillus amylolyticus and Microbacterium hominis). Findings were compared to long-term concentrations as provided by local authorities. Here, environmental concentrations reached up to 11 µg L-1 (flufenacet) and 76 µg L-1 (metazachlor). Bacteria were inhibited at minimum inhibitory concentrations far above these values; however, concentrations of 50 µg L-1 of flufenacet resulted in measurable growth impairment. While most herbicide-exposed microcosm assays did not differ from controls, Acidobacteria were selected at high environmental concentrations of herbicides. Alpha-diversity (e.g., taxonomic richness on phylum level) was reduced when aquatic microbiomes were exposed to 50 µg metazachlor or flufenacet. One environmental strain of P. alcaligenes showed resistance to high concentrations of flufenacet (50 g L-1 ). In total, this study reveals that ecologic imbalance due to herbicide use significantly impacts aquatic microbiomes.


Asunto(s)
Herbicidas , Herbicidas/farmacología , Herbicidas/análisis , Acetamidas/toxicidad , Ecosistema
8.
Environ Pollut ; 331(Pt 1): 121878, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37236591

RESUMEN

The lack of data on the chronic effects of chloroacetanilide herbicide metabolites on non-target aquatic organisms creates a gap in knowledge about the comprehensive impacts of excessive and repeated pesticide use. Therefore, this study evaluates the long-term effects of propachlor ethanolic sulfonic acid (PROP-ESA) after 10 (T1) and 20 (T2) days at the environmental level of 3.5 µg.L-1 (E1) and its 10x fold multiply 35 µg.L-1 (E2) on a model organism Mytilus galloprovincialis. To this end, the effects of PROP-ESA usually showed a time- and dose-dependent trend, especially in its amount in soft mussel tissue. The bioconcentration factor increased from T1 to T2 in both exposure groups - from 2.12 to 5.30 in E1 and 2.32 to 5.48 in E2. Biochemical haemolymph profile and haemocyte viability were not affected by PROP-ESA exposure. In addition, the viability of digestive gland (DG) cells decreased only in E2 compared to control and E1 after T1. Moreover, malondialdehyde levels increased in E2 after T1 in gills, and DG, superoxidase dismutase activity and oxidatively modified proteins were not affected by PROP-ESA. Histopathological observation showed several damages to gills (e.g., increased vacuolation, over-production of mucus, loss of cilia) and DG (e.g., growing haemocyte trend infiltrations, alterations of tubules). This study revealed a potential risk of chloroacetanilide herbicide, propachlor, via its primary metabolite in the Bivalve bioindicator species M. galloprovincialis. Furthermore, considering the possibility of the biomagnification effect, the most prominent threat poses the ability of PROP-ESA to be accumulated in edible mussel tissues. Therefore, future research about the toxicity of pesticide metabolites alone or their mixtures is needed to gain comprehensive results about their impacts on living non-target organisms.


Asunto(s)
Herbicidas , Mytilus , Contaminantes Químicos del Agua , Animales , Mytilus/metabolismo , Herbicidas/metabolismo , Acetamidas/toxicidad , Acetamidas/metabolismo , Branquias/metabolismo , Contaminantes Químicos del Agua/metabolismo
9.
Environ Toxicol Pharmacol ; 96: 104008, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36341964

RESUMEN

The metabolism and toxicity of current-use herbicide safeners remain understudied. We investigated the enantioselective metabolism of the safener benoxacor in Rhesus monkey subcellular fractions. Benoxacor was incubated with liver microsomes and cytosol from female and male monkeys (≤30 min). Benoxacor levels and enantiomeric fractions were determined with gas chromatography. Benoxacor was metabolized by microsomal cytochrome P450 enzymes (CYPs), cytosolic glutathione-S-transferases (GSTs), and microsomal and cytosolic carboxylesterase (CESs). CES-mediated microsomal metabolism followed the order males > females, whereas the CYP-mediated clearance followed the order females > males. CYP-mediated metabolism initially resulted in an enrichment of the second eluting benoxacor enantiomer (E2-benoxacor), whereas the first eluting benoxacor enantiomer (E1-benoxacor) was enriched after 10 or 30 min in female or male microsomal incubations. Benoxacor metabolism by GSTs was enantiospecific, with a total depletion of E1-benoxacor after approximately 20 min. Thus, the enantioselective metabolism of benoxacor by GSTs and CYPs may affect its toxicity.


