Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 217
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Clin Invest ; 134(12)2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38941296

RESUMEN

Clear cell renal cell carcinoma (ccRCC) is an aggressive cancer driven by VHL loss and aberrant HIF-2α signaling. Identifying means to regulate HIF-2α thus has potential therapeutic benefit. Acetyl-CoA synthetase 2 (ACSS2) converts acetate to acetyl-CoA and is associated with poor patient prognosis in ccRCC. Here we tested the effects of ACSS2 on HIF-2α and cancer cell metabolism and growth in ccRCC models and clinical samples. ACSS2 inhibition reduced HIF-2α levels and suppressed ccRCC cell line growth in vitro, in vivo, and in cultures of primary ccRCC patient tumors. This treatment reduced glycolytic signaling, cholesterol metabolism, and mitochondrial integrity, all of which are consistent with loss of HIF-2α. Mechanistically, ACSS2 inhibition decreased chromatin accessibility and HIF-2α expression and stability. While HIF-2α protein levels are widely regulated through pVHL-dependent proteolytic degradation, we identify a potential pVHL-independent pathway of degradation via the E3 ligase MUL1. We show that MUL1 can directly interact with HIF-2α and that overexpression of MUL1 decreased HIF-2α levels in a manner partially dependent on ACSS2. These findings identify multiple mechanisms to regulate HIF-2α stability and ACSS2 inhibition as a strategy to complement HIF-2α-targeted therapies and deplete pathogenically stabilized HIF-2α.


Asunto(s)
Acetato CoA Ligasa , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Carcinoma de Células Renales , Regulación Neoplásica de la Expresión Génica , Neoplasias Renales , Transducción de Señal , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/patología , Carcinoma de Células Renales/genética , Humanos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Neoplasias Renales/metabolismo , Neoplasias Renales/patología , Neoplasias Renales/genética , Línea Celular Tumoral , Acetato CoA Ligasa/metabolismo , Acetato CoA Ligasa/genética , Animales , Ratones , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/metabolismo , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/genética
2.
Sci Adv ; 10(20): eadj5942, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38758779

RESUMEN

Acetyl-CoA synthetase short-chain family member 1 (ACSS1) uses acetate to generate mitochondrial acetyl-CoA and is regulated by deacetylation by sirtuin 3. We generated an ACSS1-acetylation (Ac) mimic mouse, where lysine-635 was mutated to glutamine (K635Q). Male Acss1K635Q/K635Q mice were smaller with higher metabolic rate and blood acetate and decreased liver/serum ATP and lactate levels. After a 48-hour fast, Acss1K635Q/K635Q mice presented hypothermia and liver aberrations, including enlargement, discoloration, lipid droplet accumulation, and microsteatosis, consistent with nonalcoholic fatty liver disease (NAFLD). RNA sequencing analysis suggested dysregulation of fatty acid metabolism, cellular senescence, and hepatic steatosis networks, consistent with NAFLD. Fasted Acss1K635Q/K635Q mouse livers showed increased fatty acid synthase (FASN) and stearoyl-CoA desaturase 1 (SCD1), both associated with NAFLD, and increased carbohydrate response element-binding protein binding to Fasn and Scd1 enhancer regions. Last, liver lipidomics showed elevated ceramide, lysophosphatidylethanolamine, and lysophosphatidylcholine, all associated with NAFLD. Thus, we propose that ACSS1-K635-Ac dysregulation leads to aberrant lipid metabolism, cellular senescence, and NAFLD.


Asunto(s)
Senescencia Celular , Mitocondrias , Enfermedad del Hígado Graso no Alcohólico , Estearoil-CoA Desaturasa , Animales , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/patología , Ratones , Senescencia Celular/genética , Acetilación , Mitocondrias/metabolismo , Estearoil-CoA Desaturasa/metabolismo , Estearoil-CoA Desaturasa/genética , Masculino , Acetato CoA Ligasa/metabolismo , Acetato CoA Ligasa/genética , Técnicas de Sustitución del Gen , Hígado/metabolismo , Hígado/patología , Metabolismo de los Lípidos , Sirtuina 3/metabolismo , Sirtuina 3/genética , Modelos Animales de Enfermedad , Coenzima A Ligasas , Acido Graso Sintasa Tipo I
3.
Cell Death Differ ; 31(4): 479-496, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38332049

RESUMEN

The appropriate transcriptional activity of PPARγ is indispensable for controlling inflammation, tumor and obesity. Therefore, the identification of key switch that couples PPARγ activation with degradation to sustain its activity homeostasis is extremely important. Unexpectedly, we here show that acetyl-CoA synthetase short-chain family member 2 (ACSS2) critically controls PPARγ activity homeostasis via SIRT1 to enhance adipose plasticity via promoting white adipose tissues beiging and brown adipose tissues thermogenesis. Mechanistically, ACSS2 binds directly acetylated PPARγ in the presence of ligand and recruits SIRT1 and PRDM16 to activate UCP1 expression. In turn, SIRT1 triggers ACSS2 translocation from deacetylated PPARγ to P300 and thereafter induces PPARγ polyubiquitination and degradation. Interestingly, D-mannose rapidly activates ACSS2-PPARγ-UCP1 axis to resist high fat diet induced obesity in mice. We thus reveal a novel ACSS2 function in coupling PPARγ activation with degradation via SIRT1 and suggest D-mannose as a novel adipose plasticity regulator via ACSS2 to prevent obesity.