Asunto(s)
Acetamidas , Microsomas Hepáticos , Masculino , Femenino , Animales , Microsomas Hepáticos/metabolismo , Citosol/metabolismo , Acetamidas/toxicidad , Acetamidas/química , Acetamidas/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Microsomas/metabolismo
10.
Ecotoxicol Environ Saf ; 233: 113334, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35203007

RESUMEN

Bromoacetamide (BAcAm) is a nitrogenous disinfection by-product. We previously found that BAcAm induced developmental toxicity in zebrafish embryos, but the underlying mechanisms remain to be elucidated. Since thyroid hormones (THs) homeostasis is crucial to development, we hypothesized that disruption of THs homeostasis may play a role in the developmental toxicity of BAcAm. In this study, we found BAcAm exposure significantly increased mortality and malformation rate, decreased hatching rate and body length, inhibited the locomotor capacity in zebrafish embryos. BAcAm elevated TSH, T3 and T4 levels, down-regulated T3/T4 ratios, and up-regulated mRNA expression changes of THs related genes (trh, tsh, tg, nis, tpo, dio1, dio2, ugt1ab,klf9 and rho), but down-regulated mRNA expression changes of TH receptors (tr α and tr ß). Up-regulated tr α and tr ß mRNAs by rescue treatment confirmed that both tr α and tr ß were involved in the developmental toxicity of BAcAm. In conclusion, our study indicates disruption of THs homeostasis via the thyroid hormone receptors was responsible for the developmental toxicity of BAcAm.


Asunto(s)
Acetamidas/toxicidad , Receptores de Hormona Tiroidea , Glándula Tiroides/efectos de los fármacos , Pez Cebra , Animales , Embrión no Mamífero/efectos de los fármacos , Homeostasis , Receptores de Hormona Tiroidea/genética , Receptores de Hormona Tiroidea/metabolismo , Glándula Tiroides/metabolismo , Hormonas Tiroideas/metabolismo , Pez Cebra/embriología , Pez Cebra/genética
11.
Environ Res ; 209: 112859, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35114144

RESUMEN

Chloroacetamide herbicides (CAAHs) are important herbicides that were widely used to control agricultural weeds. However, their mass applications have seriously contaminated environment, and they are toxic to living beings. CAAHs are easy to enter anoxic environments such as subsoil, wetland sediment, and groundwater, where CAAHs are mainly degraded by anaerobic organisms. To date, there are no research on the anaerobic degradation of CAAHs by pure isolate and toxicity of anaerobic metabolites of CAAHs. In this study, the anaerobic degradation kinetics and metabolites of CAAHs by an anaerobic isolate BAD-10T and the toxicity of anaerobic metabolites were studied. Isolate BAD-10T could degrade alachlor, acetochlor, propisochlor, butachlor, pretilachlor and metolachlor with the degradation kinetics fitting the pseudo-first-order kinetics equation. The degradation rates of CAAHs were significantly affected by the length of N-alkoxyalkyl groups, the shorter the N-alkoxyalkyl groups, the higher the degradation rates. Four metabolites 2-ethyl-6-methyl-N-(ethoxymethyl)-acetanilide (EMEMA), N-(2-methyl-6-ethylphenyl)-acetamide (MEPA), N-2-ethylphenyl acetamide and 2-ethyl-N-carboxyl aniline were identified during acetochlor degradation, and an anaerobic catabolic pathway of acetochlor was proposed. The toxicity of EMEMA and EMPA for zebrafish, Arabidopsis and Chlorella ellipsoidea were obviously lower than that of acetochlor, indicating that the anaerobic degradation of acetochlor by isolate BAD-10T is a detoxification process. The work reveals the anaerobic degradation kinetics and catabolic pathway of CAAHs and highlights a potential application of Proteiniclasticum sediminis BAD-10T for bioremediation of CAAHs residue-contaminated environment.