Asunto(s)
Homeostasis , PPAR gamma , Sirtuina 1 , Animales , PPAR gamma/metabolismo , Ratones , Sirtuina 1/metabolismo , Sirtuina 1/genética , Acetato CoA Ligasa/metabolismo , Acetato CoA Ligasa/genética , Ratones Endogámicos C57BL , Humanos , Obesidad/metabolismo , Obesidad/patología , Factores de Transcripción/metabolismo , Dieta Alta en Grasa , Masculino , Tejido Adiposo Pardo/metabolismo , Termogénesis , Manosa/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Tejido Adiposo Blanco/metabolismo , Proteína Desacopladora 1/metabolismo , Proteína Desacopladora 1/genética , Tejido Adiposo/metabolismo
4.
J Clin Invest ; 134(4)2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38051585

RESUMEN

Worldwide, over 800 million people are affected by kidney disease, yet its pathogenesis remains elusive, hindering the development of novel therapeutics. In this study, we used kidney-specific expression of quantitative traits and single-nucleus open chromatin analysis to show that genetic variants linked to kidney dysfunction on chromosome 20 target the acyl-CoA synthetase short-chain family 2 (ACSS2). By generating ACSS2-KO mice, we demonstrated their protection from kidney fibrosis in multiple disease models. Our analysis of primary tubular cells revealed that ACSS2 regulated de novo lipogenesis (DNL), causing NADPH depletion and increasing ROS levels, ultimately leading to NLRP3-dependent pyroptosis. Additionally, we discovered that pharmacological inhibition or genetic ablation of fatty acid synthase safeguarded kidney cells against profibrotic gene expression and prevented kidney disease in mice. Lipid accumulation and the expression of genes related to DNL were elevated in the kidneys of patients with fibrosis. Our findings pinpoint ACSS2 as a critical kidney disease gene and reveal the role of DNL in kidney disease.


Asunto(s)
Acetato CoA Ligasa , Enfermedades Renales , Lipogénesis , Animales , Humanos , Ratones , Acetato CoA Ligasa/genética , Fibrosis , Riñón/metabolismo , Enfermedades Renales/genética , Enfermedades Renales/metabolismo , Túbulos Renales/metabolismo , Lipogénesis/genética
5.
Liver Int ; 43(8): 1729-1740, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37183518

RESUMEN

BACKGROUND AND AIMS: Steatosis is the early pathological change in alcohol-associated liver disease. However, its precise mechanism is still unclear. The present study is aimed to explore the role and mechanism of acetyl-CoA synthetase 2 (ACSS2) in acute alcohol-induced lipogenesis. METHODS: The increase in ACSS2 nuclear import and histone H3 acetylation were observed in mice after intraperitoneally injected with 2 g/kg ethanol or oral administration of 5 g/kg ethanol and also validated in hepatocytes stimulated with ethanol or acetate. The role of ACSS2 was further explored in liver-specific ACSS2 knockdown mice fed with ethanol-containing diet. RESULTS: Alcohol challenge induced hepatic lipid deposition and upregulated lipogenic genes in mice. It also promoted ACSS2 nuclear import and increased histone H3 acetylation. In hepatocytes, ethanol induced similar phenomena whereas ACSS2 knockdown blocked histone acetylation and lipogenic gene induction. P300/CBP associated factor (PCAF), but not general control nonderepressible 5, CREB-binding protein (CBP) and p300, facilitated H3K9 acetylation responding to ethanol challenge. CUT&RUN assay showed the enrichment of acetylated histone H3K9 surrounding Fasn and Acaca promoters. These results indicated that ethanol metabolism promoted ACSS2 nuclear import to support lipogenesis via H3K9 acetylation. In alcohol-feeding mice, liver-specific ACSS2 knockdown blocked the interaction between PCAF and H3K9 and suppressed lipogenic gene induction in the liver, demonstrating the critical role of ACSS2 in lipogenesis. CONCLUSIONS: Our study demonstrated that alcohol metabolism generated acetyl-CoA in the nucleus dependently on nuclear ACSS2, contributing to epigenetic regulation of lipogenesis in hepatic steatosis. Targeting ACSS2 may be a potential therapeutical strategy for acute alcoholic liver steatosis.