Asunto(s)
Chlorella , Herbicidas , Acetamidas/metabolismo , Acetamidas/toxicidad , Anaerobiosis , Animales , Biodegradación Ambiental , Chlorella/metabolismo , Herbicidas/toxicidad , Pez Cebra/metabolismo
12.
Sci Total Environ ; 821: 152961, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35031379

RESUMEN

Arsenic (As) and disinfection by-products are important health risk factors in the water environment. However, their combined effects on different cell populations in the liver are not well known. Here, zebrafish were exposed to 100 µg/L As, 300 µg/L 2,2-dichloroacetamide (DCAcAm), and their combination for 23 days. Then transcriptome profiles of cell populations in zebrafish liver were analyzed by single-cell RNA sequencing (scRNA-seq). A total of 13,563 cells were obtained, which were identified as hepatocytes, hepatic duct cells, endothelial cells and macrophages. Hepatocytes were the main target cell subtype of As and DCAcAm exposures. DCAcAm exposure induced higher toxicity in male hepatocytes, which specifically changed amino acid metabolism, response to hormone and cofactor metabolism. However, As exposure caused higher toxicity in female hepatocytes, which altered lipid metabolism, carbon metabolism, and peroxisome. Combined exposure to As and DCAcAm decreased toxicities in hepatocytes compared to each one alone. Female hepatocytes had higher tolerance to co-exposure of As and DCAcAm than male hepatocytes. Further, combined exposure to As and DCAcAm induced functional changes in macrophages similar to As alone groups, which mainly altered the transfer of sterol and cholesterol. Hepatic duct cells and endothelial cells were not influenced by exposures to As and DCAcAm. This study for the first time highlights the cell-specific combined responses of As and DCAcAm in zebrafish liver, which provide useful information for their health risk assessment in a co-exposure environment.


Asunto(s)
Acetamidas/toxicidad , Arsénico , Contaminantes Químicos del Agua/toxicidad , Animales , Arsénico/toxicidad , Células Endoteliales , Femenino , Hígado , Masculino , Pez Cebra
13.
Arch Toxicol ; 95(8): 2851-2865, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34160648

RESUMEN

Chromosome aberrations (CAs), i.e. changes in chromosome number or structure, are known to cause chromosome rearrangements and subsequently tumorigenesis. However, the involvement of CAs in chemical-induced carcinogenesis is unclear. In the current study, we aimed to clarify the possible involvement of CAs in chemical carcinogenesis using a rat model with the non-mutagenic hepatocarcinogen acetamide. In an in vivo micronucleus (MN) test, acetamide was revealed to induce CAs specifically in rat liver at carcinogenic doses. Acetamide also induced centromere-positive large MN (LMN) in hepatocytes. Immunohistochemical and electron microscopic analyses of the LMN, which can be histopathologically detected as basophilic cytoplasmic inclusion, revealed abnormal expression of nuclear envelope proteins, increased heterochromatinization, and massive DNA damage. These molecular pathological features in LMN progressed with acetamide exposure in a time-dependent manner, implying that LMN formation can lead to chromosome rearrangements. Overall, these data suggested that CAs induced by acetamide play a pivotal role in acetamide-induced hepatocarcinogenesis in rats and that CAs can cause chemical carcinogenesis in animals via MN formation.


Asunto(s)
Acetamidas/toxicidad , Aberraciones Cromosómicas/inducido químicamente , Hepatocitos/efectos de los fármacos , Neoplasias Hepáticas/inducido químicamente , Acetamidas/administración & dosificación , Animales , Carcinogénesis/inducido químicamente , Carcinógenos/administración & dosificación , Carcinógenos/toxicidad , Hepatocitos/patología , Neoplasias Hepáticas/patología , Masculino , Pruebas de Micronúcleos , Ratas , Ratas Endogámicas F344 , Factores de Tiempo
14.
Sci Rep ; 11(1): 12786, 2021 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-34140550

RESUMEN

Soil microorganisms and their activities are essential for maintaining soil health and fertility. Microorganisms can be negatively affected by application of herbicides. Although effects of herbicides on microorganisms are widely studied, there is a lack of information for chloroacetamide herbicide dimethachlor. Thus, dimethachlor and well known linuron were applied to silty-loam luvisol and their effects on microorganisms were evaluated during112 days long laboratory assay. Dimethachlor and linuron were applied in doses 1.0 kg ha-1 and 0.8 kg ha-1 corresponding to 3.33 mg kg-1 and 2.66 mg kg-1 respectively. Also 100-fold doses were used for magnification of impacts. Linuron in 100-fold dose caused minor increase of respiration, temporal increase of soil microbial biomass, decrease of soil dehydrogenase activity, and altered microbial community. Dimethachlor in 100-fold dose significantly increased respiration; microbial biomass and decreased soil enzymatic activities. Microbial composition changed significantly, Proteobacteria abundance, particularly Pseudomonas and Achromobacter genera increased from 7 to 28th day. In-silico prediction of microbial gene expression by PICRUSt2 software revealed increased expression of genes related to xenobiotic degradation pathways. Evaluated characteristics of microbial community and activity were not affected by herbicides in recommended doses and the responsible use of both herbicides will not harm soil microbial community.