Asunto(s)
Acetato CoA Ligasa , Hígado Graso Alcohólico , Hígado Graso , Hepatopatías Alcohólicas , Animales , Ratones , Acetilcoenzima A/genética , Acetilcoenzima A/metabolismo , Epigénesis Genética , Etanol , Hígado Graso/genética , Hígado Graso Alcohólico/genética , Histonas , Lipogénesis/genética , Hígado/metabolismo , Hepatopatías Alcohólicas/metabolismo , Acetato CoA Ligasa/genética , Acetato CoA Ligasa/metabolismo
6.
Int J Mol Sci ; 24(4)2023 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-36835088

RESUMEN

The coordination of cellular biological processes is regulated in part via metabolic enzymes acting to match cellular metabolism to current conditions. The acetate activating enzyme, acyl-coenzyme A synthetase short-chain family member 2 (Acss2), has long been considered to have a predominantly lipogenic function. More recent evidence suggests that this enzyme has regulatory functions in addition to its role in providing acetyl-CoA for lipid synthesis. We used Acss2 knockout mice (Acss2-/-) to further investigate the roles this enzyme plays in three physiologically distinct organ systems that make extensive use of lipid synthesis and storage, including the liver, brain, and adipose tissue. We examined the resulting transcriptomic changes resulting from Acss2 deletion and assessed these changes in relation to fatty acid constitution. We find that loss of Acss2 leads to dysregulation of numerous canonical signaling pathways, upstream transcriptional regulatory molecules, cellular processes, and biological functions, which were distinct in the liver, brain, and mesenteric adipose tissues. The detected organ-specific transcriptional regulatory patterns reflect the complementary functional roles of these organ systems within the context of systemic physiology. While alterations in transcriptional states were evident, the loss of Acss2 resulted in few changes in fatty acid constitution in all three organ systems. Overall, we demonstrate that Acss2 loss institutes organ-specific transcriptional regulatory patterns reflecting the complementary functional roles of these organ systems. Collectively, these findings provide further confirmation that Acss2 regulates key transcription factors and pathways under well-fed, non-stressed conditions and acts as a transcriptional regulatory enzyme.


Asunto(s)
Acetato CoA Ligasa , Regulación de la Expresión Génica , Animales , Ratones , Acetato CoA Ligasa/genética , Acetato CoA Ligasa/metabolismo , Acetatos/metabolismo , Ácidos Grasos/metabolismo , Lipogénesis , Hígado/metabolismo
7.
J Vet Med Sci ; 85(1): 105-110, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36450502

RESUMEN

Sarcocystis cruzi is a member of the genus Sarcocystis, infecting bovine animals such as cattle and bison as intermediate hosts, and canids such as dogs and raccoon dogs as definitive hosts. Acute sarcocystosis of S. cruzi causes occasional symptoms in cattle, including weight loss, reduced milk production, abortions, and death, and similar to other Sarcocystis species can potentially cause food poisoning in humans when raw or undercooked infected cattle meat is consumed. Despite these issues, genetic information on S. cruzi is scarce, and there is no specific quantitative method for the detection and quantification of the parasite in infected cattle. In this study, we aimed to develop a method based on high-throughput sequencing of S. cruzi genome and transcriptome that specifically and quantitatively detects the S. cruzi acetyl-CoA synthetase gene (ScACS). Cardiac muscles were collected from slaughterhouses in Saitama Prefecture to obtain sarcocysts from which DNA and RNA were extracted for the high-throughput sequencing. Using the sequences, we developed a specific quantitative PCR assay which could distinguish S. cruzi ACS from that of Toxoplasma gondii by taking advantage of the differences in their exon/intron organizations and validated the assay with the microscopic counting of the S. cruzi bradyzoites. Thus, this assay will be useful for future studies of S. cruzi pathogenesis in cattle and for the surveillance of infected animals, thereby easing public health concerns.


Asunto(s)
Acetato CoA Ligasa , Genes Protozoarios , Proteínas Protozoarias , Sarcocystis , Sarcocistosis , Animales , Bovinos , Humanos , Reacción en Cadena de la Polimerasa/veterinaria , Reacción en Cadena de la Polimerasa/métodos , Sarcocystis/genética , Sarcocystis/aislamiento & purificación , Sarcocistosis/diagnóstico , Sarcocistosis/veterinaria , Acetato CoA Ligasa/genética , Proteínas Protozoarias/genética
8.
Arch Microbiol ; 204(10): 653, 2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36175799

RESUMEN

Acetyl-coenzyme A (CoA) synthetase (Acs) links cellular metabolism and physiology by catalyzing acetate and CoA into acetyl-CoA. However, the biological roles of Acs are not well studied in entomopathogenic fungi. In this study, two Acs proteins (BbAcs1 and BbAcs2) was functionally characterized in the filamentous insect pathogenic fungus Beauveria bassiana. BbAcs1 and BbAcs2 localize in cytoplasm and peroxisome, respectively. BbAcs1 contributes to vegetative growth on fatty acids as carbon source, and BbAcs2 did not. Both genes did not contribute to fungal response to stresses. The BbAcs1 loss conferred a slight influence on conidiation, and did not result in the defects in blastospore formation. On the contrary, BbAcs2 significantly contributes to lipid metabolism in germlings, blastospore formation, and virulence. The results indicated that Acs2 played a more predominant role than Acs1 in B. bassiana, which links the acetyl-CoA metabolism with the lifestyle of entomopathogenic fungi.