Asunto(s)
Acetamidas/toxicidad , Linurona/toxicidad , Microbiota/efectos de los fármacos , Microbiología del Suelo , Aerobiosis/efectos de los fármacos , Biomasa , Dióxido de Carbono/metabolismo , Herbicidas/toxicidad , Redes y Vías Metabólicas/efectos de los fármacos , Filogenia
15.
Int J Mol Med ; 47(6)2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33907828

RESUMEN

The toxicity of chloroacetamide herbicide in embryo development remains unclear. Acetochlor (AC) is a chloroacetamide that metabolizes into 2­ethyl­6­methyl-2-chloroacetanilide (CMEPA) and 6­ethyl­o­toluidine (MEA). The present study determined the potential effect of AC and its metabolites on embryo development. Both HepG2 cells and zebrafish embryos were exposed to AC, CMEPA and MEA in the presence or absence of co­treatment with anti­reactive oxygen species (ROS) reagent N­acetylcysteine. The generation of ROS, levels of superoxide dismutase (SOD) and glutathione (GSH) in HepG2 cells and lactate dehydrogenase (LDH) leakage from HepG2 cells were investigated. The effects of AC, CMEPA and MEA on DNA breakage, MAPK/ERK pathway activity, viability and apoptosis of HepG2 cells were examined by comet assay, western blotting, MTT assay and flow cytometry, respectively. Levels of LDH, SOD and GSH in zebrafish embryos exposed to AC, CMEPA and MEA were measured. The hatching and survival rates of zebrafish embryos exposed to AC, CMEPA and MEA, were determined, and apoptosis of hatched fish was investigated using acridine orange staining. The present data showed AC, CMEPA and MEA induced generation of ROS and decreased levels of SOD and GSH in HepG2 cells, which in turn promoted DNA breakage and LDH leakage from cells, ultimately inhibiting cell viability and inducing apoptosis, as well as phosphorylation of JNK and P38. However, co­treatment with N­acetylcysteine alleviated the pro­apoptosis effect of AC and its metabolites. Moreover, exposure to AC, CMEPA and MEA lead to toxicity of zebrafish embryos with decreased SOD and GSH and increased LDH levels and cell apoptosis, ultimately decreasing the hatching and survival rates of zebrafish, all of which was attenuated by treatment with N­acetylcysteine. Therefore, AC and its metabolites (CMEPA and MEA) showed cytotoxicity and embryo development toxicity.


Asunto(s)
Acetamidas/metabolismo , Acetamidas/toxicidad , Herbicidas/metabolismo , Herbicidas/toxicidad , Metaboloma , Pruebas de Mutagenicidad , Acetanilidas/toxicidad , Animales , Apoptosis/efectos de los fármacos , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/metabolismo , Glutatión/metabolismo , Células Hep G2 , Humanos , L-Lactato Deshidrogenasa/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo , Análisis de Supervivencia , Toluidinas/toxicidad , Pez Cebra/embriología
16.
Chemosphere ; 274: 129711, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33524867

RESUMEN

Metazachlor belongs to one of the most used herbicides throughout the world. In order to prevent the contamination of water bodies by such herbicides, the riparian buffers are constructed. The selection of appropriate plant species for this purpose is necessary. In our project, we studied the possibility of grey poplar to uptake and biotransform metazachlor, along with the phytotoxic effect of metazachlor and its metabolites. We used two different models - suspension cultures and poplar regenerants cultivated in vitro. Our results show that the herbicide metazachlor is readily metabolized by both suspension cultures and regenerants to 16 detectable metabolites. The detailed scheme of biotransformation pathway in poplar tissue is presented for the first time. The profile of detected metabolites was approximately the same in poplar cell cultures and regenerants, but the ratio and amounts of particular compounds was significantly different. Generally, the highest concentration (peak area/mg of DW) of all metabolites was present in the roots; the only exception was lactate conjugate (deCl-MZCl-Lact), which accumulated in the cultivation media. Although the plants were not visibly affected by metazachlor or its metabolites, they showed changes in activity of antioxidant enzymes and increased content of phenolic substances, the indicators of stress.