Asunto(s)
Beauveria , Saccharomyces cerevisiae , Acetato CoA Ligasa/genética , Acetilcoenzima A , Beauveria/genética , Carbono , Coenzima A Ligasas/genética , Ácidos Grasos
9.
Microbiology (Reading) ; 168(9)2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36048631

RESUMEN

Successful adaptation of Escherichia coli to constant environmental challenges demands the operation of a wide range of regulatory control mechanisms, some of which are global, while others are specific. Here, we show that the ability of acetate-negative phenotype strains of E. coli devoid of acetate kinase (AK) and phosphotransacetylase (PTA) to assimilate acetate when challenged at the end of growth on acetogenic substrates is explicable by the co-expression of acetyl CoA-synthetase (AcCoA-S) and acetate permease (AP). Furthermore, mRNA transcript measurements for acs and aceA, together with the enzymatic activities of their corresponding enzymes, acetyl CoA synthetase (AcCoA-S) and isocitrate lyase (ICL), clearly demonstrate that the expression of the two enzymes is inextricably linked and triggered in response to growth rate threshold signal (0.4 h-1± 0.03: n4). Interestingly, further restriction of carbon supply to the level of starvation led to the repression of acs (AcCoA-S), ackA (AK) and pta (PTA). Further, we provide evidence that the reaction sequence catalysed by PTA, AK and AcCoA-S is not in operation at low growth rates and that the reaction catalysed by AcCoA-S is not merely an ATP-dissipating reaction but rather advantageous, as it elevates the available free energy (ΔG°) in central metabolism. Moreover, the transcriptomic data reinforce the view that the expression of PEP carboxykinase is essential in gluconeogenic phenotypes.


Asunto(s)
Acetato CoA Ligasa , Escherichia coli , Acetato Quinasa/genética , Acetato Quinasa/metabolismo , Acetato CoA Ligasa/genética , Acetato CoA Ligasa/metabolismo , Acetatos/metabolismo , Acetilcoenzima A/metabolismo , Escherichia coli/metabolismo , Operón , Fosfato Acetiltransferasa/genética , Fosfato Acetiltransferasa/metabolismo
10.
Proc Natl Acad Sci U S A ; 119(32): e2114758119, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35921439

RESUMEN

Histone acetylation is a key component in the consolidation of long-term fear memories. Histone acetylation is fueled by acetyl-coenzyme A (acetyl-CoA), and recently, nuclear-localized metabolic enzymes that produce this metabolite have emerged as direct and local regulators of chromatin. In particular, acetyl-CoA synthetase 2 (ACSS2) mediates histone acetylation in the mouse hippocampus. However, whether ACSS2 regulates long-term fear memory remains to be determined. Here, we show that Acss2 knockout is well tolerated in mice, yet the Acss2-null mouse exhibits reduced acquisition of long-term fear memory. Loss of Acss2 leads to reductions in both histone acetylation and expression of critical learning and memory-related genes in the dorsal hippocampus, specifically following fear conditioning. Furthermore, systemic administration of blood-brain barrier-permeable Acss2 inhibitors during the consolidation window reduces fear-memory formation in mice and rats and reduces anxiety in a predator-scent stress paradigm. Our findings suggest that nuclear acetyl-CoA metabolism via ACSS2 plays a critical, previously unappreciated, role in the formation of fear memories.


Asunto(s)
Acetato CoA Ligasa , Acetilcoenzima A , Condicionamiento Clásico , Miedo , Histonas , Consolidación de la Memoria , Acetato CoA Ligasa/genética , Acetato CoA Ligasa/metabolismo , Acetilcoenzima A/metabolismo , Acetilación , Animales , Condicionamiento Clásico/fisiología , Miedo/fisiología , Hipocampo/enzimología , Histonas/metabolismo , Ratones , Ratones Noqueados , Ratas
11.
Gastroenterology ; 163(5): 1281-1293.e1, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35777482

RESUMEN

BACKGROUND & AIMS: Rapid deconditioning, also called cachexia, and metabolic reprogramming are two hallmarks of pancreatic cancer. Acetyl-coenzyme A synthetase short-chain family member 2 (ACSS2) is an acetyl-enzyme A synthetase that contributes to lipid synthesis and epigenetic reprogramming. However, the role of ACSS2 on the nonselective macropinocytosis and cancer cachexia in pancreatic cancer remains elusive. In this study, we demonstrate that ACSS2 potentiates macropinocytosis and muscle wasting through metabolic reprogramming in pancreatic cancer. METHODS: Clinical significance of ACSS2 was analyzed using samples from patients with pancreatic cancer. ACSS2-knockout cells were established using the clustered regularly interspaced short palindromic repeats-associated protein 9 system. Single-cell RNA sequencing data from genetically engineered mouse models was analyzed. The macropinocytotic index was evaluated by dextran uptake assay. Chromatin immunoprecipitation assay was performed to validate transcriptional activation. ACSS2-mediated tumor progression and muscle wasting were examined in orthotopic xenograft models. RESULTS: Metabolic stress induced ACSS2 expression, which is associated with worse prognosis in pancreatic cancer. ACSS2 knockout significantly suppressed cell proliferation in 2-dimensional and 3-dimensional models. Macropinocytosis-associated genes are upregulated in tumor tissues and are correlated with worse prognosis. ACSS2 knockout inhibited macropinocytosis. We identified Zrt- and Irt-like protein 4 (ZIP4) as a downstream target of ACSS2, and knockdown of ZIP4 reversed ACSS2-induced macropinocytosis. ACSS2 upregulated ZIP4 through ETV4-mediated transcriptional activation. ZIP4 induces macropinocytosis through cyclic adenosine monophosphate response element-binding protein-activated syndecan 1 (SDC1) and dynamin 2 (DNM2). Meanwhile, ZIP4 drives muscle wasting and cachexia via glycogen synthase kinase-ß (GSK3ß)-mediated secretion of tumor necrosis factor superfamily member 10 (TRAIL or TNFSF10). ACSS2 knockout attenuated muscle wasting and extended survival in orthotopic mouse models. CONCLUSIONS: ACSS2-mediated metabolic reprogramming activates the ZIP4 pathway, and promotes macropinocytosis via SDC1/DNM2 and drives muscle wasting through the GSK3ß/TRAIL axis, which potentially provides additional nutrients for macropinocytosis in pancreatic cancer.


Asunto(s)
Acetato CoA Ligasa , Caquexia , Neoplasias Pancreáticas , Animales , Humanos , Ratones , Acetato CoA Ligasa/genética , Acetato CoA Ligasa/metabolismo , Adenosina Monofosfato , Caquexia/genética , Línea Celular Tumoral , Dextranos , Dinamina II , Glucógeno Sintasa Quinasa 3 beta , Lípidos , Músculos/metabolismo , Músculos/patología , Neoplasias Pancreáticas/complicaciones , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Sindecano-1 , Factores de Necrosis Tumoral , Neoplasias Pancreáticas
12.
J Biol Chem ; 297(3): 101037, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34343565

RESUMEN

Besides contributing to anabolism, cellular metabolites serve as substrates or cofactors for enzymes and may also have signaling functions. Given these roles, multiple control mechanisms likely ensure fidelity of metabolite-generating enzymes. Acetate-dependent acetyl CoA synthetases (ACS) are de novo sources of acetyl CoA, a building block for fatty acids and a substrate for acetyltransferases. Eukaryotic acetate-dependent acetyl CoA synthetase 2 (Acss2) is predominantly cytosolic, but is also found in the nucleus following oxygen or glucose deprivation, or upon acetate exposure. Acss2-generated acetyl CoA is used in acetylation of Hypoxia-Inducible Factor 2 (HIF-2), a stress-responsive transcription factor. Mutation of a putative nuclear localization signal in endogenous Acss2 abrogates HIF-2 acetylation and signaling, but surprisingly also results in reduced Acss2 protein levels due to unmasking of two protein destabilization elements (PDE) in the Acss2 hinge region. In the current study, we identify up to four additional PDE in the Acss2 hinge region and determine that a previously identified PDE, the ABC domain, consists of two functional PDE. We show that the ABC domain and other PDE are likely masked by intramolecular interactions with other domains in the Acss2 hinge region. We also characterize mice with a prematurely truncated Acss2 that exposes a putative ABC domain PDE, which exhibits reduced Acss2 protein stability and impaired HIF-2 signaling. Finally, using primary mouse embryonic fibroblasts, we demonstrate that the reduced stability of select Acss2 mutant proteins is due to a shortened half-life, which is a result of enhanced degradation via a nonproteasome, nonautophagy pathway.