Asunto(s)
Herbicidas , Populus , Acetamidas/toxicidad , Herbicidas/toxicidad
17.
Ecotoxicol Environ Saf ; 211: 111928, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33476845

RESUMEN

The chloroacetanilides are among the most commonly used herbicides worldwide, which contaminate aquatic environments and affect aquatic phototrophs. Their sub-lethal toxicity has been evaluated using freshwater algae; however, the modes of cellular toxicity and levels of toxicity to marine organisms are not fully understood. In the present study, we assessed the cellular and molecular effects of chloroacetanilides on marine phototrophs using the dinoflagellate Prorocentrum minimum and the herbicide metazachlor (MZC). The MZC treatment led to a considerable reduction in cell number and pigment, and the EC50 of MZC was calculated to be 0.647 mg/L. The photosynthetic parameters, Fv/Fm and chlorophyll fluorescence significantly decreased with MZC exposure time in a dose-dependent manner. In addition, MZC significantly induced photosynthesis genes, including PmpsbA, PmpsaA, and PmatpB, and the antioxidant PmGST, but not PmKatG. These findings were well matched to reactive oxygen species (ROS) production in MZC-treated cells. Interestingly, we observed inflated vacuoles, undivided chloroplasts, and breakdown of thylakoid membranes in MZC-treated cells. These results support the hypothesis that MZC severely damages chloroplasts, resulting in dysfunction of the dinoflagellate photosynthesis and possibly marine phototrophs in the environment.


Asunto(s)
Acetamidas/toxicidad , Dinoflagelados/fisiología , Herbicidas/toxicidad , Fotosíntesis/efectos de los fármacos , Organismos Acuáticos/metabolismo , Clorofila/metabolismo , Cloroplastos/metabolismo , Dinoflagelados/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Tilacoides/metabolismo
18.
Ecotoxicol Environ Saf ; 208: 111641, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33396161

RESUMEN

Metolachlor herbicides are derived from the chloroacetamide chemical family of which there are the S- and R-metolachlor isomers. S-metolachlor is a selective herbicide that inhibits cell division and mitosis via enzyme interference. The herbicide is used globally in agriculture and studies report adverse effects in aquatic organisms; however, there are no studies investigating sub-lethal effects of S-metolachlor on swim bladder formation, mitochondrial ATP production, nor light-dark preference behaviors in fish. These endpoints are relevant for larval locomotor activity and metabolism. To address these knowledge gaps, we exposed zebrafish embryos/larvae to various concentrations of S-metolachlor (0.5-50 µM) over early development. S-metolachlor affected survival, hatching percentage, and increased developmental deformities at concentrations of 50 µM and above. Exposure levels as high as 200 µM for 24 and 48 h did not alter oxygen consumption rates in zebrafish, and there were no changes detected in endpoints related to mitochondrial oxidative phosphorylation. We observed impairment of swim bladder inflation at 50 µM in 6 dpf larvae. To elucidate mechanisms related to this, we measured relative transcript abundance for genes associated with the swim bladder (smooth muscle alpha (α)-2 actin, annexin A5, pre-B-cell leukemia homeobox 1a). Smooth muscle alpha (α)-2 actin mRNA levels were reduced in fish exposed to 50 µM while annexin A5 mRNA levels were increased in abundance, corresponding to reduced swim bladder size in larvae. A visual motor response test revealed that larval zebrafish exhibited some hyperactivity in the light with exposure to the herbicide and only the highest dose tested (50 µM) resulted in hypoactivity in the dark cycle. Regression analysis indicated that there was a positive relationship between surface area of the swim bladder and distance traveled, and the size of the swim bladder explained ~10-14% in the variation for total distance moved. Lastly, we tested larvae in a light dark preference test, and we did not detect any altered behavioral response to any concentration tested. Here we present new data on sublethal endpoints associated with exposure to the herbicide S-metolachlor and demonstrate that this chemical may disrupt transcripts associated with swim bladder formation and morphology, which could ultimately affect larval zebrafish activity. These data are expected to contribute to further risk assessment guidelines for S-metolachlor in aquatic ecosystems.


Asunto(s)
Acetamidas/toxicidad , Sacos Aéreos/efectos de los fármacos , Herbicidas/toxicidad , Locomoción/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Sacos Aéreos/crecimiento & desarrollo , Sacos Aéreos/metabolismo , Animales , Embrión no Mamífero/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Locomoción/genética , Pez Cebra/fisiología , Proteínas de Pez Cebra/genética
19.
Biomed Pharmacother ; 134: 111134, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33341672

RESUMEN

Dasatinib is a targeted cancer therapy, while programmed death ligand 1 (PD-L1) inhibitors are a form of immune checkpoint therapy used to treat various types of cancers. Several studies showed the potential efficacy of these drugs in the management of triple-negative breast cancer- an aggressive subtype of breast cancer, which can develop during pregnancy. Nevertheless, side effects of Dasatinib (DA) and PD-L1 drugs during pregnancy, especially in the early stages of embryogenesis are not explored yet. The aim of this study is to assess the individual and combined toxicity of DA and PD-L1 inhibitors during the early stages of embryogenesis and to evaluate their effect(s) on angiogenesis using the chorioallantoic membrane (CAM) model of the embryo. Our results show that embryos die at greater rates after exposure to DA and PD-L1 inhibitors as compared to their matched controls. Moreover, treatment with these drugs significantly inhibits angiogenesis of the CAM. To further elucidate key regulator genes of embryotoxicity induced by the actions of PD-L1 and DA, an RT-PCR analysis was performed for seven target genes that regulate cell proliferation, angiogenesis, and survival (ATF3, FOXA2, MAPRE2, RIPK1, INHBA, SERPINA4, and VEGFC). Our data revealed that these genes are significantly deregulated in the brain, heart, and liver tissues of exposed embryos, compared to matched control tissues. Nevertheless, further studies are necessary to evaluate the effects of these anti breast cancer drugs and elucidate their role during pregnancy.


Asunto(s)
Acetamidas/toxicidad , Inhibidores de la Angiogénesis/toxicidad , Antígeno B7-H1/antagonistas & inhibidores , Membrana Corioalantoides/irrigación sanguínea , Dasatinib/toxicidad , Inhibidores de Puntos de Control Inmunológico/toxicidad , Neovascularización Fisiológica/efectos de los fármacos , Inhibidores de Proteínas Quinasas/toxicidad , Piridinas/toxicidad , Animales , Antígeno B7-H1/metabolismo , Embrión de Pollo , Desarrollo Embrionario/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica , Neovascularización Fisiológica/genética , Transducción de Señal
20.
Ecotoxicol Environ Saf ; 207: 111264, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-32911184

RESUMEN

This study investigated the effect of the herbicide metolachlor (MET) on the redox homeostasis of the freshwater green alga Pseudokirchneriella subcapitata. At low MET concentrations (≤40 µg L-1), no effects on algal cells were detected. The exposure of P. subcapitata to 45-235 µg L-1 MET induced a significant increase of reactive oxygen species (ROS). The intracellular levels of ROS were particularly increased at high (115 and 235 µg L-1) but environmentally relevant MET concentrations. The exposure of algal cells to 115 and 235 µg L-1 MET originated a decrease in the levels of antioxidants molecules (reduced glutathione and carotenoids) as well as a reduction of the activity of scavenging enzymes (superoxide dismutase and catalase). These results suggest that antioxidant (non-enzymatic and enzymatic) defenses were affected by the excess of MET. As consequence of this imbalance (ROS overproduction and decline of the antioxidant system), ROS inflicted oxidative injury with lipid peroxidation and damage of cell membrane integrity. The results provide further insights about the toxic modes of action of MET on a non-target organism and emphasize the relevance of toxicological studies in the assessment of the impact of herbicides in freshwater environments.


Asunto(s)
Acetamidas/toxicidad , Chlorophyceae/efectos de los fármacos , Herbicidas/toxicidad , Contaminantes Químicos del Agua/toxicidad , Antioxidantes/metabolismo , Catalasa/metabolismo , Chlorophyceae/fisiología , Agua Dulce , Glutatión/metabolismo , Homeostasis/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Oxidación-Reducción , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...