Asunto(s)
Acetato CoA Ligasa/química , Acetato CoA Ligasa/metabolismo , Acetatos/metabolismo , Acetato CoA Ligasa/genética , Secuencia de Aminoácidos , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Fibroblastos/química , Fibroblastos/enzimología , Humanos , Ratones , Unión Proteica , Dominios Proteicos , Estabilidad Proteica , Alineación de Secuencia
13.
Reprod Fertil Dev ; 33(5): 372-380, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33684338

RESUMEN

This study evaluated the effects of three maturation systems, namely invitro (MatV) and invivo (MatS) systems, as well as intrafollicular transfer of immature oocytes (IFIOT; MatT), on the accumulation of lipid droplets in bovine oocytes. Lipids were evaluated using confocal microscopy and transmission electron microscopy. The expression of genes related to lipid metabolism, namely acyl-CoA synthetase short chain family member 2 (ACSS2), ELOVL fatty acid elongase 1 (ELOVL1) and fatty acid binding protein 3 (FABP3), was quantified by quantitative polymerase chain reaction. The mean (±s.d.) area occupied by lipids in immature oocytes (13±2%) was similar to those matured invivo (MatS, 16±2%; MatT, 12±2%). However, there was a significant increase in lipids in oocytes in the MatV group (24±2%) compared with all other groups (P<0.001). In the ultrastructural evaluations, MatV oocytes also showed the highest lipid content. The expression of ELOVL1 and FABP3 was similar in the MatS and IFIOT groups. However, transcript levels of ACSS2 were lower in IFIOT than MatV oocytes. These results indicate, for the first time, that oocytes matured by IFIOT are similar to those matured invivo with regard to lipid accumulation, which indicates better quality than those matured invitro.


Asunto(s)
Bovinos , Técnicas de Maduración In Vitro de los Oocitos/veterinaria , Metabolismo de los Lípidos , Oocitos/crecimiento & desarrollo , Oocitos/metabolismo , Acetato CoA Ligasa/genética , Animales , Proteína 3 de Unión a Ácidos Grasos/genética , Elongasas de Ácidos Grasos/genética , Femenino , Expresión Génica , Metabolismo de los Lípidos/genética , Oocitos/ultraestructura , Folículo Ovárico/citología
14.
Br J Cancer ; 124(12): 1900-1901, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33767420

RESUMEN

Recent advances in our understanding of tumour heterogeneity alongside studies investigating altered metabolism within transformed tissue have identified metabolic pathways critical to cancer cell survival. Leveraging this information presents a promising new avenue for the generation of cancer-specific therapeutics and improved patient outcomes.


Asunto(s)
Acetato CoA Ligasa/antagonistas & inhibidores , Acetatos/metabolismo , Inhibidores Enzimáticos/uso terapéutico , Neoplasias/tratamiento farmacológico , Acetato CoA Ligasa/genética , Acetato CoA Ligasa/metabolismo , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Inhibidores Enzimáticos/farmacología , Humanos , Redes y Vías Metabólicas/efectos de los fármacos , Ratones , Terapia Molecular Dirigida/métodos , Terapia Molecular Dirigida/tendencias , Neoplasias/metabolismo , Neoplasias/mortalidad , Neoplasias/patología , Resultado del Tratamiento
15.
J Cell Physiol ; 236(10): 6948-6962, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33682931

RESUMEN

ACSS1/2 converts acetate into acetyl-coenzyme A, which contributes to histone acetylation in the mitochondria and cytoplasm. Zygotic genome activation (ZGA) is critical for embryo development involving drastic histone modification. An efficient crRNAs-Cas13a targeting strategy was employed to investigate the ACSS1/2 function during ZGA. The results showed that nuclear accumulation of ACSS1 and ACSS2 occurs during ZGA. Knockdown of ACSS1/2 did not affect blastocyst formation when using a normal medium. On culturing embryos in a medium with acetate and no pyruvate (-P + Ace), knockdown of ACSS1 did not affect histone acetylation levels but significantly reduced ATP levels, whereas knockdown of ACSS2 significantly reduced histone acetylation levels in porcine embryos. Inhibition of fatty acid beta-oxidation by etomoxir significantly reduced ATP levels, which could be restored by acetate. The histone acetylation levels in the ACSS1 and ACSS2 knockdown groups both decreased considerably after etomoxir treatment. Moreover, acetate showed dose-dependent effects on SIRT1 and SIRT3 levels when under metabolic stress. The C-terminus of ACSS1 regulated the nuclear translocation. In conclusion, ACSS1/2 helps to maintain ATP and histone acetylation levels in porcine early embryos under metabolic stress during ZGA.


Asunto(s)
Acetato CoA Ligasa/metabolismo , Acetatos/metabolismo , Acetilcoenzima A/metabolismo , Metabolismo Energético , Regulación del Desarrollo de la Expresión Génica , Histonas/metabolismo , Procesamiento Proteico-Postraduccional , Cigoto/enzimología , Acetato CoA Ligasa/genética , Acetilación , Adenosina Trifosfato/metabolismo , Animales , Técnicas de Cultivo de Embriones , Partenogénesis , Sirtuina 1/metabolismo , Sirtuina 3/metabolismo , Sus scrofa
16.
J Bacteriol ; 203(8)2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33558390

RESUMEN

The halophilic archaeon Haloferax volcanii has been proposed to degrade glucose via the semiphosphorylative Entner-Doudoroff (spED) pathway. Following our previous studies on key enzymes of this pathway, we now focus on the characterization of enzymes involved in 3-phosphoglycerate conversion to pyruvate, in anaplerosis, and in acetyl coenzyme A (acetyl-CoA) formation from pyruvate. These enzymes include phosphoglycerate mutase, enolase, pyruvate kinase, phosphoenolpyruvate carboxylase, and pyruvate-ferredoxin oxidoreductase. The essential function of these enzymes were shown by transcript analyses and growth experiments with respective deletion mutants. Furthermore, we show that H. volcanii-during aerobic growth on glucose-excreted significant amounts of acetate, which was consumed in the stationary phase (acetate switch). The enzyme catalyzing the conversion of acetyl-CoA to acetate as part of the acetate overflow mechanism, an ADP-forming acetyl-CoA synthetase (ACD), was characterized. The functional involvement of ACD in acetate formation and of AMP-forming acetyl-CoA synthetases (ACSs) in activation of excreted acetate was proven by using respective deletion mutants. Together, the data provide a comprehensive analysis of enzymes of the spED pathway and of anaplerosis and report the first genetic evidence of the functional involvement of enzymes of the acetate switch in archaea.IMPORTANCE In this work, we provide a comprehensive analysis of glucose degradation via the semiphosphorylative Entner-Doudoroff pathway in the haloarchaeal model organism Haloferax volcanii The study includes transcriptional analyses, growth experiments with deletion mutants. and characterization of all enzymes involved in the conversion of 3-phosphoglycerate to acetyl coenzyme A (acetyl-CoA) and in anaplerosis. Phylogenetic analyses of several enzymes indicate various lateral gene transfer events from bacteria to haloarchaea. Furthermore, we analyzed the key players involved in the acetate switch, i.e., in the formation (overflow) and subsequent consumption of acetate during aerobic growth on glucose. Together, the data provide novel aspects of glucose degradation, anaplerosis, and acetate switch in H. volcanii and thus expand our understanding of the unusual sugar metabolism in archaea.


Asunto(s)
Acetatos/metabolismo , Glucosa/metabolismo , Haloferax volcanii/enzimología , Acetato CoA Ligasa/genética , Acetato CoA Ligasa/metabolismo , Acetilcoenzima A/metabolismo , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Haloferax volcanii/genética , Haloferax volcanii/crecimiento & desarrollo , Haloferax volcanii/metabolismo , Fosfoenolpiruvato Carboxilasa/genética , Fosfoenolpiruvato Carboxilasa/metabolismo , Fosfoglicerato Mutasa/genética , Fosfoglicerato Mutasa/metabolismo , Fosfopiruvato Hidratasa/genética , Fosfopiruvato Hidratasa/metabolismo , Ácido Pirúvico/metabolismo
17.
J Am Chem Soc ; 143(7): 2751-2756, 2021 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-33577316

RESUMEN

DNA-encoded small molecule libraries (DELs) have facilitated the discovery of novel modulators of many different therapeutic protein targets. We report the first successful screening of a multimillion membered DEL inside a living cell. We demonstrate a novel method using oocytes from the South African clawed frog Xenopus laevis. The large size of the oocytes of 1 µL, or 100 000 times bigger than a normal somatic cell, permits simple injection of DELs, thus resolving the fundamental problem of delivering DELs across cell membranes for in vivo screening. The target protein was expressed in the oocytes fused to a prey protein, to allow specific DNA labeling and hereby discriminate between DEL members binding to the target protein and the endogenous cell proteins. The 194 million member DEL was screened against three pharmaceutically relevant protein targets, p38α, ACSS2, and DOCK5. For all three targets multiple chemical clusters were identified. For p38α, validated hits with single digit nanomolar potencies were obtained. This work demonstrates a powerful new approach to DEL screening, which eliminates the need for highly purified active target protein and which performs the screening under physiological relevant conditions and thus is poised to increase the DEL amenable target space and reduce the attrition rates.


Asunto(s)
ADN/metabolismo , Bibliotecas de Moléculas Pequeñas/metabolismo , Xenopus laevis/metabolismo , Acetato CoA Ligasa/química , Acetato CoA Ligasa/genética , Acetato CoA Ligasa/metabolismo , Animales , Humanos , Proteína Quinasa 14 Activada por Mitógenos/química , Proteína Quinasa 14 Activada por Mitógenos/genética , Proteína Quinasa 14 Activada por Mitógenos/metabolismo , Oocitos/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Xenopus laevis/crecimiento & desarrollo
18.
Cancer Res ; 81(5): 1252-1264, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33414169

RESUMEN

Acetyl-CoA is a vitally important and versatile metabolite used for many cellular processes including fatty acid synthesis, ATP production, and protein acetylation. Recent studies have shown that cancer cells upregulate acetyl-CoA synthetase 2 (ACSS2), an enzyme that converts acetate to acetyl-CoA, in response to stresses such as low nutrient availability and hypoxia. Stressed cancer cells use ACSS2 as a means to exploit acetate as an alternative nutrient source. Genetic depletion of ACSS2 in tumors inhibits the growth of a wide variety of cancers. However, there are no studies on the use of an ACSS2 inhibitor to block tumor growth. In this study, we synthesized a small-molecule inhibitor that acts as a transition-state mimetic to block ACSS2 activity in vitro and in vivo. Pharmacologic inhibition of ACSS2 as a single agent impaired breast tumor growth. Collectively, our findings suggest that targeting ACSS2 may be an effective therapeutic approach for the treatment of patients with breast cancer. SIGNIFICANCE: These findings suggest that targeting acetate metabolism through ACSS2 inhibitors has the potential to safely and effectively treat a wide range of patients with cancer.


Asunto(s)
Acetato CoA Ligasa/antagonistas & inhibidores , Antineoplásicos/farmacología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Acetato CoA Ligasa/genética , Acetato CoA Ligasa/metabolismo , Animales , Antineoplásicos/química , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales/métodos , Estabilidad de Medicamentos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Ácidos Grasos/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HEK293 , Humanos , Ratones Endogámicos , Simulación del Acoplamiento Molecular , Terapia Molecular Dirigida/métodos , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Cell Metab ; 33(1): 78-93.e7, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33406405

RESUMEN

Obesity is often linked to malignancies including multiple myeloma, and the underlying mechanisms remain elusive. Here we showed that acetyl-CoA synthetase 2 (ACSS2) may be an important linker in obesity-related myeloma. ACSS2 is overexpressed in myeloma cells derived from obese patients and contributes to myeloma progression. We identified adipocyte-secreted angiotensin II as a direct cause of adiposity in increased ACSS2 expression. ACSS2 interacts with oncoprotein interferon regulatory factor 4 (IRF4), and enhances IRF4 stability and IRF4-mediated gene transcription through activation of acetylation. The importance of ACSS2 overexpression in myeloma is confirmed by the finding that an inhibitor of ACSS2 reduces myeloma growth both in vitro and in a diet-induced obese mouse model. Our findings demonstrate a key impact for obesity-induced ACSS2 on the progression of myeloma. Given the central role of ACSS2 in many tumors, this mechanism could be important to other obesity-related malignancies.


Asunto(s)
Acetato CoA Ligasa/genética , Mieloma Múltiple/genética , Obesidad/genética , Acetato CoA Ligasa/metabolismo , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones SCID , Mieloma Múltiple/metabolismo , Mieloma Múltiple/patología , Obesidad/metabolismo
20.
Biochem J ; 477(16): 3075-3089, 2020 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-32776152

RESUMEN

Alcohol drinking is a leading risk factor for the development of esophageal squamous cell carcinoma (ESCC). However, the molecular mechanisms of alcohol-associated ESCC remain poorly understood. One of the most commonly mutated genes in ESCC is nuclear factor erythroid 2 like 2 (NFE2L2 or NRF2), which is a critical transcription factor regulating oxidative stress response and drug detoxification. When NRF2 is hyperactive in cancer cells, however, it leads to metabolic reprogramming, cell proliferation, chemoradioresistance, and poor prognosis. In this study, hyperactive NRF2 was found to up-regulate acetyl-CoA synthetase short-chain family members 2 (ACSS2), an enzyme that converts acetate to acetyl-CoA, in ESCC cells and mouse esophagus. We also showed that knockdown of NRF2 or ACSS2 led to decreased ACSS2 expression, which in turn reduced the levels of acetyl-CoA and ATP with or without ethanol exposure. In addition, ethanol exposure enhanced lipid synthesis in ESCC cells. Moreover, we observed a change in the metabolic profile of ESCC cells exposed to ethanol as a result of their NRF2 or ACSS2 status. We further showed that ACSS2 contributed to the invasive capability of NRF2high ESCC cells exposed to ethanol. In conclusion, the NRF2/ACSS2 axis mediates the metabolic effect of alcohol drinking on ESCC.


Asunto(s)
Acetato CoA Ligasa/metabolismo , Consumo de Bebidas Alcohólicas/efectos adversos , Reprogramación Celular , Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas de Esófago/patología , Lipogénesis , Factor 2 Relacionado con NF-E2/metabolismo , Acetato CoA Ligasa/genética , Animales , Proliferación Celular , Neoplasias Esofágicas/etiología , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas de Esófago/etiología , Carcinoma de Células Escamosas de Esófago/metabolismo , Humanos , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Ratones , Ratones Noqueados , Factor 2 Relacionado con NF-E2/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...